| // Copyright 2010 Google Inc. All Rights Reserved. |
| // |
| // This code is licensed under the same terms as WebM: |
| // Software License Agreement: http://www.webmproject.org/license/software/ |
| // Additional IP Rights Grant: http://www.webmproject.org/license/additional/ |
| // ----------------------------------------------------------------------------- |
| // |
| // Frame-reconstruction function. Memory allocation. |
| // |
| // Author: Skal (pascal.massimino@gmail.com) |
| |
| #include <stdlib.h> |
| #include "./vp8i.h" |
| #include "../utils/utils.h" |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| extern "C" { |
| #endif |
| |
| #define ALIGN_MASK (32 - 1) |
| |
| //------------------------------------------------------------------------------ |
| // Filtering |
| |
| // kFilterExtraRows[] = How many extra lines are needed on the MB boundary |
| // for caching, given a filtering level. |
| // Simple filter: up to 2 luma samples are read and 1 is written. |
| // Complex filter: up to 4 luma samples are read and 3 are written. Same for |
| // U/V, so it's 8 samples total (because of the 2x upsampling). |
| static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 }; |
| |
| static WEBP_INLINE int hev_thresh_from_level(int level, int keyframe) { |
| if (keyframe) { |
| return (level >= 40) ? 2 : (level >= 15) ? 1 : 0; |
| } else { |
| return (level >= 40) ? 3 : (level >= 20) ? 2 : (level >= 15) ? 1 : 0; |
| } |
| } |
| |
| static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) { |
| const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
| const int y_bps = dec->cache_y_stride_; |
| VP8FInfo* const f_info = ctx->f_info_ + mb_x; |
| uint8_t* const y_dst = dec->cache_y_ + ctx->id_ * 16 * y_bps + mb_x * 16; |
| const int level = f_info->f_level_; |
| const int ilevel = f_info->f_ilevel_; |
| const int limit = 2 * level + ilevel; |
| if (level == 0) { |
| return; |
| } |
| if (dec->filter_type_ == 1) { // simple |
| if (mb_x > 0) { |
| VP8SimpleHFilter16(y_dst, y_bps, limit + 4); |
| } |
| if (f_info->f_inner_) { |
| VP8SimpleHFilter16i(y_dst, y_bps, limit); |
| } |
| if (mb_y > 0) { |
| VP8SimpleVFilter16(y_dst, y_bps, limit + 4); |
| } |
| if (f_info->f_inner_) { |
| VP8SimpleVFilter16i(y_dst, y_bps, limit); |
| } |
| } else { // complex |
| const int uv_bps = dec->cache_uv_stride_; |
| uint8_t* const u_dst = dec->cache_u_ + ctx->id_ * 8 * uv_bps + mb_x * 8; |
| uint8_t* const v_dst = dec->cache_v_ + ctx->id_ * 8 * uv_bps + mb_x * 8; |
| const int hev_thresh = |
| hev_thresh_from_level(level, dec->frm_hdr_.key_frame_); |
| if (mb_x > 0) { |
| VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); |
| VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); |
| } |
| if (f_info->f_inner_) { |
| VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); |
| VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); |
| } |
| if (mb_y > 0) { |
| VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); |
| VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); |
| } |
| if (f_info->f_inner_) { |
| VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); |
| VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); |
| } |
| } |
| } |
| |
| // Filter the decoded macroblock row (if needed) |
| static void FilterRow(const VP8Decoder* const dec) { |
| int mb_x; |
| const int mb_y = dec->thread_ctx_.mb_y_; |
| assert(dec->thread_ctx_.filter_row_); |
| for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { |
| DoFilter(dec, mb_x, mb_y); |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| void VP8StoreBlock(VP8Decoder* const dec) { |
| if (dec->filter_type_ > 0) { |
| VP8FInfo* const info = dec->f_info_ + dec->mb_x_; |
| const int skip = dec->mb_info_[dec->mb_x_].skip_; |
| int level = dec->filter_levels_[dec->segment_]; |
| if (dec->filter_hdr_.use_lf_delta_) { |
| // TODO(skal): only CURRENT is handled for now. |
| level += dec->filter_hdr_.ref_lf_delta_[0]; |
| if (dec->is_i4x4_) { |
| level += dec->filter_hdr_.mode_lf_delta_[0]; |
| } |
| } |
| level = (level < 0) ? 0 : (level > 63) ? 63 : level; |
| info->f_level_ = level; |
| |
| if (dec->filter_hdr_.sharpness_ > 0) { |
| if (dec->filter_hdr_.sharpness_ > 4) { |
| level >>= 2; |
| } else { |
| level >>= 1; |
| } |
| if (level > 9 - dec->filter_hdr_.sharpness_) { |
| level = 9 - dec->filter_hdr_.sharpness_; |
| } |
| } |
| |
| info->f_ilevel_ = (level < 1) ? 1 : level; |
| info->f_inner_ = (!skip || dec->is_i4x4_); |
| } |
| { |
| // Transfer samples to row cache |
| int y; |
| const int y_offset = dec->cache_id_ * 16 * dec->cache_y_stride_; |
| const int uv_offset = dec->cache_id_ * 8 * dec->cache_uv_stride_; |
| uint8_t* const ydst = dec->cache_y_ + dec->mb_x_ * 16 + y_offset; |
| uint8_t* const udst = dec->cache_u_ + dec->mb_x_ * 8 + uv_offset; |
| uint8_t* const vdst = dec->cache_v_ + dec->mb_x_ * 8 + uv_offset; |
| for (y = 0; y < 16; ++y) { |
| memcpy(ydst + y * dec->cache_y_stride_, |
| dec->yuv_b_ + Y_OFF + y * BPS, 16); |
| } |
| for (y = 0; y < 8; ++y) { |
| memcpy(udst + y * dec->cache_uv_stride_, |
| dec->yuv_b_ + U_OFF + y * BPS, 8); |
| memcpy(vdst + y * dec->cache_uv_stride_, |
| dec->yuv_b_ + V_OFF + y * BPS, 8); |
| } |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| // This function is called after a row of macroblocks is finished decoding. |
| // It also takes into account the following restrictions: |
| // * In case of in-loop filtering, we must hold off sending some of the bottom |
| // pixels as they are yet unfiltered. They will be when the next macroblock |
| // row is decoded. Meanwhile, we must preserve them by rotating them in the |
| // cache area. This doesn't hold for the very bottom row of the uncropped |
| // picture of course. |
| // * we must clip the remaining pixels against the cropping area. The VP8Io |
| // struct must have the following fields set correctly before calling put(): |
| |
| #define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB |
| |
| // Finalize and transmit a complete row. Return false in case of user-abort. |
| static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { |
| int ok = 1; |
| const VP8ThreadContext* const ctx = &dec->thread_ctx_; |
| const int extra_y_rows = kFilterExtraRows[dec->filter_type_]; |
| const int ysize = extra_y_rows * dec->cache_y_stride_; |
| const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_; |
| const int y_offset = ctx->id_ * 16 * dec->cache_y_stride_; |
| const int uv_offset = ctx->id_ * 8 * dec->cache_uv_stride_; |
| uint8_t* const ydst = dec->cache_y_ - ysize + y_offset; |
| uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset; |
| uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset; |
| const int first_row = (ctx->mb_y_ == 0); |
| const int last_row = (ctx->mb_y_ >= dec->br_mb_y_ - 1); |
| int y_start = MACROBLOCK_VPOS(ctx->mb_y_); |
| int y_end = MACROBLOCK_VPOS(ctx->mb_y_ + 1); |
| |
| if (ctx->filter_row_) { |
| FilterRow(dec); |
| } |
| |
| if (io->put) { |
| if (!first_row) { |
| y_start -= extra_y_rows; |
| io->y = ydst; |
| io->u = udst; |
| io->v = vdst; |
| } else { |
| io->y = dec->cache_y_ + y_offset; |
| io->u = dec->cache_u_ + uv_offset; |
| io->v = dec->cache_v_ + uv_offset; |
| } |
| |
| if (!last_row) { |
| y_end -= extra_y_rows; |
| } |
| if (y_end > io->crop_bottom) { |
| y_end = io->crop_bottom; // make sure we don't overflow on last row. |
| } |
| io->a = NULL; |
| if (dec->alpha_data_ != NULL && y_start < y_end) { |
| // TODO(skal): several things to correct here: |
| // * testing presence of alpha with dec->alpha_data_ is not a good idea |
| // * we're actually decompressing the full plane only once. It should be |
| // more obvious from signature. |
| // * we could free alpha_data_ right after this call, but we don't own. |
| io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start); |
| if (io->a == NULL) { |
| return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, |
| "Could not decode alpha data."); |
| } |
| } |
| if (y_start < io->crop_top) { |
| const int delta_y = io->crop_top - y_start; |
| y_start = io->crop_top; |
| assert(!(delta_y & 1)); |
| io->y += dec->cache_y_stride_ * delta_y; |
| io->u += dec->cache_uv_stride_ * (delta_y >> 1); |
| io->v += dec->cache_uv_stride_ * (delta_y >> 1); |
| if (io->a != NULL) { |
| io->a += io->width * delta_y; |
| } |
| } |
| if (y_start < y_end) { |
| io->y += io->crop_left; |
| io->u += io->crop_left >> 1; |
| io->v += io->crop_left >> 1; |
| if (io->a != NULL) { |
| io->a += io->crop_left; |
| } |
| io->mb_y = y_start - io->crop_top; |
| io->mb_w = io->crop_right - io->crop_left; |
| io->mb_h = y_end - y_start; |
| ok = io->put(io); |
| } |
| } |
| // rotate top samples if needed |
| if (ctx->id_ + 1 == dec->num_caches_) { |
| if (!last_row) { |
| memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize); |
| memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize); |
| memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize); |
| } |
| } |
| |
| return ok; |
| } |
| |
| #undef MACROBLOCK_VPOS |
| |
| //------------------------------------------------------------------------------ |
| |
| int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { |
| int ok = 1; |
| VP8ThreadContext* const ctx = &dec->thread_ctx_; |
| if (!dec->use_threads_) { |
| // ctx->id_ and ctx->f_info_ are already set |
| ctx->mb_y_ = dec->mb_y_; |
| ctx->filter_row_ = dec->filter_row_; |
| ok = FinishRow(dec, io); |
| } else { |
| WebPWorker* const worker = &dec->worker_; |
| // Finish previous job *before* updating context |
| ok &= WebPWorkerSync(worker); |
| assert(worker->status_ == OK); |
| if (ok) { // spawn a new deblocking/output job |
| ctx->io_ = *io; |
| ctx->id_ = dec->cache_id_; |
| ctx->mb_y_ = dec->mb_y_; |
| ctx->filter_row_ = dec->filter_row_; |
| if (ctx->filter_row_) { // just swap filter info |
| VP8FInfo* const tmp = ctx->f_info_; |
| ctx->f_info_ = dec->f_info_; |
| dec->f_info_ = tmp; |
| } |
| WebPWorkerLaunch(worker); |
| if (++dec->cache_id_ == dec->num_caches_) { |
| dec->cache_id_ = 0; |
| } |
| } |
| } |
| return ok; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Finish setting up the decoding parameter once user's setup() is called. |
| |
| VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { |
| // Call setup() first. This may trigger additional decoding features on 'io'. |
| // Note: Afterward, we must call teardown() not matter what. |
| if (io->setup && !io->setup(io)) { |
| VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed"); |
| return dec->status_; |
| } |
| |
| // Disable filtering per user request |
| if (io->bypass_filtering) { |
| dec->filter_type_ = 0; |
| } |
| // TODO(skal): filter type / strength / sharpness forcing |
| |
| // Define the area where we can skip in-loop filtering, in case of cropping. |
| // |
| // 'Simple' filter reads two luma samples outside of the macroblock and |
| // and filters one. It doesn't filter the chroma samples. Hence, we can |
| // avoid doing the in-loop filtering before crop_top/crop_left position. |
| // For the 'Complex' filter, 3 samples are read and up to 3 are filtered. |
| // Means: there's a dependency chain that goes all the way up to the |
| // top-left corner of the picture (MB #0). We must filter all the previous |
| // macroblocks. |
| // TODO(skal): add an 'approximate_decoding' option, that won't produce |
| // a 1:1 bit-exactness for complex filtering? |
| { |
| const int extra_pixels = kFilterExtraRows[dec->filter_type_]; |
| if (dec->filter_type_ == 2) { |
| // For complex filter, we need to preserve the dependency chain. |
| dec->tl_mb_x_ = 0; |
| dec->tl_mb_y_ = 0; |
| } else { |
| // For simple filter, we can filter only the cropped region. |
| // We include 'extra_pixels' on the other side of the boundary, since |
| // vertical or horizontal filtering of the previous macroblock can |
| // modify some abutting pixels. |
| dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4; |
| dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4; |
| if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0; |
| if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0; |
| } |
| // We need some 'extra' pixels on the right/bottom. |
| dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4; |
| dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4; |
| if (dec->br_mb_x_ > dec->mb_w_) { |
| dec->br_mb_x_ = dec->mb_w_; |
| } |
| if (dec->br_mb_y_ > dec->mb_h_) { |
| dec->br_mb_y_ = dec->mb_h_; |
| } |
| } |
| return VP8_STATUS_OK; |
| } |
| |
| int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) { |
| int ok = 1; |
| if (dec->use_threads_) { |
| ok = WebPWorkerSync(&dec->worker_); |
| } |
| |
| if (io->teardown) { |
| io->teardown(io); |
| } |
| return ok; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line. |
| // |
| // Reason is: the deblocking filter cannot deblock the bottom horizontal edges |
| // immediately, and needs to wait for first few rows of the next macroblock to |
| // be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending |
| // on strength). |
| // With two threads, the vertical positions of the rows being decoded are: |
| // Decode: [ 0..15][16..31][32..47][48..63][64..79][... |
| // Deblock: [ 0..11][12..27][28..43][44..59][... |
| // If we use two threads and two caches of 16 pixels, the sequence would be: |
| // Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][... |
| // Deblock: [ 0..11][12..27!!][-4..11][12..27][... |
| // The problem occurs during row [12..15!!] that both the decoding and |
| // deblocking threads are writing simultaneously. |
| // With 3 cache lines, one get a safe write pattern: |
| // Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0.. |
| // Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28... |
| // Note that multi-threaded output _without_ deblocking can make use of two |
| // cache lines of 16 pixels only, since there's no lagging behind. The decoding |
| // and output process have non-concurrent writing: |
| // Decode: [ 0..15][16..31][ 0..15][16..31][... |
| // io->put: [ 0..15][16..31][ 0..15][... |
| |
| #define MT_CACHE_LINES 3 |
| #define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case |
| |
| // Initialize multi/single-thread worker |
| static int InitThreadContext(VP8Decoder* const dec) { |
| dec->cache_id_ = 0; |
| if (dec->use_threads_) { |
| WebPWorker* const worker = &dec->worker_; |
| if (!WebPWorkerReset(worker)) { |
| return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, |
| "thread initialization failed."); |
| } |
| worker->data1 = dec; |
| worker->data2 = (void*)&dec->thread_ctx_.io_; |
| worker->hook = (WebPWorkerHook)FinishRow; |
| dec->num_caches_ = |
| (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1; |
| } else { |
| dec->num_caches_ = ST_CACHE_LINES; |
| } |
| return 1; |
| } |
| |
| #undef MT_CACHE_LINES |
| #undef ST_CACHE_LINES |
| |
| //------------------------------------------------------------------------------ |
| // Memory setup |
| |
| static int AllocateMemory(VP8Decoder* const dec) { |
| const int num_caches = dec->num_caches_; |
| const int mb_w = dec->mb_w_; |
| // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise. |
| const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t); |
| const size_t top_size = (16 + 8 + 8) * mb_w; |
| const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB); |
| const size_t f_info_size = |
| (dec->filter_type_ > 0) ? |
| mb_w * (dec->use_threads_ ? 2 : 1) * sizeof(VP8FInfo) |
| : 0; |
| const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_); |
| const size_t coeffs_size = 384 * sizeof(*dec->coeffs_); |
| const size_t cache_height = (16 * num_caches |
| + kFilterExtraRows[dec->filter_type_]) * 3 / 2; |
| const size_t cache_size = top_size * cache_height; |
| // alpha_size is the only one that scales as width x height. |
| const uint64_t alpha_size = (dec->alpha_data_ != NULL) ? |
| (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL; |
| const uint64_t needed = (uint64_t)intra_pred_mode_size |
| + top_size + mb_info_size + f_info_size |
| + yuv_size + coeffs_size |
| + cache_size + alpha_size + ALIGN_MASK; |
| uint8_t* mem; |
| |
| if (needed != (size_t)needed) return 0; // check for overflow |
| if (needed > dec->mem_size_) { |
| free(dec->mem_); |
| dec->mem_size_ = 0; |
| dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t)); |
| if (dec->mem_ == NULL) { |
| return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, |
| "no memory during frame initialization."); |
| } |
| // down-cast is ok, thanks to WebPSafeAlloc() above. |
| dec->mem_size_ = (size_t)needed; |
| } |
| |
| mem = (uint8_t*)dec->mem_; |
| dec->intra_t_ = (uint8_t*)mem; |
| mem += intra_pred_mode_size; |
| |
| dec->y_t_ = (uint8_t*)mem; |
| mem += 16 * mb_w; |
| dec->u_t_ = (uint8_t*)mem; |
| mem += 8 * mb_w; |
| dec->v_t_ = (uint8_t*)mem; |
| mem += 8 * mb_w; |
| |
| dec->mb_info_ = ((VP8MB*)mem) + 1; |
| mem += mb_info_size; |
| |
| dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL; |
| mem += f_info_size; |
| dec->thread_ctx_.id_ = 0; |
| dec->thread_ctx_.f_info_ = dec->f_info_; |
| if (dec->use_threads_) { |
| // secondary cache line. The deblocking process need to make use of the |
| // filtering strength from previous macroblock row, while the new ones |
| // are being decoded in parallel. We'll just swap the pointers. |
| dec->thread_ctx_.f_info_ += mb_w; |
| } |
| |
| mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK); |
| assert((yuv_size & ALIGN_MASK) == 0); |
| dec->yuv_b_ = (uint8_t*)mem; |
| mem += yuv_size; |
| |
| dec->coeffs_ = (int16_t*)mem; |
| mem += coeffs_size; |
| |
| dec->cache_y_stride_ = 16 * mb_w; |
| dec->cache_uv_stride_ = 8 * mb_w; |
| { |
| const int extra_rows = kFilterExtraRows[dec->filter_type_]; |
| const int extra_y = extra_rows * dec->cache_y_stride_; |
| const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_; |
| dec->cache_y_ = ((uint8_t*)mem) + extra_y; |
| dec->cache_u_ = dec->cache_y_ |
| + 16 * num_caches * dec->cache_y_stride_ + extra_uv; |
| dec->cache_v_ = dec->cache_u_ |
| + 8 * num_caches * dec->cache_uv_stride_ + extra_uv; |
| dec->cache_id_ = 0; |
| } |
| mem += cache_size; |
| |
| // alpha plane |
| dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL; |
| mem += alpha_size; |
| |
| // note: left-info is initialized once for all. |
| memset(dec->mb_info_ - 1, 0, mb_info_size); |
| |
| // initialize top |
| memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size); |
| |
| return 1; |
| } |
| |
| static void InitIo(VP8Decoder* const dec, VP8Io* io) { |
| // prepare 'io' |
| io->mb_y = 0; |
| io->y = dec->cache_y_; |
| io->u = dec->cache_u_; |
| io->v = dec->cache_v_; |
| io->y_stride = dec->cache_y_stride_; |
| io->uv_stride = dec->cache_uv_stride_; |
| io->a = NULL; |
| } |
| |
| int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) { |
| if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_. |
| if (!AllocateMemory(dec)) return 0; |
| InitIo(dec, io); |
| VP8DspInit(); // Init critical function pointers and look-up tables. |
| return 1; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Main reconstruction function. |
| |
| static const int kScan[16] = { |
| 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, |
| 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, |
| 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, |
| 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS |
| }; |
| |
| static WEBP_INLINE int CheckMode(VP8Decoder* const dec, int mode) { |
| if (mode == B_DC_PRED) { |
| if (dec->mb_x_ == 0) { |
| return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; |
| } else { |
| return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; |
| } |
| } |
| return mode; |
| } |
| |
| static WEBP_INLINE void Copy32b(uint8_t* dst, uint8_t* src) { |
| *(uint32_t*)dst = *(uint32_t*)src; |
| } |
| |
| void VP8ReconstructBlock(VP8Decoder* const dec) { |
| uint8_t* const y_dst = dec->yuv_b_ + Y_OFF; |
| uint8_t* const u_dst = dec->yuv_b_ + U_OFF; |
| uint8_t* const v_dst = dec->yuv_b_ + V_OFF; |
| |
| // Rotate in the left samples from previously decoded block. We move four |
| // pixels at a time for alignment reason, and because of in-loop filter. |
| if (dec->mb_x_ > 0) { |
| int j; |
| for (j = -1; j < 16; ++j) { |
| Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); |
| } |
| for (j = -1; j < 8; ++j) { |
| Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); |
| Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); |
| } |
| } else { |
| int j; |
| for (j = 0; j < 16; ++j) { |
| y_dst[j * BPS - 1] = 129; |
| } |
| for (j = 0; j < 8; ++j) { |
| u_dst[j * BPS - 1] = 129; |
| v_dst[j * BPS - 1] = 129; |
| } |
| // Init top-left sample on left column too |
| if (dec->mb_y_ > 0) { |
| y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129; |
| } |
| } |
| { |
| // bring top samples into the cache |
| uint8_t* const top_y = dec->y_t_ + dec->mb_x_ * 16; |
| uint8_t* const top_u = dec->u_t_ + dec->mb_x_ * 8; |
| uint8_t* const top_v = dec->v_t_ + dec->mb_x_ * 8; |
| const int16_t* coeffs = dec->coeffs_; |
| int n; |
| |
| if (dec->mb_y_ > 0) { |
| memcpy(y_dst - BPS, top_y, 16); |
| memcpy(u_dst - BPS, top_u, 8); |
| memcpy(v_dst - BPS, top_v, 8); |
| } else if (dec->mb_x_ == 0) { |
| // we only need to do this init once at block (0,0). |
| // Afterward, it remains valid for the whole topmost row. |
| memset(y_dst - BPS - 1, 127, 16 + 4 + 1); |
| memset(u_dst - BPS - 1, 127, 8 + 1); |
| memset(v_dst - BPS - 1, 127, 8 + 1); |
| } |
| |
| // predict and add residuals |
| |
| if (dec->is_i4x4_) { // 4x4 |
| uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); |
| |
| if (dec->mb_y_ > 0) { |
| if (dec->mb_x_ >= dec->mb_w_ - 1) { // on rightmost border |
| top_right[0] = top_y[15] * 0x01010101u; |
| } else { |
| memcpy(top_right, top_y + 16, sizeof(*top_right)); |
| } |
| } |
| // replicate the top-right pixels below |
| top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; |
| |
| // predict and add residues for all 4x4 blocks in turn. |
| for (n = 0; n < 16; n++) { |
| uint8_t* const dst = y_dst + kScan[n]; |
| VP8PredLuma4[dec->imodes_[n]](dst); |
| if (dec->non_zero_ac_ & (1 << n)) { |
| VP8Transform(coeffs + n * 16, dst, 0); |
| } else if (dec->non_zero_ & (1 << n)) { // only DC is present |
| VP8TransformDC(coeffs + n * 16, dst); |
| } |
| } |
| } else { // 16x16 |
| const int pred_func = CheckMode(dec, dec->imodes_[0]); |
| VP8PredLuma16[pred_func](y_dst); |
| if (dec->non_zero_) { |
| for (n = 0; n < 16; n++) { |
| uint8_t* const dst = y_dst + kScan[n]; |
| if (dec->non_zero_ac_ & (1 << n)) { |
| VP8Transform(coeffs + n * 16, dst, 0); |
| } else if (dec->non_zero_ & (1 << n)) { // only DC is present |
| VP8TransformDC(coeffs + n * 16, dst); |
| } |
| } |
| } |
| } |
| { |
| // Chroma |
| const int pred_func = CheckMode(dec, dec->uvmode_); |
| VP8PredChroma8[pred_func](u_dst); |
| VP8PredChroma8[pred_func](v_dst); |
| |
| if (dec->non_zero_ & 0x0f0000) { // chroma-U |
| const int16_t* const u_coeffs = dec->coeffs_ + 16 * 16; |
| if (dec->non_zero_ac_ & 0x0f0000) { |
| VP8TransformUV(u_coeffs, u_dst); |
| } else { |
| VP8TransformDCUV(u_coeffs, u_dst); |
| } |
| } |
| if (dec->non_zero_ & 0xf00000) { // chroma-V |
| const int16_t* const v_coeffs = dec->coeffs_ + 20 * 16; |
| if (dec->non_zero_ac_ & 0xf00000) { |
| VP8TransformUV(v_coeffs, v_dst); |
| } else { |
| VP8TransformDCUV(v_coeffs, v_dst); |
| } |
| } |
| |
| // stash away top samples for next block |
| if (dec->mb_y_ < dec->mb_h_ - 1) { |
| memcpy(top_y, y_dst + 15 * BPS, 16); |
| memcpy(top_u, u_dst + 7 * BPS, 8); |
| memcpy(top_v, v_dst + 7 * BPS, 8); |
| } |
| } |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| } // extern "C" |
| #endif |