| // Copyright 2011 Google Inc. All Rights Reserved. |
| // |
| // This code is licensed under the same terms as WebM: |
| // Software License Agreement: http://www.webmproject.org/license/software/ |
| // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ |
| // ----------------------------------------------------------------------------- |
| // |
| // frame coding and analysis |
| // |
| // Author: Skal (pascal.massimino@gmail.com) |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <math.h> |
| |
| #include "./vp8enci.h" |
| #include "./cost.h" |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| extern "C" { |
| #endif |
| |
| #define SEGMENT_VISU 0 |
| #define DEBUG_SEARCH 0 // useful to track search convergence |
| |
| // On-the-fly info about the current set of residuals. Handy to avoid |
| // passing zillions of params. |
| typedef struct { |
| int first; |
| int last; |
| const int16_t* coeffs; |
| |
| int coeff_type; |
| ProbaArray* prob; |
| StatsArray* stats; |
| CostArray* cost; |
| } VP8Residual; |
| |
| //------------------------------------------------------------------------------ |
| // Tables for level coding |
| |
| const uint8_t VP8EncBands[16 + 1] = { |
| 0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, |
| 0 // sentinel |
| }; |
| |
| static const uint8_t kCat3[] = { 173, 148, 140 }; |
| static const uint8_t kCat4[] = { 176, 155, 140, 135 }; |
| static const uint8_t kCat5[] = { 180, 157, 141, 134, 130 }; |
| static const uint8_t kCat6[] = |
| { 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129 }; |
| |
| //------------------------------------------------------------------------------ |
| // Reset the statistics about: number of skips, token proba, level cost,... |
| |
| static void ResetStats(VP8Encoder* const enc) { |
| VP8Proba* const proba = &enc->proba_; |
| VP8CalculateLevelCosts(proba); |
| proba->nb_skip_ = 0; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Skip decision probability |
| |
| #define SKIP_PROBA_THRESHOLD 250 // value below which using skip_proba is OK. |
| |
| static int CalcSkipProba(uint64_t nb, uint64_t total) { |
| return (int)(total ? (total - nb) * 255 / total : 255); |
| } |
| |
| // Returns the bit-cost for coding the skip probability. |
| static int FinalizeSkipProba(VP8Encoder* const enc) { |
| VP8Proba* const proba = &enc->proba_; |
| const int nb_mbs = enc->mb_w_ * enc->mb_h_; |
| const int nb_events = proba->nb_skip_; |
| int size; |
| proba->skip_proba_ = CalcSkipProba(nb_events, nb_mbs); |
| proba->use_skip_proba_ = (proba->skip_proba_ < SKIP_PROBA_THRESHOLD); |
| size = 256; // 'use_skip_proba' bit |
| if (proba->use_skip_proba_) { |
| size += nb_events * VP8BitCost(1, proba->skip_proba_) |
| + (nb_mbs - nb_events) * VP8BitCost(0, proba->skip_proba_); |
| size += 8 * 256; // cost of signaling the skip_proba_ itself. |
| } |
| return size; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Recording of token probabilities. |
| |
| static void ResetTokenStats(VP8Encoder* const enc) { |
| VP8Proba* const proba = &enc->proba_; |
| memset(proba->stats_, 0, sizeof(proba->stats_)); |
| } |
| |
| // Record proba context used |
| static int Record(int bit, proba_t* const stats) { |
| proba_t p = *stats; |
| if (p >= 0xffff0000u) { // an overflow is inbound. |
| p = ((p + 1u) >> 1) & 0x7fff7fffu; // -> divide the stats by 2. |
| } |
| // record bit count (lower 16 bits) and increment total count (upper 16 bits). |
| p += 0x00010000u + bit; |
| *stats = p; |
| return bit; |
| } |
| |
| // We keep the table free variant around for reference, in case. |
| #define USE_LEVEL_CODE_TABLE |
| |
| // Simulate block coding, but only record statistics. |
| // Note: no need to record the fixed probas. |
| static int RecordCoeffs(int ctx, const VP8Residual* const res) { |
| int n = res->first; |
| proba_t* s = res->stats[VP8EncBands[n]][ctx]; |
| if (res->last < 0) { |
| Record(0, s + 0); |
| return 0; |
| } |
| while (n <= res->last) { |
| int v; |
| Record(1, s + 0); |
| while ((v = res->coeffs[n++]) == 0) { |
| Record(0, s + 1); |
| s = res->stats[VP8EncBands[n]][0]; |
| } |
| Record(1, s + 1); |
| if (!Record(2u < (unsigned int)(v + 1), s + 2)) { // v = -1 or 1 |
| s = res->stats[VP8EncBands[n]][1]; |
| } else { |
| v = abs(v); |
| #if !defined(USE_LEVEL_CODE_TABLE) |
| if (!Record(v > 4, s + 3)) { |
| if (Record(v != 2, s + 4)) |
| Record(v == 4, s + 5); |
| } else if (!Record(v > 10, s + 6)) { |
| Record(v > 6, s + 7); |
| } else if (!Record((v >= 3 + (8 << 2)), s + 8)) { |
| Record((v >= 3 + (8 << 1)), s + 9); |
| } else { |
| Record((v >= 3 + (8 << 3)), s + 10); |
| } |
| #else |
| if (v > MAX_VARIABLE_LEVEL) |
| v = MAX_VARIABLE_LEVEL; |
| |
| { |
| const int bits = VP8LevelCodes[v - 1][1]; |
| int pattern = VP8LevelCodes[v - 1][0]; |
| int i; |
| for (i = 0; (pattern >>= 1) != 0; ++i) { |
| const int mask = 2 << i; |
| if (pattern & 1) Record(!!(bits & mask), s + 3 + i); |
| } |
| } |
| #endif |
| s = res->stats[VP8EncBands[n]][2]; |
| } |
| } |
| if (n < 16) Record(0, s + 0); |
| return 1; |
| } |
| |
| // Collect statistics and deduce probabilities for next coding pass. |
| // Return the total bit-cost for coding the probability updates. |
| static int CalcTokenProba(int nb, int total) { |
| assert(nb <= total); |
| return nb ? (255 - nb * 255 / total) : 255; |
| } |
| |
| // Cost of coding 'nb' 1's and 'total-nb' 0's using 'proba' probability. |
| static int BranchCost(int nb, int total, int proba) { |
| return nb * VP8BitCost(1, proba) + (total - nb) * VP8BitCost(0, proba); |
| } |
| |
| static int FinalizeTokenProbas(VP8Encoder* const enc) { |
| VP8Proba* const proba = &enc->proba_; |
| int has_changed = 0; |
| int size = 0; |
| int t, b, c, p; |
| for (t = 0; t < NUM_TYPES; ++t) { |
| for (b = 0; b < NUM_BANDS; ++b) { |
| for (c = 0; c < NUM_CTX; ++c) { |
| for (p = 0; p < NUM_PROBAS; ++p) { |
| const proba_t stats = proba->stats_[t][b][c][p]; |
| const int nb = (stats >> 0) & 0xffff; |
| const int total = (stats >> 16) & 0xffff; |
| const int update_proba = VP8CoeffsUpdateProba[t][b][c][p]; |
| const int old_p = VP8CoeffsProba0[t][b][c][p]; |
| const int new_p = CalcTokenProba(nb, total); |
| const int old_cost = BranchCost(nb, total, old_p) |
| + VP8BitCost(0, update_proba); |
| const int new_cost = BranchCost(nb, total, new_p) |
| + VP8BitCost(1, update_proba) |
| + 8 * 256; |
| const int use_new_p = (old_cost > new_cost); |
| size += VP8BitCost(use_new_p, update_proba); |
| if (use_new_p) { // only use proba that seem meaningful enough. |
| proba->coeffs_[t][b][c][p] = new_p; |
| has_changed |= (new_p != old_p); |
| size += 8 * 256; |
| } else { |
| proba->coeffs_[t][b][c][p] = old_p; |
| } |
| } |
| } |
| } |
| } |
| proba->dirty_ = has_changed; |
| return size; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // helper functions for residuals struct VP8Residual. |
| |
| static void InitResidual(int first, int coeff_type, |
| VP8Encoder* const enc, VP8Residual* const res) { |
| res->coeff_type = coeff_type; |
| res->prob = enc->proba_.coeffs_[coeff_type]; |
| res->stats = enc->proba_.stats_[coeff_type]; |
| res->cost = enc->proba_.level_cost_[coeff_type]; |
| res->first = first; |
| } |
| |
| static void SetResidualCoeffs(const int16_t* const coeffs, |
| VP8Residual* const res) { |
| int n; |
| res->last = -1; |
| for (n = 15; n >= res->first; --n) { |
| if (coeffs[n]) { |
| res->last = n; |
| break; |
| } |
| } |
| res->coeffs = coeffs; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Mode costs |
| |
| static int GetResidualCost(int ctx, const VP8Residual* const res) { |
| int n = res->first; |
| int p0 = res->prob[VP8EncBands[n]][ctx][0]; |
| const uint16_t* t = res->cost[VP8EncBands[n]][ctx]; |
| int cost; |
| |
| if (res->last < 0) { |
| return VP8BitCost(0, p0); |
| } |
| cost = 0; |
| while (n <= res->last) { |
| const int v = res->coeffs[n]; |
| const int b = VP8EncBands[n + 1]; |
| ++n; |
| if (v == 0) { |
| // short-case for VP8LevelCost(t, 0) (note: VP8LevelFixedCosts[0] == 0): |
| cost += t[0]; |
| t = res->cost[b][0]; |
| continue; |
| } |
| cost += VP8BitCost(1, p0); |
| if (2u >= (unsigned int)(v + 1)) { // v = -1 or 1 |
| // short-case for "VP8LevelCost(t, 1)" (256 is VP8LevelFixedCosts[1]): |
| cost += 256 + t[1]; |
| p0 = res->prob[b][1][0]; |
| t = res->cost[b][1]; |
| } else { |
| cost += VP8LevelCost(t, abs(v)); |
| p0 = res->prob[b][2][0]; |
| t = res->cost[b][2]; |
| } |
| } |
| if (n < 16) cost += VP8BitCost(0, p0); |
| return cost; |
| } |
| |
| int VP8GetCostLuma4(VP8EncIterator* const it, const int16_t levels[16]) { |
| const int x = (it->i4_ & 3), y = (it->i4_ >> 2); |
| VP8Residual res; |
| VP8Encoder* const enc = it->enc_; |
| int R = 0; |
| int ctx; |
| |
| InitResidual(0, 3, enc, &res); |
| ctx = it->top_nz_[x] + it->left_nz_[y]; |
| SetResidualCoeffs(levels, &res); |
| R += GetResidualCost(ctx, &res); |
| return R; |
| } |
| |
| int VP8GetCostLuma16(VP8EncIterator* const it, const VP8ModeScore* const rd) { |
| VP8Residual res; |
| VP8Encoder* const enc = it->enc_; |
| int x, y; |
| int R = 0; |
| |
| VP8IteratorNzToBytes(it); // re-import the non-zero context |
| |
| // DC |
| InitResidual(0, 1, enc, &res); |
| SetResidualCoeffs(rd->y_dc_levels, &res); |
| R += GetResidualCost(it->top_nz_[8] + it->left_nz_[8], &res); |
| |
| // AC |
| InitResidual(1, 0, enc, &res); |
| for (y = 0; y < 4; ++y) { |
| for (x = 0; x < 4; ++x) { |
| const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
| SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res); |
| R += GetResidualCost(ctx, &res); |
| it->top_nz_[x] = it->left_nz_[y] = (res.last >= 0); |
| } |
| } |
| return R; |
| } |
| |
| int VP8GetCostUV(VP8EncIterator* const it, const VP8ModeScore* const rd) { |
| VP8Residual res; |
| VP8Encoder* const enc = it->enc_; |
| int ch, x, y; |
| int R = 0; |
| |
| VP8IteratorNzToBytes(it); // re-import the non-zero context |
| |
| InitResidual(0, 2, enc, &res); |
| for (ch = 0; ch <= 2; ch += 2) { |
| for (y = 0; y < 2; ++y) { |
| for (x = 0; x < 2; ++x) { |
| const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; |
| SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res); |
| R += GetResidualCost(ctx, &res); |
| it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = (res.last >= 0); |
| } |
| } |
| } |
| return R; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Coefficient coding |
| |
| static int PutCoeffs(VP8BitWriter* const bw, int ctx, const VP8Residual* res) { |
| int n = res->first; |
| const uint8_t* p = res->prob[VP8EncBands[n]][ctx]; |
| if (!VP8PutBit(bw, res->last >= 0, p[0])) { |
| return 0; |
| } |
| |
| while (n < 16) { |
| const int c = res->coeffs[n++]; |
| const int sign = c < 0; |
| int v = sign ? -c : c; |
| if (!VP8PutBit(bw, v != 0, p[1])) { |
| p = res->prob[VP8EncBands[n]][0]; |
| continue; |
| } |
| if (!VP8PutBit(bw, v > 1, p[2])) { |
| p = res->prob[VP8EncBands[n]][1]; |
| } else { |
| if (!VP8PutBit(bw, v > 4, p[3])) { |
| if (VP8PutBit(bw, v != 2, p[4])) |
| VP8PutBit(bw, v == 4, p[5]); |
| } else if (!VP8PutBit(bw, v > 10, p[6])) { |
| if (!VP8PutBit(bw, v > 6, p[7])) { |
| VP8PutBit(bw, v == 6, 159); |
| } else { |
| VP8PutBit(bw, v >= 9, 165); |
| VP8PutBit(bw, !(v & 1), 145); |
| } |
| } else { |
| int mask; |
| const uint8_t* tab; |
| if (v < 3 + (8 << 1)) { // kCat3 (3b) |
| VP8PutBit(bw, 0, p[8]); |
| VP8PutBit(bw, 0, p[9]); |
| v -= 3 + (8 << 0); |
| mask = 1 << 2; |
| tab = kCat3; |
| } else if (v < 3 + (8 << 2)) { // kCat4 (4b) |
| VP8PutBit(bw, 0, p[8]); |
| VP8PutBit(bw, 1, p[9]); |
| v -= 3 + (8 << 1); |
| mask = 1 << 3; |
| tab = kCat4; |
| } else if (v < 3 + (8 << 3)) { // kCat5 (5b) |
| VP8PutBit(bw, 1, p[8]); |
| VP8PutBit(bw, 0, p[10]); |
| v -= 3 + (8 << 2); |
| mask = 1 << 4; |
| tab = kCat5; |
| } else { // kCat6 (11b) |
| VP8PutBit(bw, 1, p[8]); |
| VP8PutBit(bw, 1, p[10]); |
| v -= 3 + (8 << 3); |
| mask = 1 << 10; |
| tab = kCat6; |
| } |
| while (mask) { |
| VP8PutBit(bw, !!(v & mask), *tab++); |
| mask >>= 1; |
| } |
| } |
| p = res->prob[VP8EncBands[n]][2]; |
| } |
| VP8PutBitUniform(bw, sign); |
| if (n == 16 || !VP8PutBit(bw, n <= res->last, p[0])) { |
| return 1; // EOB |
| } |
| } |
| return 1; |
| } |
| |
| static void CodeResiduals(VP8BitWriter* const bw, |
| VP8EncIterator* const it, |
| const VP8ModeScore* const rd) { |
| int x, y, ch; |
| VP8Residual res; |
| uint64_t pos1, pos2, pos3; |
| const int i16 = (it->mb_->type_ == 1); |
| const int segment = it->mb_->segment_; |
| VP8Encoder* const enc = it->enc_; |
| |
| VP8IteratorNzToBytes(it); |
| |
| pos1 = VP8BitWriterPos(bw); |
| if (i16) { |
| InitResidual(0, 1, enc, &res); |
| SetResidualCoeffs(rd->y_dc_levels, &res); |
| it->top_nz_[8] = it->left_nz_[8] = |
| PutCoeffs(bw, it->top_nz_[8] + it->left_nz_[8], &res); |
| InitResidual(1, 0, enc, &res); |
| } else { |
| InitResidual(0, 3, enc, &res); |
| } |
| |
| // luma-AC |
| for (y = 0; y < 4; ++y) { |
| for (x = 0; x < 4; ++x) { |
| const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
| SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res); |
| it->top_nz_[x] = it->left_nz_[y] = PutCoeffs(bw, ctx, &res); |
| } |
| } |
| pos2 = VP8BitWriterPos(bw); |
| |
| // U/V |
| InitResidual(0, 2, enc, &res); |
| for (ch = 0; ch <= 2; ch += 2) { |
| for (y = 0; y < 2; ++y) { |
| for (x = 0; x < 2; ++x) { |
| const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; |
| SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res); |
| it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = |
| PutCoeffs(bw, ctx, &res); |
| } |
| } |
| } |
| pos3 = VP8BitWriterPos(bw); |
| it->luma_bits_ = pos2 - pos1; |
| it->uv_bits_ = pos3 - pos2; |
| it->bit_count_[segment][i16] += it->luma_bits_; |
| it->bit_count_[segment][2] += it->uv_bits_; |
| VP8IteratorBytesToNz(it); |
| } |
| |
| // Same as CodeResiduals, but doesn't actually write anything. |
| // Instead, it just records the event distribution. |
| static void RecordResiduals(VP8EncIterator* const it, |
| const VP8ModeScore* const rd) { |
| int x, y, ch; |
| VP8Residual res; |
| VP8Encoder* const enc = it->enc_; |
| |
| VP8IteratorNzToBytes(it); |
| |
| if (it->mb_->type_ == 1) { // i16x16 |
| InitResidual(0, 1, enc, &res); |
| SetResidualCoeffs(rd->y_dc_levels, &res); |
| it->top_nz_[8] = it->left_nz_[8] = |
| RecordCoeffs(it->top_nz_[8] + it->left_nz_[8], &res); |
| InitResidual(1, 0, enc, &res); |
| } else { |
| InitResidual(0, 3, enc, &res); |
| } |
| |
| // luma-AC |
| for (y = 0; y < 4; ++y) { |
| for (x = 0; x < 4; ++x) { |
| const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
| SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res); |
| it->top_nz_[x] = it->left_nz_[y] = RecordCoeffs(ctx, &res); |
| } |
| } |
| |
| // U/V |
| InitResidual(0, 2, enc, &res); |
| for (ch = 0; ch <= 2; ch += 2) { |
| for (y = 0; y < 2; ++y) { |
| for (x = 0; x < 2; ++x) { |
| const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; |
| SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res); |
| it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = |
| RecordCoeffs(ctx, &res); |
| } |
| } |
| } |
| |
| VP8IteratorBytesToNz(it); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Token buffer |
| |
| #ifdef USE_TOKEN_BUFFER |
| |
| void VP8TBufferInit(VP8TBuffer* const b) { |
| b->rows_ = NULL; |
| b->tokens_ = NULL; |
| b->last_ = &b->rows_; |
| b->left_ = 0; |
| b->error_ = 0; |
| } |
| |
| int VP8TBufferNewPage(VP8TBuffer* const b) { |
| VP8Tokens* const page = b->error_ ? NULL : (VP8Tokens*)malloc(sizeof(*page)); |
| if (page == NULL) { |
| b->error_ = 1; |
| return 0; |
| } |
| *b->last_ = page; |
| b->last_ = &page->next_; |
| b->left_ = MAX_NUM_TOKEN; |
| b->tokens_ = page->tokens_; |
| return 1; |
| } |
| |
| void VP8TBufferClear(VP8TBuffer* const b) { |
| if (b != NULL) { |
| const VP8Tokens* p = b->rows_; |
| while (p != NULL) { |
| const VP8Tokens* const next = p->next_; |
| free((void*)p); |
| p = next; |
| } |
| VP8TBufferInit(b); |
| } |
| } |
| |
| int VP8EmitTokens(const VP8TBuffer* const b, VP8BitWriter* const bw, |
| const uint8_t* const probas) { |
| VP8Tokens* p = b->rows_; |
| if (b->error_) return 0; |
| while (p != NULL) { |
| const int N = (p->next_ == NULL) ? b->left_ : 0; |
| int n = MAX_NUM_TOKEN; |
| while (n-- > N) { |
| VP8PutBit(bw, (p->tokens_[n] >> 15) & 1, probas[p->tokens_[n] & 0x7fff]); |
| } |
| p = p->next_; |
| } |
| return 1; |
| } |
| |
| #define TOKEN_ID(b, ctx, p) ((p) + NUM_PROBAS * ((ctx) + (b) * NUM_CTX)) |
| |
| static int RecordCoeffTokens(int ctx, const VP8Residual* const res, |
| VP8TBuffer* tokens) { |
| int n = res->first; |
| int b = VP8EncBands[n]; |
| if (!VP8AddToken(tokens, res->last >= 0, TOKEN_ID(b, ctx, 0))) { |
| return 0; |
| } |
| |
| while (n < 16) { |
| const int c = res->coeffs[n++]; |
| const int sign = c < 0; |
| int v = sign ? -c : c; |
| const int base_id = TOKEN_ID(b, ctx, 0); |
| if (!VP8AddToken(tokens, v != 0, base_id + 1)) { |
| b = VP8EncBands[n]; |
| ctx = 0; |
| continue; |
| } |
| if (!VP8AddToken(tokens, v > 1, base_id + 2)) { |
| b = VP8EncBands[n]; |
| ctx = 1; |
| } else { |
| if (!VP8AddToken(tokens, v > 4, base_id + 3)) { |
| if (VP8AddToken(tokens, v != 2, base_id + 4)) |
| VP8AddToken(tokens, v == 4, base_id + 5); |
| } else if (!VP8AddToken(tokens, v > 10, base_id + 6)) { |
| if (!VP8AddToken(tokens, v > 6, base_id + 7)) { |
| // VP8AddToken(tokens, v == 6, 159); |
| } else { |
| // VP8AddToken(tokens, v >= 9, 165); |
| // VP8AddToken(tokens, !(v & 1), 145); |
| } |
| } else { |
| int mask; |
| const uint8_t* tab; |
| if (v < 3 + (8 << 1)) { // kCat3 (3b) |
| VP8AddToken(tokens, 0, base_id + 8); |
| VP8AddToken(tokens, 0, base_id + 9); |
| v -= 3 + (8 << 0); |
| mask = 1 << 2; |
| tab = kCat3; |
| } else if (v < 3 + (8 << 2)) { // kCat4 (4b) |
| VP8AddToken(tokens, 0, base_id + 8); |
| VP8AddToken(tokens, 1, base_id + 9); |
| v -= 3 + (8 << 1); |
| mask = 1 << 3; |
| tab = kCat4; |
| } else if (v < 3 + (8 << 3)) { // kCat5 (5b) |
| VP8AddToken(tokens, 1, base_id + 8); |
| VP8AddToken(tokens, 0, base_id + 10); |
| v -= 3 + (8 << 2); |
| mask = 1 << 4; |
| tab = kCat5; |
| } else { // kCat6 (11b) |
| VP8AddToken(tokens, 1, base_id + 8); |
| VP8AddToken(tokens, 1, base_id + 10); |
| v -= 3 + (8 << 3); |
| mask = 1 << 10; |
| tab = kCat6; |
| } |
| while (mask) { |
| // VP8AddToken(tokens, !!(v & mask), *tab++); |
| mask >>= 1; |
| } |
| } |
| ctx = 2; |
| } |
| b = VP8EncBands[n]; |
| // VP8PutBitUniform(bw, sign); |
| if (n == 16 || !VP8AddToken(tokens, n <= res->last, TOKEN_ID(b, ctx, 0))) { |
| return 1; // EOB |
| } |
| } |
| return 1; |
| } |
| |
| static void RecordTokens(VP8EncIterator* const it, |
| const VP8ModeScore* const rd, VP8TBuffer tokens[2]) { |
| int x, y, ch; |
| VP8Residual res; |
| VP8Encoder* const enc = it->enc_; |
| |
| VP8IteratorNzToBytes(it); |
| if (it->mb_->type_ == 1) { // i16x16 |
| InitResidual(0, 1, enc, &res); |
| SetResidualCoeffs(rd->y_dc_levels, &res); |
| // TODO(skal): FIX -> it->top_nz_[8] = it->left_nz_[8] = |
| RecordCoeffTokens(it->top_nz_[8] + it->left_nz_[8], &res, &tokens[0]); |
| InitResidual(1, 0, enc, &res); |
| } else { |
| InitResidual(0, 3, enc, &res); |
| } |
| |
| // luma-AC |
| for (y = 0; y < 4; ++y) { |
| for (x = 0; x < 4; ++x) { |
| const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
| SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res); |
| it->top_nz_[x] = it->left_nz_[y] = |
| RecordCoeffTokens(ctx, &res, &tokens[0]); |
| } |
| } |
| |
| // U/V |
| InitResidual(0, 2, enc, &res); |
| for (ch = 0; ch <= 2; ch += 2) { |
| for (y = 0; y < 2; ++y) { |
| for (x = 0; x < 2; ++x) { |
| const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; |
| SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res); |
| it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = |
| RecordCoeffTokens(ctx, &res, &tokens[1]); |
| } |
| } |
| } |
| } |
| |
| #endif // USE_TOKEN_BUFFER |
| |
| //------------------------------------------------------------------------------ |
| // ExtraInfo map / Debug function |
| |
| #if SEGMENT_VISU |
| static void SetBlock(uint8_t* p, int value, int size) { |
| int y; |
| for (y = 0; y < size; ++y) { |
| memset(p, value, size); |
| p += BPS; |
| } |
| } |
| #endif |
| |
| static void ResetSSE(VP8Encoder* const enc) { |
| memset(enc->sse_, 0, sizeof(enc->sse_)); |
| enc->sse_count_ = 0; |
| } |
| |
| static void StoreSSE(const VP8EncIterator* const it) { |
| VP8Encoder* const enc = it->enc_; |
| const uint8_t* const in = it->yuv_in_; |
| const uint8_t* const out = it->yuv_out_; |
| // Note: not totally accurate at boundary. And doesn't include in-loop filter. |
| enc->sse_[0] += VP8SSE16x16(in + Y_OFF, out + Y_OFF); |
| enc->sse_[1] += VP8SSE8x8(in + U_OFF, out + U_OFF); |
| enc->sse_[2] += VP8SSE8x8(in + V_OFF, out + V_OFF); |
| enc->sse_count_ += 16 * 16; |
| } |
| |
| static void StoreSideInfo(const VP8EncIterator* const it) { |
| VP8Encoder* const enc = it->enc_; |
| const VP8MBInfo* const mb = it->mb_; |
| WebPPicture* const pic = enc->pic_; |
| |
| if (pic->stats != NULL) { |
| StoreSSE(it); |
| enc->block_count_[0] += (mb->type_ == 0); |
| enc->block_count_[1] += (mb->type_ == 1); |
| enc->block_count_[2] += (mb->skip_ != 0); |
| } |
| |
| if (pic->extra_info != NULL) { |
| uint8_t* const info = &pic->extra_info[it->x_ + it->y_ * enc->mb_w_]; |
| switch (pic->extra_info_type) { |
| case 1: *info = mb->type_; break; |
| case 2: *info = mb->segment_; break; |
| case 3: *info = enc->dqm_[mb->segment_].quant_; break; |
| case 4: *info = (mb->type_ == 1) ? it->preds_[0] : 0xff; break; |
| case 5: *info = mb->uv_mode_; break; |
| case 6: { |
| const int b = (int)((it->luma_bits_ + it->uv_bits_ + 7) >> 3); |
| *info = (b > 255) ? 255 : b; break; |
| } |
| default: *info = 0; break; |
| }; |
| } |
| #if SEGMENT_VISU // visualize segments and prediction modes |
| SetBlock(it->yuv_out_ + Y_OFF, mb->segment_ * 64, 16); |
| SetBlock(it->yuv_out_ + U_OFF, it->preds_[0] * 64, 8); |
| SetBlock(it->yuv_out_ + V_OFF, mb->uv_mode_ * 64, 8); |
| #endif |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Main loops |
| // |
| // VP8EncLoop(): does the final bitstream coding. |
| |
| static void ResetAfterSkip(VP8EncIterator* const it) { |
| if (it->mb_->type_ == 1) { |
| *it->nz_ = 0; // reset all predictors |
| it->left_nz_[8] = 0; |
| } else { |
| *it->nz_ &= (1 << 24); // preserve the dc_nz bit |
| } |
| } |
| |
| int VP8EncLoop(VP8Encoder* const enc) { |
| int i, s, p; |
| int ok = 1; |
| VP8EncIterator it; |
| VP8ModeScore info; |
| const int dont_use_skip = !enc->proba_.use_skip_proba_; |
| const int rd_opt = enc->rd_opt_level_; |
| const int kAverageBytesPerMB = 5; // TODO: have a kTable[quality/10] |
| const int bytes_per_parts = |
| enc->mb_w_ * enc->mb_h_ * kAverageBytesPerMB / enc->num_parts_; |
| |
| // Initialize the bit-writers |
| for (p = 0; p < enc->num_parts_; ++p) { |
| VP8BitWriterInit(enc->parts_ + p, bytes_per_parts); |
| } |
| |
| ResetStats(enc); |
| ResetSSE(enc); |
| |
| VP8IteratorInit(enc, &it); |
| VP8InitFilter(&it); |
| do { |
| VP8IteratorImport(&it); |
| // Warning! order is important: first call VP8Decimate() and |
| // *then* decide how to code the skip decision if there's one. |
| if (!VP8Decimate(&it, &info, rd_opt) || dont_use_skip) { |
| CodeResiduals(it.bw_, &it, &info); |
| } else { // reset predictors after a skip |
| ResetAfterSkip(&it); |
| } |
| #ifdef WEBP_EXPERIMENTAL_FEATURES |
| if (enc->use_layer_) { |
| VP8EncCodeLayerBlock(&it); |
| } |
| #endif |
| StoreSideInfo(&it); |
| VP8StoreFilterStats(&it); |
| VP8IteratorExport(&it); |
| ok = VP8IteratorProgress(&it, 20); |
| } while (ok && VP8IteratorNext(&it, it.yuv_out_)); |
| |
| if (ok) { // Finalize the partitions, check for extra errors. |
| for (p = 0; p < enc->num_parts_; ++p) { |
| VP8BitWriterFinish(enc->parts_ + p); |
| ok &= !enc->parts_[p].error_; |
| } |
| } |
| |
| if (ok) { // All good. Finish up. |
| if (enc->pic_->stats) { // finalize byte counters... |
| for (i = 0; i <= 2; ++i) { |
| for (s = 0; s < NUM_MB_SEGMENTS; ++s) { |
| enc->residual_bytes_[i][s] = (int)((it.bit_count_[s][i] + 7) >> 3); |
| } |
| } |
| } |
| VP8AdjustFilterStrength(&it); // ...and store filter stats. |
| } else { |
| // Something bad happened -> need to do some memory cleanup. |
| VP8EncFreeBitWriters(enc); |
| } |
| |
| return ok; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // VP8StatLoop(): only collect statistics (number of skips, token usage, ...) |
| // This is used for deciding optimal probabilities. It also |
| // modifies the quantizer value if some target (size, PNSR) |
| // was specified. |
| |
| #define kHeaderSizeEstimate (15 + 20 + 10) // TODO: fix better |
| |
| static int OneStatPass(VP8Encoder* const enc, float q, int rd_opt, int nb_mbs, |
| float* const PSNR, int percent_delta) { |
| VP8EncIterator it; |
| uint64_t size = 0; |
| uint64_t distortion = 0; |
| const uint64_t pixel_count = nb_mbs * 384; |
| |
| // Make sure the quality parameter is inside valid bounds |
| if (q < 0.) { |
| q = 0; |
| } else if (q > 100.) { |
| q = 100; |
| } |
| |
| VP8SetSegmentParams(enc, q); // setup segment quantizations and filters |
| |
| ResetStats(enc); |
| ResetTokenStats(enc); |
| |
| VP8IteratorInit(enc, &it); |
| do { |
| VP8ModeScore info; |
| VP8IteratorImport(&it); |
| if (VP8Decimate(&it, &info, rd_opt)) { |
| // Just record the number of skips and act like skip_proba is not used. |
| enc->proba_.nb_skip_++; |
| } |
| RecordResiduals(&it, &info); |
| size += info.R; |
| distortion += info.D; |
| if (percent_delta && !VP8IteratorProgress(&it, percent_delta)) |
| return 0; |
| } while (VP8IteratorNext(&it, it.yuv_out_) && --nb_mbs > 0); |
| size += FinalizeSkipProba(enc); |
| size += FinalizeTokenProbas(enc); |
| size += enc->segment_hdr_.size_; |
| size = ((size + 1024) >> 11) + kHeaderSizeEstimate; |
| |
| if (PSNR) { |
| *PSNR = (float)(10.* log10(255. * 255. * pixel_count / distortion)); |
| } |
| return (int)size; |
| } |
| |
| // successive refinement increments. |
| static const int dqs[] = { 20, 15, 10, 8, 6, 4, 2, 1, 0 }; |
| |
| int VP8StatLoop(VP8Encoder* const enc) { |
| const int do_search = |
| (enc->config_->target_size > 0 || enc->config_->target_PSNR > 0); |
| const int fast_probe = (enc->method_ < 2 && !do_search); |
| float q = enc->config_->quality; |
| const int max_passes = enc->config_->pass; |
| const int task_percent = 20; |
| const int percent_per_pass = (task_percent + max_passes / 2) / max_passes; |
| const int final_percent = enc->percent_ + task_percent; |
| int pass; |
| int nb_mbs; |
| |
| // Fast mode: quick analysis pass over few mbs. Better than nothing. |
| nb_mbs = enc->mb_w_ * enc->mb_h_; |
| if (fast_probe && nb_mbs > 100) nb_mbs = 100; |
| |
| // No target size: just do several pass without changing 'q' |
| if (!do_search) { |
| for (pass = 0; pass < max_passes; ++pass) { |
| const int rd_opt = (enc->method_ > 2); |
| if (!OneStatPass(enc, q, rd_opt, nb_mbs, NULL, percent_per_pass)) { |
| return 0; |
| } |
| } |
| } else { |
| // binary search for a size close to target |
| for (pass = 0; pass < max_passes && (dqs[pass] > 0); ++pass) { |
| const int rd_opt = 1; |
| float PSNR; |
| int criterion; |
| const int size = OneStatPass(enc, q, rd_opt, nb_mbs, &PSNR, |
| percent_per_pass); |
| #if DEBUG_SEARCH |
| printf("#%d size=%d PSNR=%.2f q=%.2f\n", pass, size, PSNR, q); |
| #endif |
| if (!size) return 0; |
| if (enc->config_->target_PSNR > 0) { |
| criterion = (PSNR < enc->config_->target_PSNR); |
| } else { |
| criterion = (size < enc->config_->target_size); |
| } |
| // dichotomize |
| if (criterion) { |
| q += dqs[pass]; |
| } else { |
| q -= dqs[pass]; |
| } |
| } |
| } |
| return WebPReportProgress(enc->pic_, final_percent, &enc->percent_); |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| } // extern "C" |
| #endif |