| // Copyright 2011 Google Inc. All Rights Reserved. |
| // |
| // This code is licensed under the same terms as WebM: |
| // Software License Agreement: http://www.webmproject.org/license/software/ |
| // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ |
| // ----------------------------------------------------------------------------- |
| // |
| // Quantization |
| // |
| // Author: Skal (pascal.massimino@gmail.com) |
| |
| #include <assert.h> |
| #include <math.h> |
| |
| #include "./vp8enci.h" |
| #include "./cost.h" |
| |
| #define DO_TRELLIS_I4 1 |
| #define DO_TRELLIS_I16 1 // not a huge gain, but ok at low bitrate. |
| #define DO_TRELLIS_UV 0 // disable trellis for UV. Risky. Not worth. |
| #define USE_TDISTO 1 |
| |
| #define MID_ALPHA 64 // neutral value for susceptibility |
| #define MIN_ALPHA 30 // lowest usable value for susceptibility |
| #define MAX_ALPHA 100 // higher meaninful value for susceptibility |
| |
| #define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP |
| // power-law modulation. Must be strictly less than 1. |
| |
| #define MULT_8B(a, b) (((a) * (b) + 128) >> 8) |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| extern "C" { |
| #endif |
| |
| //------------------------------------------------------------------------------ |
| |
| static WEBP_INLINE int clip(int v, int m, int M) { |
| return v < m ? m : v > M ? M : v; |
| } |
| |
| static const uint8_t kZigzag[16] = { |
| 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15 |
| }; |
| |
| static const uint8_t kDcTable[128] = { |
| 4, 5, 6, 7, 8, 9, 10, 10, |
| 11, 12, 13, 14, 15, 16, 17, 17, |
| 18, 19, 20, 20, 21, 21, 22, 22, |
| 23, 23, 24, 25, 25, 26, 27, 28, |
| 29, 30, 31, 32, 33, 34, 35, 36, |
| 37, 37, 38, 39, 40, 41, 42, 43, |
| 44, 45, 46, 46, 47, 48, 49, 50, |
| 51, 52, 53, 54, 55, 56, 57, 58, |
| 59, 60, 61, 62, 63, 64, 65, 66, |
| 67, 68, 69, 70, 71, 72, 73, 74, |
| 75, 76, 76, 77, 78, 79, 80, 81, |
| 82, 83, 84, 85, 86, 87, 88, 89, |
| 91, 93, 95, 96, 98, 100, 101, 102, |
| 104, 106, 108, 110, 112, 114, 116, 118, |
| 122, 124, 126, 128, 130, 132, 134, 136, |
| 138, 140, 143, 145, 148, 151, 154, 157 |
| }; |
| |
| static const uint16_t kAcTable[128] = { |
| 4, 5, 6, 7, 8, 9, 10, 11, |
| 12, 13, 14, 15, 16, 17, 18, 19, |
| 20, 21, 22, 23, 24, 25, 26, 27, |
| 28, 29, 30, 31, 32, 33, 34, 35, |
| 36, 37, 38, 39, 40, 41, 42, 43, |
| 44, 45, 46, 47, 48, 49, 50, 51, |
| 52, 53, 54, 55, 56, 57, 58, 60, |
| 62, 64, 66, 68, 70, 72, 74, 76, |
| 78, 80, 82, 84, 86, 88, 90, 92, |
| 94, 96, 98, 100, 102, 104, 106, 108, |
| 110, 112, 114, 116, 119, 122, 125, 128, |
| 131, 134, 137, 140, 143, 146, 149, 152, |
| 155, 158, 161, 164, 167, 170, 173, 177, |
| 181, 185, 189, 193, 197, 201, 205, 209, |
| 213, 217, 221, 225, 229, 234, 239, 245, |
| 249, 254, 259, 264, 269, 274, 279, 284 |
| }; |
| |
| static const uint16_t kAcTable2[128] = { |
| 8, 8, 9, 10, 12, 13, 15, 17, |
| 18, 20, 21, 23, 24, 26, 27, 29, |
| 31, 32, 34, 35, 37, 38, 40, 41, |
| 43, 44, 46, 48, 49, 51, 52, 54, |
| 55, 57, 58, 60, 62, 63, 65, 66, |
| 68, 69, 71, 72, 74, 75, 77, 79, |
| 80, 82, 83, 85, 86, 88, 89, 93, |
| 96, 99, 102, 105, 108, 111, 114, 117, |
| 120, 124, 127, 130, 133, 136, 139, 142, |
| 145, 148, 151, 155, 158, 161, 164, 167, |
| 170, 173, 176, 179, 184, 189, 193, 198, |
| 203, 207, 212, 217, 221, 226, 230, 235, |
| 240, 244, 249, 254, 258, 263, 268, 274, |
| 280, 286, 292, 299, 305, 311, 317, 323, |
| 330, 336, 342, 348, 354, 362, 370, 379, |
| 385, 393, 401, 409, 416, 424, 432, 440 |
| }; |
| |
| static const uint16_t kCoeffThresh[16] = { |
| 0, 10, 20, 30, |
| 10, 20, 30, 30, |
| 20, 30, 30, 30, |
| 30, 30, 30, 30 |
| }; |
| |
| // TODO(skal): tune more. Coeff thresholding? |
| static const uint8_t kBiasMatrices[3][16] = { // [3] = [luma-ac,luma-dc,chroma] |
| { 96, 96, 96, 96, |
| 96, 96, 96, 96, |
| 96, 96, 96, 96, |
| 96, 96, 96, 96 }, |
| { 96, 96, 96, 96, |
| 96, 96, 96, 96, |
| 96, 96, 96, 96, |
| 96, 96, 96, 96 }, |
| { 96, 96, 96, 96, |
| 96, 96, 96, 96, |
| 96, 96, 96, 96, |
| 96, 96, 96, 96 } |
| }; |
| |
| // Sharpening by (slightly) raising the hi-frequency coeffs (only for trellis). |
| // Hack-ish but helpful for mid-bitrate range. Use with care. |
| static const uint8_t kFreqSharpening[16] = { |
| 0, 30, 60, 90, |
| 30, 60, 90, 90, |
| 60, 90, 90, 90, |
| 90, 90, 90, 90 |
| }; |
| |
| //------------------------------------------------------------------------------ |
| // Initialize quantization parameters in VP8Matrix |
| |
| // Returns the average quantizer |
| static int ExpandMatrix(VP8Matrix* const m, int type) { |
| int i; |
| int sum = 0; |
| for (i = 2; i < 16; ++i) { |
| m->q_[i] = m->q_[1]; |
| } |
| for (i = 0; i < 16; ++i) { |
| const int j = kZigzag[i]; |
| const int bias = kBiasMatrices[type][j]; |
| m->iq_[j] = (1 << QFIX) / m->q_[j]; |
| m->bias_[j] = BIAS(bias); |
| // TODO(skal): tune kCoeffThresh[] |
| m->zthresh_[j] = ((256 /*+ kCoeffThresh[j]*/ - bias) * m->q_[j] + 127) >> 8; |
| m->sharpen_[j] = (kFreqSharpening[j] * m->q_[j]) >> 11; |
| sum += m->q_[j]; |
| } |
| return (sum + 8) >> 4; |
| } |
| |
| static void SetupMatrices(VP8Encoder* enc) { |
| int i; |
| const int tlambda_scale = |
| (enc->method_ >= 4) ? enc->config_->sns_strength |
| : 0; |
| const int num_segments = enc->segment_hdr_.num_segments_; |
| for (i = 0; i < num_segments; ++i) { |
| VP8SegmentInfo* const m = &enc->dqm_[i]; |
| const int q = m->quant_; |
| int q4, q16, quv; |
| m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)]; |
| m->y1_.q_[1] = kAcTable[clip(q, 0, 127)]; |
| |
| m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2; |
| m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)]; |
| |
| m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)]; |
| m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)]; |
| |
| q4 = ExpandMatrix(&m->y1_, 0); |
| q16 = ExpandMatrix(&m->y2_, 1); |
| quv = ExpandMatrix(&m->uv_, 2); |
| |
| // TODO: Switch to kLambda*[] tables? |
| { |
| m->lambda_i4_ = (3 * q4 * q4) >> 7; |
| m->lambda_i16_ = (3 * q16 * q16); |
| m->lambda_uv_ = (3 * quv * quv) >> 6; |
| m->lambda_mode_ = (1 * q4 * q4) >> 7; |
| m->lambda_trellis_i4_ = (7 * q4 * q4) >> 3; |
| m->lambda_trellis_i16_ = (q16 * q16) >> 2; |
| m->lambda_trellis_uv_ = (quv *quv) << 1; |
| m->tlambda_ = (tlambda_scale * q4) >> 5; |
| } |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Initialize filtering parameters |
| |
| // Very small filter-strength values have close to no visual effect. So we can |
| // save a little decoding-CPU by turning filtering off for these. |
| #define FSTRENGTH_CUTOFF 3 |
| |
| static void SetupFilterStrength(VP8Encoder* const enc) { |
| int i; |
| const int level0 = enc->config_->filter_strength; |
| for (i = 0; i < NUM_MB_SEGMENTS; ++i) { |
| // Segments with lower quantizer will be less filtered. TODO: tune (wrt SNS) |
| const int level = level0 * 256 * enc->dqm_[i].quant_ / 128; |
| const int f = level / (256 + enc->dqm_[i].beta_); |
| enc->dqm_[i].fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f; |
| } |
| // We record the initial strength (mainly for the case of 1-segment only). |
| enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_; |
| enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0); |
| enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness; |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| // Note: if you change the values below, remember that the max range |
| // allowed by the syntax for DQ_UV is [-16,16]. |
| #define MAX_DQ_UV (6) |
| #define MIN_DQ_UV (-4) |
| |
| // We want to emulate jpeg-like behaviour where the expected "good" quality |
| // is around q=75. Internally, our "good" middle is around c=50. So we |
| // map accordingly using linear piece-wise function |
| static double QualityToCompression(double q) { |
| const double c = q / 100.; |
| return (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.; |
| } |
| |
| void VP8SetSegmentParams(VP8Encoder* const enc, float quality) { |
| int i; |
| int dq_uv_ac, dq_uv_dc; |
| const int num_segments = enc->config_->segments; |
| const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.; |
| const double c_base = QualityToCompression(quality); |
| for (i = 0; i < num_segments; ++i) { |
| // The file size roughly scales as pow(quantizer, 3.). Actually, the |
| // exponent is somewhere between 2.8 and 3.2, but we're mostly interested |
| // in the mid-quant range. So we scale the compressibility inversely to |
| // this power-law: quant ~= compression ^ 1/3. This law holds well for |
| // low quant. Finer modelling for high-quant would make use of kAcTable[] |
| // more explicitely. |
| // Additionally, we modulate the base exponent 1/3 to accommodate for the |
| // quantization susceptibility and allow denser segments to be quantized |
| // more. |
| const double expn = (1. - amp * enc->dqm_[i].alpha_) / 3.; |
| const double c = pow(c_base, expn); |
| const int q = (int)(127. * (1. - c)); |
| assert(expn > 0.); |
| enc->dqm_[i].quant_ = clip(q, 0, 127); |
| } |
| |
| // purely indicative in the bitstream (except for the 1-segment case) |
| enc->base_quant_ = enc->dqm_[0].quant_; |
| |
| // fill-in values for the unused segments (required by the syntax) |
| for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) { |
| enc->dqm_[i].quant_ = enc->base_quant_; |
| } |
| |
| // uv_alpha_ is normally spread around ~60. The useful range is |
| // typically ~30 (quite bad) to ~100 (ok to decimate UV more). |
| // We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv. |
| dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV) |
| / (MAX_ALPHA - MIN_ALPHA); |
| // we rescale by the user-defined strength of adaptation |
| dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100; |
| // and make it safe. |
| dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV); |
| // We also boost the dc-uv-quant a little, based on sns-strength, since |
| // U/V channels are quite more reactive to high quants (flat DC-blocks |
| // tend to appear, and are displeasant). |
| dq_uv_dc = -4 * enc->config_->sns_strength / 100; |
| dq_uv_dc = clip(dq_uv_dc, -15, 15); // 4bit-signed max allowed |
| |
| enc->dq_y1_dc_ = 0; // TODO(skal): dq-lum |
| enc->dq_y2_dc_ = 0; |
| enc->dq_y2_ac_ = 0; |
| enc->dq_uv_dc_ = dq_uv_dc; |
| enc->dq_uv_ac_ = dq_uv_ac; |
| |
| SetupMatrices(enc); |
| |
| SetupFilterStrength(enc); // initialize segments' filtering, eventually |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Form the predictions in cache |
| |
| // Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index |
| const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 }; |
| const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 }; |
| |
| // Must be indexed using {B_DC_PRED -> B_HU_PRED} as index |
| const int VP8I4ModeOffsets[NUM_BMODES] = { |
| I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4 |
| }; |
| |
| void VP8MakeLuma16Preds(const VP8EncIterator* const it) { |
| const VP8Encoder* const enc = it->enc_; |
| const uint8_t* const left = it->x_ ? enc->y_left_ : NULL; |
| const uint8_t* const top = it->y_ ? enc->y_top_ + it->x_ * 16 : NULL; |
| VP8EncPredLuma16(it->yuv_p_, left, top); |
| } |
| |
| void VP8MakeChroma8Preds(const VP8EncIterator* const it) { |
| const VP8Encoder* const enc = it->enc_; |
| const uint8_t* const left = it->x_ ? enc->u_left_ : NULL; |
| const uint8_t* const top = it->y_ ? enc->uv_top_ + it->x_ * 16 : NULL; |
| VP8EncPredChroma8(it->yuv_p_, left, top); |
| } |
| |
| void VP8MakeIntra4Preds(const VP8EncIterator* const it) { |
| VP8EncPredLuma4(it->yuv_p_, it->i4_top_); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Quantize |
| |
| // Layout: |
| // +----+ |
| // |YYYY| 0 |
| // |YYYY| 4 |
| // |YYYY| 8 |
| // |YYYY| 12 |
| // +----+ |
| // |UUVV| 16 |
| // |UUVV| 20 |
| // +----+ |
| |
| const int VP8Scan[16 + 4 + 4] = { |
| // Luma |
| 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, |
| 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, |
| 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, |
| 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS, |
| |
| 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U |
| 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V |
| }; |
| |
| //------------------------------------------------------------------------------ |
| // Distortion measurement |
| |
| static const uint16_t kWeightY[16] = { |
| 38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2 |
| }; |
| |
| static const uint16_t kWeightTrellis[16] = { |
| #if USE_TDISTO == 0 |
| 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16 |
| #else |
| 30, 27, 19, 11, |
| 27, 24, 17, 10, |
| 19, 17, 12, 8, |
| 11, 10, 8, 6 |
| #endif |
| }; |
| |
| // Init/Copy the common fields in score. |
| static void InitScore(VP8ModeScore* const rd) { |
| rd->D = 0; |
| rd->SD = 0; |
| rd->R = 0; |
| rd->nz = 0; |
| rd->score = MAX_COST; |
| } |
| |
| static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { |
| dst->D = src->D; |
| dst->SD = src->SD; |
| dst->R = src->R; |
| dst->nz = src->nz; // note that nz is not accumulated, but just copied. |
| dst->score = src->score; |
| } |
| |
| static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { |
| dst->D += src->D; |
| dst->SD += src->SD; |
| dst->R += src->R; |
| dst->nz |= src->nz; // here, new nz bits are accumulated. |
| dst->score += src->score; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Performs trellis-optimized quantization. |
| |
| // Trellis |
| |
| typedef struct { |
| int prev; // best previous |
| int level; // level |
| int sign; // sign of coeff_i |
| score_t cost; // bit cost |
| score_t error; // distortion = sum of (|coeff_i| - level_i * Q_i)^2 |
| int ctx; // context (only depends on 'level'. Could be spared.) |
| } Node; |
| |
| // If a coefficient was quantized to a value Q (using a neutral bias), |
| // we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA] |
| // We don't test negative values though. |
| #define MIN_DELTA 0 // how much lower level to try |
| #define MAX_DELTA 1 // how much higher |
| #define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA) |
| #define NODE(n, l) (nodes[(n) + 1][(l) + MIN_DELTA]) |
| |
| static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) { |
| // TODO: incorporate the "* 256" in the tables? |
| rd->score = rd->R * lambda + 256 * (rd->D + rd->SD); |
| } |
| |
| static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate, |
| score_t distortion) { |
| return rate * lambda + 256 * distortion; |
| } |
| |
| static int TrellisQuantizeBlock(const VP8EncIterator* const it, |
| int16_t in[16], int16_t out[16], |
| int ctx0, int coeff_type, |
| const VP8Matrix* const mtx, |
| int lambda) { |
| ProbaArray* const last_costs = it->enc_->proba_.coeffs_[coeff_type]; |
| CostArray* const costs = it->enc_->proba_.level_cost_[coeff_type]; |
| const int first = (coeff_type == 0) ? 1 : 0; |
| Node nodes[17][NUM_NODES]; |
| int best_path[3] = {-1, -1, -1}; // store best-last/best-level/best-previous |
| score_t best_score; |
| int best_node; |
| int last = first - 1; |
| int n, m, p, nz; |
| |
| { |
| score_t cost; |
| score_t max_error; |
| const int thresh = mtx->q_[1] * mtx->q_[1] / 4; |
| const int last_proba = last_costs[VP8EncBands[first]][ctx0][0]; |
| |
| // compute maximal distortion. |
| max_error = 0; |
| for (n = first; n < 16; ++n) { |
| const int j = kZigzag[n]; |
| const int err = in[j] * in[j]; |
| max_error += kWeightTrellis[j] * err; |
| if (err > thresh) last = n; |
| } |
| // we don't need to go inspect up to n = 16 coeffs. We can just go up |
| // to last + 1 (inclusive) without losing much. |
| if (last < 15) ++last; |
| |
| // compute 'skip' score. This is the max score one can do. |
| cost = VP8BitCost(0, last_proba); |
| best_score = RDScoreTrellis(lambda, cost, max_error); |
| |
| // initialize source node. |
| n = first - 1; |
| for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { |
| NODE(n, m).cost = 0; |
| NODE(n, m).error = max_error; |
| NODE(n, m).ctx = ctx0; |
| } |
| } |
| |
| // traverse trellis. |
| for (n = first; n <= last; ++n) { |
| const int j = kZigzag[n]; |
| const int Q = mtx->q_[j]; |
| const int iQ = mtx->iq_[j]; |
| const int B = BIAS(0x00); // neutral bias |
| // note: it's important to take sign of the _original_ coeff, |
| // so we don't have to consider level < 0 afterward. |
| const int sign = (in[j] < 0); |
| int coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j]; |
| int level0; |
| if (coeff0 > 2047) coeff0 = 2047; |
| |
| level0 = QUANTDIV(coeff0, iQ, B); |
| // test all alternate level values around level0. |
| for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { |
| Node* const cur = &NODE(n, m); |
| int delta_error, new_error; |
| score_t cur_score = MAX_COST; |
| int level = level0 + m; |
| int last_proba; |
| |
| cur->sign = sign; |
| cur->level = level; |
| cur->ctx = (level == 0) ? 0 : (level == 1) ? 1 : 2; |
| if (level >= 2048 || level < 0) { // node is dead? |
| cur->cost = MAX_COST; |
| continue; |
| } |
| last_proba = last_costs[VP8EncBands[n + 1]][cur->ctx][0]; |
| |
| // Compute delta_error = how much coding this level will |
| // subtract as distortion to max_error |
| new_error = coeff0 - level * Q; |
| delta_error = |
| kWeightTrellis[j] * (coeff0 * coeff0 - new_error * new_error); |
| |
| // Inspect all possible non-dead predecessors. Retain only the best one. |
| for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) { |
| const Node* const prev = &NODE(n - 1, p); |
| const int prev_ctx = prev->ctx; |
| const uint16_t* const tcost = costs[VP8EncBands[n]][prev_ctx]; |
| const score_t total_error = prev->error - delta_error; |
| score_t cost, base_cost, score; |
| |
| if (prev->cost >= MAX_COST) { // dead node? |
| continue; |
| } |
| |
| // Base cost of both terminal/non-terminal |
| base_cost = prev->cost + VP8LevelCost(tcost, level); |
| |
| // Examine node assuming it's a non-terminal one. |
| cost = base_cost; |
| if (level && n < 15) { |
| cost += VP8BitCost(1, last_proba); |
| } |
| score = RDScoreTrellis(lambda, cost, total_error); |
| if (score < cur_score) { |
| cur_score = score; |
| cur->cost = cost; |
| cur->error = total_error; |
| cur->prev = p; |
| } |
| |
| // Now, record best terminal node (and thus best entry in the graph). |
| if (level) { |
| cost = base_cost; |
| if (n < 15) cost += VP8BitCost(0, last_proba); |
| score = RDScoreTrellis(lambda, cost, total_error); |
| if (score < best_score) { |
| best_score = score; |
| best_path[0] = n; // best eob position |
| best_path[1] = m; // best level |
| best_path[2] = p; // best predecessor |
| } |
| } |
| } |
| } |
| } |
| |
| // Fresh start |
| memset(in + first, 0, (16 - first) * sizeof(*in)); |
| memset(out + first, 0, (16 - first) * sizeof(*out)); |
| if (best_path[0] == -1) { |
| return 0; // skip! |
| } |
| |
| // Unwind the best path. |
| // Note: best-prev on terminal node is not necessarily equal to the |
| // best_prev for non-terminal. So we patch best_path[2] in. |
| n = best_path[0]; |
| best_node = best_path[1]; |
| NODE(n, best_node).prev = best_path[2]; // force best-prev for terminal |
| nz = 0; |
| |
| for (; n >= first; --n) { |
| const Node* const node = &NODE(n, best_node); |
| const int j = kZigzag[n]; |
| out[n] = node->sign ? -node->level : node->level; |
| nz |= (node->level != 0); |
| in[j] = out[n] * mtx->q_[j]; |
| best_node = node->prev; |
| } |
| return nz; |
| } |
| |
| #undef NODE |
| |
| //------------------------------------------------------------------------------ |
| // Performs: difference, transform, quantize, back-transform, add |
| // all at once. Output is the reconstructed block in *yuv_out, and the |
| // quantized levels in *levels. |
| |
| static int ReconstructIntra16(VP8EncIterator* const it, |
| VP8ModeScore* const rd, |
| uint8_t* const yuv_out, |
| int mode) { |
| const VP8Encoder* const enc = it->enc_; |
| const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; |
| const uint8_t* const src = it->yuv_in_ + Y_OFF; |
| const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
| int nz = 0; |
| int n; |
| int16_t tmp[16][16], dc_tmp[16]; |
| |
| for (n = 0; n < 16; ++n) { |
| VP8FTransform(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]); |
| } |
| VP8FTransformWHT(tmp[0], dc_tmp); |
| nz |= VP8EncQuantizeBlock(dc_tmp, rd->y_dc_levels, 0, &dqm->y2_) << 24; |
| |
| if (DO_TRELLIS_I16 && it->do_trellis_) { |
| int x, y; |
| VP8IteratorNzToBytes(it); |
| for (y = 0, n = 0; y < 4; ++y) { |
| for (x = 0; x < 4; ++x, ++n) { |
| const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
| const int non_zero = |
| TrellisQuantizeBlock(it, tmp[n], rd->y_ac_levels[n], ctx, 0, |
| &dqm->y1_, dqm->lambda_trellis_i16_); |
| it->top_nz_[x] = it->left_nz_[y] = non_zero; |
| nz |= non_zero << n; |
| } |
| } |
| } else { |
| for (n = 0; n < 16; ++n) { |
| nz |= VP8EncQuantizeBlock(tmp[n], rd->y_ac_levels[n], 1, &dqm->y1_) << n; |
| } |
| } |
| |
| // Transform back |
| VP8ITransformWHT(dc_tmp, tmp[0]); |
| for (n = 0; n < 16; n += 2) { |
| VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1); |
| } |
| |
| return nz; |
| } |
| |
| static int ReconstructIntra4(VP8EncIterator* const it, |
| int16_t levels[16], |
| const uint8_t* const src, |
| uint8_t* const yuv_out, |
| int mode) { |
| const VP8Encoder* const enc = it->enc_; |
| const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; |
| const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
| int nz = 0; |
| int16_t tmp[16]; |
| |
| VP8FTransform(src, ref, tmp); |
| if (DO_TRELLIS_I4 && it->do_trellis_) { |
| const int x = it->i4_ & 3, y = it->i4_ >> 2; |
| const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
| nz = TrellisQuantizeBlock(it, tmp, levels, ctx, 3, &dqm->y1_, |
| dqm->lambda_trellis_i4_); |
| } else { |
| nz = VP8EncQuantizeBlock(tmp, levels, 0, &dqm->y1_); |
| } |
| VP8ITransform(ref, tmp, yuv_out, 0); |
| return nz; |
| } |
| |
| static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd, |
| uint8_t* const yuv_out, int mode) { |
| const VP8Encoder* const enc = it->enc_; |
| const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode]; |
| const uint8_t* const src = it->yuv_in_ + U_OFF; |
| const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
| int nz = 0; |
| int n; |
| int16_t tmp[8][16]; |
| |
| for (n = 0; n < 8; ++n) { |
| VP8FTransform(src + VP8Scan[16 + n], ref + VP8Scan[16 + n], tmp[n]); |
| } |
| if (DO_TRELLIS_UV && it->do_trellis_) { |
| int ch, x, y; |
| for (ch = 0, n = 0; ch <= 2; ch += 2) { |
| for (y = 0; y < 2; ++y) { |
| for (x = 0; x < 2; ++x, ++n) { |
| const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; |
| const int non_zero = |
| TrellisQuantizeBlock(it, tmp[n], rd->uv_levels[n], ctx, 2, |
| &dqm->uv_, dqm->lambda_trellis_uv_); |
| it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero; |
| nz |= non_zero << n; |
| } |
| } |
| } |
| } else { |
| for (n = 0; n < 8; ++n) { |
| nz |= VP8EncQuantizeBlock(tmp[n], rd->uv_levels[n], 0, &dqm->uv_) << n; |
| } |
| } |
| |
| for (n = 0; n < 8; n += 2) { |
| VP8ITransform(ref + VP8Scan[16 + n], tmp[n], yuv_out + VP8Scan[16 + n], 1); |
| } |
| return (nz << 16); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost. |
| // Pick the mode is lower RD-cost = Rate + lamba * Distortion. |
| |
| static void SwapPtr(uint8_t** a, uint8_t** b) { |
| uint8_t* const tmp = *a; |
| *a = *b; |
| *b = tmp; |
| } |
| |
| static void SwapOut(VP8EncIterator* const it) { |
| SwapPtr(&it->yuv_out_, &it->yuv_out2_); |
| } |
| |
| static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) { |
| const VP8Encoder* const enc = it->enc_; |
| const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
| const int lambda = dqm->lambda_i16_; |
| const int tlambda = dqm->tlambda_; |
| const uint8_t* const src = it->yuv_in_ + Y_OFF; |
| VP8ModeScore rd16; |
| int mode; |
| |
| rd->mode_i16 = -1; |
| for (mode = 0; mode < 4; ++mode) { |
| uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF; // scratch buffer |
| int nz; |
| |
| // Reconstruct |
| nz = ReconstructIntra16(it, &rd16, tmp_dst, mode); |
| |
| // Measure RD-score |
| rd16.D = VP8SSE16x16(src, tmp_dst); |
| rd16.SD = tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY)) |
| : 0; |
| rd16.R = VP8GetCostLuma16(it, &rd16); |
| rd16.R += VP8FixedCostsI16[mode]; |
| |
| // Since we always examine Intra16 first, we can overwrite *rd directly. |
| SetRDScore(lambda, &rd16); |
| if (mode == 0 || rd16.score < rd->score) { |
| CopyScore(rd, &rd16); |
| rd->mode_i16 = mode; |
| rd->nz = nz; |
| memcpy(rd->y_ac_levels, rd16.y_ac_levels, sizeof(rd16.y_ac_levels)); |
| memcpy(rd->y_dc_levels, rd16.y_dc_levels, sizeof(rd16.y_dc_levels)); |
| SwapOut(it); |
| } |
| } |
| SetRDScore(dqm->lambda_mode_, rd); // finalize score for mode decision. |
| VP8SetIntra16Mode(it, rd->mode_i16); |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| // return the cost array corresponding to the surrounding prediction modes. |
| static const uint16_t* GetCostModeI4(VP8EncIterator* const it, |
| const uint8_t modes[16]) { |
| const int preds_w = it->enc_->preds_w_; |
| const int x = (it->i4_ & 3), y = it->i4_ >> 2; |
| const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1]; |
| const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4]; |
| return VP8FixedCostsI4[top][left]; |
| } |
| |
| static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) { |
| const VP8Encoder* const enc = it->enc_; |
| const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
| const int lambda = dqm->lambda_i4_; |
| const int tlambda = dqm->tlambda_; |
| const uint8_t* const src0 = it->yuv_in_ + Y_OFF; |
| uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF; |
| int total_header_bits = 0; |
| VP8ModeScore rd_best; |
| |
| if (enc->max_i4_header_bits_ == 0) { |
| return 0; |
| } |
| |
| InitScore(&rd_best); |
| rd_best.score = 211; // '211' is the value of VP8BitCost(0, 145) |
| VP8IteratorStartI4(it); |
| do { |
| VP8ModeScore rd_i4; |
| int mode; |
| int best_mode = -1; |
| const uint8_t* const src = src0 + VP8Scan[it->i4_]; |
| const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4); |
| uint8_t* best_block = best_blocks + VP8Scan[it->i4_]; |
| uint8_t* tmp_dst = it->yuv_p_ + I4TMP; // scratch buffer. |
| |
| InitScore(&rd_i4); |
| VP8MakeIntra4Preds(it); |
| for (mode = 0; mode < NUM_BMODES; ++mode) { |
| VP8ModeScore rd_tmp; |
| int16_t tmp_levels[16]; |
| |
| // Reconstruct |
| rd_tmp.nz = |
| ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_; |
| |
| // Compute RD-score |
| rd_tmp.D = VP8SSE4x4(src, tmp_dst); |
| rd_tmp.SD = |
| tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY)) |
| : 0; |
| rd_tmp.R = VP8GetCostLuma4(it, tmp_levels); |
| rd_tmp.R += mode_costs[mode]; |
| |
| SetRDScore(lambda, &rd_tmp); |
| if (best_mode < 0 || rd_tmp.score < rd_i4.score) { |
| CopyScore(&rd_i4, &rd_tmp); |
| best_mode = mode; |
| SwapPtr(&tmp_dst, &best_block); |
| memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, sizeof(tmp_levels)); |
| } |
| } |
| SetRDScore(dqm->lambda_mode_, &rd_i4); |
| AddScore(&rd_best, &rd_i4); |
| total_header_bits += mode_costs[best_mode]; |
| if (rd_best.score >= rd->score || |
| total_header_bits > enc->max_i4_header_bits_) { |
| return 0; |
| } |
| // Copy selected samples if not in the right place already. |
| if (best_block != best_blocks + VP8Scan[it->i4_]) |
| VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]); |
| rd->modes_i4[it->i4_] = best_mode; |
| it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0); |
| } while (VP8IteratorRotateI4(it, best_blocks)); |
| |
| // finalize state |
| CopyScore(rd, &rd_best); |
| VP8SetIntra4Mode(it, rd->modes_i4); |
| SwapOut(it); |
| memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels)); |
| return 1; // select intra4x4 over intra16x16 |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { |
| const VP8Encoder* const enc = it->enc_; |
| const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
| const int lambda = dqm->lambda_uv_; |
| const uint8_t* const src = it->yuv_in_ + U_OFF; |
| uint8_t* const tmp_dst = it->yuv_out2_ + U_OFF; // scratch buffer |
| uint8_t* const dst0 = it->yuv_out_ + U_OFF; |
| VP8ModeScore rd_best; |
| int mode; |
| |
| rd->mode_uv = -1; |
| InitScore(&rd_best); |
| for (mode = 0; mode < 4; ++mode) { |
| VP8ModeScore rd_uv; |
| |
| // Reconstruct |
| rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode); |
| |
| // Compute RD-score |
| rd_uv.D = VP8SSE16x8(src, tmp_dst); |
| rd_uv.SD = 0; // TODO: should we call TDisto? it tends to flatten areas. |
| rd_uv.R = VP8GetCostUV(it, &rd_uv); |
| rd_uv.R += VP8FixedCostsUV[mode]; |
| |
| SetRDScore(lambda, &rd_uv); |
| if (mode == 0 || rd_uv.score < rd_best.score) { |
| CopyScore(&rd_best, &rd_uv); |
| rd->mode_uv = mode; |
| memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels)); |
| memcpy(dst0, tmp_dst, UV_SIZE); // TODO: SwapUVOut() ? |
| } |
| } |
| VP8SetIntraUVMode(it, rd->mode_uv); |
| AddScore(rd, &rd_best); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Final reconstruction and quantization. |
| |
| static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) { |
| const VP8Encoder* const enc = it->enc_; |
| const int i16 = (it->mb_->type_ == 1); |
| int nz = 0; |
| |
| if (i16) { |
| nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF, it->preds_[0]); |
| } else { |
| VP8IteratorStartI4(it); |
| do { |
| const int mode = |
| it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_]; |
| const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; |
| uint8_t* const dst = it->yuv_out_ + Y_OFF + VP8Scan[it->i4_]; |
| VP8MakeIntra4Preds(it); |
| nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_], |
| src, dst, mode) << it->i4_; |
| } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF)); |
| } |
| |
| nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF, it->mb_->uv_mode_); |
| rd->nz = nz; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Entry point |
| |
| int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, int rd_opt) { |
| int is_skipped; |
| |
| InitScore(rd); |
| |
| // We can perform predictions for Luma16x16 and Chroma8x8 already. |
| // Luma4x4 predictions needs to be done as-we-go. |
| VP8MakeLuma16Preds(it); |
| VP8MakeChroma8Preds(it); |
| |
| // for rd_opt = 2, we perform trellis-quant on the final decision only. |
| // for rd_opt > 2, we use it for every scoring (=much slower). |
| if (rd_opt > 0) { |
| it->do_trellis_ = (rd_opt > 2); |
| PickBestIntra16(it, rd); |
| if (it->enc_->method_ >= 2) { |
| PickBestIntra4(it, rd); |
| } |
| PickBestUV(it, rd); |
| if (rd_opt == 2) { |
| it->do_trellis_ = 1; |
| SimpleQuantize(it, rd); |
| } |
| } else { |
| // TODO: for method_ == 2, pick the best intra4/intra16 based on SSE |
| it->do_trellis_ = (it->enc_->method_ == 2); |
| SimpleQuantize(it, rd); |
| } |
| is_skipped = (rd->nz == 0); |
| VP8SetSkip(it, is_skipped); |
| return is_skipped; |
| } |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| } // extern "C" |
| #endif |