| /* |
| * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| /* digital_agc.c |
| * |
| */ |
| |
| #include "digital_agc.h" |
| |
| #include <assert.h> |
| #include <string.h> |
| #ifdef AGC_DEBUG |
| #include <stdio.h> |
| #endif |
| |
| #include "gain_control.h" |
| |
| // To generate the gaintable, copy&paste the following lines to a Matlab window: |
| // MaxGain = 6; MinGain = 0; CompRatio = 3; Knee = 1; |
| // zeros = 0:31; lvl = 2.^(1-zeros); |
| // A = -10*log10(lvl) * (CompRatio - 1) / CompRatio; |
| // B = MaxGain - MinGain; |
| // gains = round(2^16*10.^(0.05 * (MinGain + B * ( log(exp(-Knee*A)+exp(-Knee*B)) - log(1+exp(-Knee*B)) ) / log(1/(1+exp(Knee*B)))))); |
| // fprintf(1, '\t%i, %i, %i, %i,\n', gains); |
| // % Matlab code for plotting the gain and input/output level characteristic (copy/paste the following 3 lines): |
| // in = 10*log10(lvl); out = 20*log10(gains/65536); |
| // subplot(121); plot(in, out); axis([-30, 0, -5, 20]); grid on; xlabel('Input (dB)'); ylabel('Gain (dB)'); |
| // subplot(122); plot(in, in+out); axis([-30, 0, -30, 5]); grid on; xlabel('Input (dB)'); ylabel('Output (dB)'); |
| // zoom on; |
| |
| // Generator table for y=log2(1+e^x) in Q8. |
| enum { kGenFuncTableSize = 128 }; |
| static const WebRtc_UWord16 kGenFuncTable[kGenFuncTableSize] = { |
| 256, 485, 786, 1126, 1484, 1849, 2217, 2586, |
| 2955, 3324, 3693, 4063, 4432, 4801, 5171, 5540, |
| 5909, 6279, 6648, 7017, 7387, 7756, 8125, 8495, |
| 8864, 9233, 9603, 9972, 10341, 10711, 11080, 11449, |
| 11819, 12188, 12557, 12927, 13296, 13665, 14035, 14404, |
| 14773, 15143, 15512, 15881, 16251, 16620, 16989, 17359, |
| 17728, 18097, 18466, 18836, 19205, 19574, 19944, 20313, |
| 20682, 21052, 21421, 21790, 22160, 22529, 22898, 23268, |
| 23637, 24006, 24376, 24745, 25114, 25484, 25853, 26222, |
| 26592, 26961, 27330, 27700, 28069, 28438, 28808, 29177, |
| 29546, 29916, 30285, 30654, 31024, 31393, 31762, 32132, |
| 32501, 32870, 33240, 33609, 33978, 34348, 34717, 35086, |
| 35456, 35825, 36194, 36564, 36933, 37302, 37672, 38041, |
| 38410, 38780, 39149, 39518, 39888, 40257, 40626, 40996, |
| 41365, 41734, 42104, 42473, 42842, 43212, 43581, 43950, |
| 44320, 44689, 45058, 45428, 45797, 46166, 46536, 46905 |
| }; |
| |
| static const WebRtc_Word16 kAvgDecayTime = 250; // frames; < 3000 |
| |
| WebRtc_Word32 WebRtcAgc_CalculateGainTable(WebRtc_Word32 *gainTable, // Q16 |
| WebRtc_Word16 digCompGaindB, // Q0 |
| WebRtc_Word16 targetLevelDbfs,// Q0 |
| WebRtc_UWord8 limiterEnable, |
| WebRtc_Word16 analogTarget) // Q0 |
| { |
| // This function generates the compressor gain table used in the fixed digital part. |
| WebRtc_UWord32 tmpU32no1, tmpU32no2, absInLevel, logApprox; |
| WebRtc_Word32 inLevel, limiterLvl; |
| WebRtc_Word32 tmp32, tmp32no1, tmp32no2, numFIX, den, y32; |
| const WebRtc_UWord16 kLog10 = 54426; // log2(10) in Q14 |
| const WebRtc_UWord16 kLog10_2 = 49321; // 10*log10(2) in Q14 |
| const WebRtc_UWord16 kLogE_1 = 23637; // log2(e) in Q14 |
| WebRtc_UWord16 constMaxGain; |
| WebRtc_UWord16 tmpU16, intPart, fracPart; |
| const WebRtc_Word16 kCompRatio = 3; |
| const WebRtc_Word16 kSoftLimiterLeft = 1; |
| WebRtc_Word16 limiterOffset = 0; // Limiter offset |
| WebRtc_Word16 limiterIdx, limiterLvlX; |
| WebRtc_Word16 constLinApprox, zeroGainLvl, maxGain, diffGain; |
| WebRtc_Word16 i, tmp16, tmp16no1; |
| int zeros, zerosScale; |
| |
| // Constants |
| // kLogE_1 = 23637; // log2(e) in Q14 |
| // kLog10 = 54426; // log2(10) in Q14 |
| // kLog10_2 = 49321; // 10*log10(2) in Q14 |
| |
| // Calculate maximum digital gain and zero gain level |
| tmp32no1 = WEBRTC_SPL_MUL_16_16(digCompGaindB - analogTarget, kCompRatio - 1); |
| tmp16no1 = analogTarget - targetLevelDbfs; |
| tmp16no1 += WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio); |
| maxGain = WEBRTC_SPL_MAX(tmp16no1, (analogTarget - targetLevelDbfs)); |
| tmp32no1 = WEBRTC_SPL_MUL_16_16(maxGain, kCompRatio); |
| zeroGainLvl = digCompGaindB; |
| zeroGainLvl -= WebRtcSpl_DivW32W16ResW16(tmp32no1 + ((kCompRatio - 1) >> 1), |
| kCompRatio - 1); |
| if ((digCompGaindB <= analogTarget) && (limiterEnable)) |
| { |
| zeroGainLvl += (analogTarget - digCompGaindB + kSoftLimiterLeft); |
| limiterOffset = 0; |
| } |
| |
| // Calculate the difference between maximum gain and gain at 0dB0v: |
| // diffGain = maxGain + (compRatio-1)*zeroGainLvl/compRatio |
| // = (compRatio-1)*digCompGaindB/compRatio |
| tmp32no1 = WEBRTC_SPL_MUL_16_16(digCompGaindB, kCompRatio - 1); |
| diffGain = WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio); |
| if (diffGain < 0 || diffGain >= kGenFuncTableSize) |
| { |
| assert(0); |
| return -1; |
| } |
| |
| // Calculate the limiter level and index: |
| // limiterLvlX = analogTarget - limiterOffset |
| // limiterLvl = targetLevelDbfs + limiterOffset/compRatio |
| limiterLvlX = analogTarget - limiterOffset; |
| limiterIdx = 2 |
| + WebRtcSpl_DivW32W16ResW16(WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)limiterLvlX, 13), |
| WEBRTC_SPL_RSHIFT_U16(kLog10_2, 1)); |
| tmp16no1 = WebRtcSpl_DivW32W16ResW16(limiterOffset + (kCompRatio >> 1), kCompRatio); |
| limiterLvl = targetLevelDbfs + tmp16no1; |
| |
| // Calculate (through table lookup): |
| // constMaxGain = log2(1+2^(log2(e)*diffGain)); (in Q8) |
| constMaxGain = kGenFuncTable[diffGain]; // in Q8 |
| |
| // Calculate a parameter used to approximate the fractional part of 2^x with a |
| // piecewise linear function in Q14: |
| // constLinApprox = round(3/2*(4*(3-2*sqrt(2))/(log(2)^2)-0.5)*2^14); |
| constLinApprox = 22817; // in Q14 |
| |
| // Calculate a denominator used in the exponential part to convert from dB to linear scale: |
| // den = 20*constMaxGain (in Q8) |
| den = WEBRTC_SPL_MUL_16_U16(20, constMaxGain); // in Q8 |
| |
| for (i = 0; i < 32; i++) |
| { |
| // Calculate scaled input level (compressor): |
| // inLevel = fix((-constLog10_2*(compRatio-1)*(1-i)+fix(compRatio/2))/compRatio) |
| tmp16 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16(kCompRatio - 1, i - 1); // Q0 |
| tmp32 = WEBRTC_SPL_MUL_16_U16(tmp16, kLog10_2) + 1; // Q14 |
| inLevel = WebRtcSpl_DivW32W16(tmp32, kCompRatio); // Q14 |
| |
| // Calculate diffGain-inLevel, to map using the genFuncTable |
| inLevel = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)diffGain, 14) - inLevel; // Q14 |
| |
| // Make calculations on abs(inLevel) and compensate for the sign afterwards. |
| absInLevel = (WebRtc_UWord32)WEBRTC_SPL_ABS_W32(inLevel); // Q14 |
| |
| // LUT with interpolation |
| intPart = (WebRtc_UWord16)WEBRTC_SPL_RSHIFT_U32(absInLevel, 14); |
| fracPart = (WebRtc_UWord16)(absInLevel & 0x00003FFF); // extract the fractional part |
| tmpU16 = kGenFuncTable[intPart + 1] - kGenFuncTable[intPart]; // Q8 |
| tmpU32no1 = WEBRTC_SPL_UMUL_16_16(tmpU16, fracPart); // Q22 |
| tmpU32no1 += WEBRTC_SPL_LSHIFT_U32((WebRtc_UWord32)kGenFuncTable[intPart], 14); // Q22 |
| logApprox = WEBRTC_SPL_RSHIFT_U32(tmpU32no1, 8); // Q14 |
| // Compensate for negative exponent using the relation: |
| // log2(1 + 2^-x) = log2(1 + 2^x) - x |
| if (inLevel < 0) |
| { |
| zeros = WebRtcSpl_NormU32(absInLevel); |
| zerosScale = 0; |
| if (zeros < 15) |
| { |
| // Not enough space for multiplication |
| tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(absInLevel, 15 - zeros); // Q(zeros-1) |
| tmpU32no2 = WEBRTC_SPL_UMUL_32_16(tmpU32no2, kLogE_1); // Q(zeros+13) |
| if (zeros < 9) |
| { |
| tmpU32no1 = WEBRTC_SPL_RSHIFT_U32(tmpU32no1, 9 - zeros); // Q(zeros+13) |
| zerosScale = 9 - zeros; |
| } else |
| { |
| tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(tmpU32no2, zeros - 9); // Q22 |
| } |
| } else |
| { |
| tmpU32no2 = WEBRTC_SPL_UMUL_32_16(absInLevel, kLogE_1); // Q28 |
| tmpU32no2 = WEBRTC_SPL_RSHIFT_U32(tmpU32no2, 6); // Q22 |
| } |
| logApprox = 0; |
| if (tmpU32no2 < tmpU32no1) |
| { |
| logApprox = WEBRTC_SPL_RSHIFT_U32(tmpU32no1 - tmpU32no2, 8 - zerosScale); //Q14 |
| } |
| } |
| numFIX = WEBRTC_SPL_LSHIFT_W32(WEBRTC_SPL_MUL_16_U16(maxGain, constMaxGain), 6); // Q14 |
| numFIX -= WEBRTC_SPL_MUL_32_16((WebRtc_Word32)logApprox, diffGain); // Q14 |
| |
| // Calculate ratio |
| // Shift |numFIX| as much as possible. |
| // Ensure we avoid wrap-around in |den| as well. |
| if (numFIX > (den >> 8)) // |den| is Q8. |
| { |
| zeros = WebRtcSpl_NormW32(numFIX); |
| } else |
| { |
| zeros = WebRtcSpl_NormW32(den) + 8; |
| } |
| numFIX = WEBRTC_SPL_LSHIFT_W32(numFIX, zeros); // Q(14+zeros) |
| |
| // Shift den so we end up in Qy1 |
| tmp32no1 = WEBRTC_SPL_SHIFT_W32(den, zeros - 8); // Q(zeros) |
| if (numFIX < 0) |
| { |
| numFIX -= WEBRTC_SPL_RSHIFT_W32(tmp32no1, 1); |
| } else |
| { |
| numFIX += WEBRTC_SPL_RSHIFT_W32(tmp32no1, 1); |
| } |
| y32 = WEBRTC_SPL_DIV(numFIX, tmp32no1); // in Q14 |
| if (limiterEnable && (i < limiterIdx)) |
| { |
| tmp32 = WEBRTC_SPL_MUL_16_U16(i - 1, kLog10_2); // Q14 |
| tmp32 -= WEBRTC_SPL_LSHIFT_W32(limiterLvl, 14); // Q14 |
| y32 = WebRtcSpl_DivW32W16(tmp32 + 10, 20); |
| } |
| if (y32 > 39000) |
| { |
| tmp32 = WEBRTC_SPL_MUL(y32 >> 1, kLog10) + 4096; // in Q27 |
| tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 13); // in Q14 |
| } else |
| { |
| tmp32 = WEBRTC_SPL_MUL(y32, kLog10) + 8192; // in Q28 |
| tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 14); // in Q14 |
| } |
| tmp32 += WEBRTC_SPL_LSHIFT_W32(16, 14); // in Q14 (Make sure final output is in Q16) |
| |
| // Calculate power |
| if (tmp32 > 0) |
| { |
| intPart = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 14); |
| fracPart = (WebRtc_UWord16)(tmp32 & 0x00003FFF); // in Q14 |
| if (WEBRTC_SPL_RSHIFT_W32(fracPart, 13)) |
| { |
| tmp16 = WEBRTC_SPL_LSHIFT_W16(2, 14) - constLinApprox; |
| tmp32no2 = WEBRTC_SPL_LSHIFT_W32(1, 14) - fracPart; |
| tmp32no2 = WEBRTC_SPL_MUL_32_16(tmp32no2, tmp16); |
| tmp32no2 = WEBRTC_SPL_RSHIFT_W32(tmp32no2, 13); |
| tmp32no2 = WEBRTC_SPL_LSHIFT_W32(1, 14) - tmp32no2; |
| } else |
| { |
| tmp16 = constLinApprox - WEBRTC_SPL_LSHIFT_W16(1, 14); |
| tmp32no2 = WEBRTC_SPL_MUL_32_16(fracPart, tmp16); |
| tmp32no2 = WEBRTC_SPL_RSHIFT_W32(tmp32no2, 13); |
| } |
| fracPart = (WebRtc_UWord16)tmp32no2; |
| gainTable[i] = WEBRTC_SPL_LSHIFT_W32(1, intPart) |
| + WEBRTC_SPL_SHIFT_W32(fracPart, intPart - 14); |
| } else |
| { |
| gainTable[i] = 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| WebRtc_Word32 WebRtcAgc_InitDigital(DigitalAgc_t *stt, WebRtc_Word16 agcMode) |
| { |
| |
| if (agcMode == kAgcModeFixedDigital) |
| { |
| // start at minimum to find correct gain faster |
| stt->capacitorSlow = 0; |
| } else |
| { |
| // start out with 0 dB gain |
| stt->capacitorSlow = 134217728; // (WebRtc_Word32)(0.125f * 32768.0f * 32768.0f); |
| } |
| stt->capacitorFast = 0; |
| stt->gain = 65536; |
| stt->gatePrevious = 0; |
| stt->agcMode = agcMode; |
| #ifdef AGC_DEBUG |
| stt->frameCounter = 0; |
| #endif |
| |
| // initialize VADs |
| WebRtcAgc_InitVad(&stt->vadNearend); |
| WebRtcAgc_InitVad(&stt->vadFarend); |
| |
| return 0; |
| } |
| |
| WebRtc_Word32 WebRtcAgc_AddFarendToDigital(DigitalAgc_t *stt, const WebRtc_Word16 *in_far, |
| WebRtc_Word16 nrSamples) |
| { |
| // Check for valid pointer |
| if (&stt->vadFarend == NULL) |
| { |
| return -1; |
| } |
| |
| // VAD for far end |
| WebRtcAgc_ProcessVad(&stt->vadFarend, in_far, nrSamples); |
| |
| return 0; |
| } |
| |
| WebRtc_Word32 WebRtcAgc_ProcessDigital(DigitalAgc_t *stt, const WebRtc_Word16 *in_near, |
| const WebRtc_Word16 *in_near_H, WebRtc_Word16 *out, |
| WebRtc_Word16 *out_H, WebRtc_UWord32 FS, |
| WebRtc_Word16 lowlevelSignal) |
| { |
| // array for gains (one value per ms, incl start & end) |
| WebRtc_Word32 gains[11]; |
| |
| WebRtc_Word32 out_tmp, tmp32; |
| WebRtc_Word32 env[10]; |
| WebRtc_Word32 nrg, max_nrg; |
| WebRtc_Word32 cur_level; |
| WebRtc_Word32 gain32, delta; |
| WebRtc_Word16 logratio; |
| WebRtc_Word16 lower_thr, upper_thr; |
| WebRtc_Word16 zeros, zeros_fast, frac; |
| WebRtc_Word16 decay; |
| WebRtc_Word16 gate, gain_adj; |
| WebRtc_Word16 k, n; |
| WebRtc_Word16 L, L2; // samples/subframe |
| |
| // determine number of samples per ms |
| if (FS == 8000) |
| { |
| L = 8; |
| L2 = 3; |
| } else if (FS == 16000) |
| { |
| L = 16; |
| L2 = 4; |
| } else if (FS == 32000) |
| { |
| L = 16; |
| L2 = 4; |
| } else |
| { |
| return -1; |
| } |
| |
| // TODO(andrew): again, we don't need input and output pointers... |
| if (in_near != out) |
| { |
| // Only needed if they don't already point to the same place. |
| memcpy(out, in_near, 10 * L * sizeof(WebRtc_Word16)); |
| } |
| if (FS == 32000) |
| { |
| if (in_near_H != out_H) |
| { |
| memcpy(out_H, in_near_H, 10 * L * sizeof(WebRtc_Word16)); |
| } |
| } |
| // VAD for near end |
| logratio = WebRtcAgc_ProcessVad(&stt->vadNearend, out, L * 10); |
| |
| // Account for far end VAD |
| if (stt->vadFarend.counter > 10) |
| { |
| tmp32 = WEBRTC_SPL_MUL_16_16(3, logratio); |
| logratio = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 - stt->vadFarend.logRatio, 2); |
| } |
| |
| // Determine decay factor depending on VAD |
| // upper_thr = 1.0f; |
| // lower_thr = 0.25f; |
| upper_thr = 1024; // Q10 |
| lower_thr = 0; // Q10 |
| if (logratio > upper_thr) |
| { |
| // decay = -2^17 / DecayTime; -> -65 |
| decay = -65; |
| } else if (logratio < lower_thr) |
| { |
| decay = 0; |
| } else |
| { |
| // decay = (WebRtc_Word16)(((lower_thr - logratio) |
| // * (2^27/(DecayTime*(upper_thr-lower_thr)))) >> 10); |
| // SUBSTITUTED: 2^27/(DecayTime*(upper_thr-lower_thr)) -> 65 |
| tmp32 = WEBRTC_SPL_MUL_16_16((lower_thr - logratio), 65); |
| decay = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 10); |
| } |
| |
| // adjust decay factor for long silence (detected as low standard deviation) |
| // This is only done in the adaptive modes |
| if (stt->agcMode != kAgcModeFixedDigital) |
| { |
| if (stt->vadNearend.stdLongTerm < 4000) |
| { |
| decay = 0; |
| } else if (stt->vadNearend.stdLongTerm < 8096) |
| { |
| // decay = (WebRtc_Word16)(((stt->vadNearend.stdLongTerm - 4000) * decay) >> 12); |
| tmp32 = WEBRTC_SPL_MUL_16_16((stt->vadNearend.stdLongTerm - 4000), decay); |
| decay = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 12); |
| } |
| |
| if (lowlevelSignal != 0) |
| { |
| decay = 0; |
| } |
| } |
| #ifdef AGC_DEBUG |
| stt->frameCounter++; |
| fprintf(stt->logFile, "%5.2f\t%d\t%d\t%d\t", (float)(stt->frameCounter) / 100, logratio, decay, stt->vadNearend.stdLongTerm); |
| #endif |
| // Find max amplitude per sub frame |
| // iterate over sub frames |
| for (k = 0; k < 10; k++) |
| { |
| // iterate over samples |
| max_nrg = 0; |
| for (n = 0; n < L; n++) |
| { |
| nrg = WEBRTC_SPL_MUL_16_16(out[k * L + n], out[k * L + n]); |
| if (nrg > max_nrg) |
| { |
| max_nrg = nrg; |
| } |
| } |
| env[k] = max_nrg; |
| } |
| |
| // Calculate gain per sub frame |
| gains[0] = stt->gain; |
| for (k = 0; k < 10; k++) |
| { |
| // Fast envelope follower |
| // decay time = -131000 / -1000 = 131 (ms) |
| stt->capacitorFast = AGC_SCALEDIFF32(-1000, stt->capacitorFast, stt->capacitorFast); |
| if (env[k] > stt->capacitorFast) |
| { |
| stt->capacitorFast = env[k]; |
| } |
| // Slow envelope follower |
| if (env[k] > stt->capacitorSlow) |
| { |
| // increase capacitorSlow |
| stt->capacitorSlow |
| = AGC_SCALEDIFF32(500, (env[k] - stt->capacitorSlow), stt->capacitorSlow); |
| } else |
| { |
| // decrease capacitorSlow |
| stt->capacitorSlow |
| = AGC_SCALEDIFF32(decay, stt->capacitorSlow, stt->capacitorSlow); |
| } |
| |
| // use maximum of both capacitors as current level |
| if (stt->capacitorFast > stt->capacitorSlow) |
| { |
| cur_level = stt->capacitorFast; |
| } else |
| { |
| cur_level = stt->capacitorSlow; |
| } |
| // Translate signal level into gain, using a piecewise linear approximation |
| // find number of leading zeros |
| zeros = WebRtcSpl_NormU32((WebRtc_UWord32)cur_level); |
| if (cur_level == 0) |
| { |
| zeros = 31; |
| } |
| tmp32 = (WEBRTC_SPL_LSHIFT_W32(cur_level, zeros) & 0x7FFFFFFF); |
| frac = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 19); // Q12 |
| tmp32 = WEBRTC_SPL_MUL((stt->gainTable[zeros-1] - stt->gainTable[zeros]), frac); |
| gains[k + 1] = stt->gainTable[zeros] + WEBRTC_SPL_RSHIFT_W32(tmp32, 12); |
| #ifdef AGC_DEBUG |
| if (k == 0) |
| { |
| fprintf(stt->logFile, "%d\t%d\t%d\t%d\t%d\n", env[0], cur_level, stt->capacitorFast, stt->capacitorSlow, zeros); |
| } |
| #endif |
| } |
| |
| // Gate processing (lower gain during absence of speech) |
| zeros = WEBRTC_SPL_LSHIFT_W16(zeros, 9) - WEBRTC_SPL_RSHIFT_W16(frac, 3); |
| // find number of leading zeros |
| zeros_fast = WebRtcSpl_NormU32((WebRtc_UWord32)stt->capacitorFast); |
| if (stt->capacitorFast == 0) |
| { |
| zeros_fast = 31; |
| } |
| tmp32 = (WEBRTC_SPL_LSHIFT_W32(stt->capacitorFast, zeros_fast) & 0x7FFFFFFF); |
| zeros_fast = WEBRTC_SPL_LSHIFT_W16(zeros_fast, 9); |
| zeros_fast -= (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 22); |
| |
| gate = 1000 + zeros_fast - zeros - stt->vadNearend.stdShortTerm; |
| |
| if (gate < 0) |
| { |
| stt->gatePrevious = 0; |
| } else |
| { |
| tmp32 = WEBRTC_SPL_MUL_16_16(stt->gatePrevious, 7); |
| gate = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32((WebRtc_Word32)gate + tmp32, 3); |
| stt->gatePrevious = gate; |
| } |
| // gate < 0 -> no gate |
| // gate > 2500 -> max gate |
| if (gate > 0) |
| { |
| if (gate < 2500) |
| { |
| gain_adj = WEBRTC_SPL_RSHIFT_W16(2500 - gate, 5); |
| } else |
| { |
| gain_adj = 0; |
| } |
| for (k = 0; k < 10; k++) |
| { |
| if ((gains[k + 1] - stt->gainTable[0]) > 8388608) |
| { |
| // To prevent wraparound |
| tmp32 = WEBRTC_SPL_RSHIFT_W32((gains[k+1] - stt->gainTable[0]), 8); |
| tmp32 = WEBRTC_SPL_MUL(tmp32, (178 + gain_adj)); |
| } else |
| { |
| tmp32 = WEBRTC_SPL_MUL((gains[k+1] - stt->gainTable[0]), (178 + gain_adj)); |
| tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 8); |
| } |
| gains[k + 1] = stt->gainTable[0] + tmp32; |
| } |
| } |
| |
| // Limit gain to avoid overload distortion |
| for (k = 0; k < 10; k++) |
| { |
| // To prevent wrap around |
| zeros = 10; |
| if (gains[k + 1] > 47453132) |
| { |
| zeros = 16 - WebRtcSpl_NormW32(gains[k + 1]); |
| } |
| gain32 = WEBRTC_SPL_RSHIFT_W32(gains[k+1], zeros) + 1; |
| gain32 = WEBRTC_SPL_MUL(gain32, gain32); |
| // check for overflow |
| while (AGC_MUL32(WEBRTC_SPL_RSHIFT_W32(env[k], 12) + 1, gain32) |
| > WEBRTC_SPL_SHIFT_W32((WebRtc_Word32)32767, 2 * (1 - zeros + 10))) |
| { |
| // multiply by 253/256 ==> -0.1 dB |
| if (gains[k + 1] > 8388607) |
| { |
| // Prevent wrap around |
| gains[k + 1] = WEBRTC_SPL_MUL(WEBRTC_SPL_RSHIFT_W32(gains[k+1], 8), 253); |
| } else |
| { |
| gains[k + 1] = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL(gains[k+1], 253), 8); |
| } |
| gain32 = WEBRTC_SPL_RSHIFT_W32(gains[k+1], zeros) + 1; |
| gain32 = WEBRTC_SPL_MUL(gain32, gain32); |
| } |
| } |
| // gain reductions should be done 1 ms earlier than gain increases |
| for (k = 1; k < 10; k++) |
| { |
| if (gains[k] > gains[k + 1]) |
| { |
| gains[k] = gains[k + 1]; |
| } |
| } |
| // save start gain for next frame |
| stt->gain = gains[10]; |
| |
| // Apply gain |
| // handle first sub frame separately |
| delta = WEBRTC_SPL_LSHIFT_W32(gains[1] - gains[0], (4 - L2)); |
| gain32 = WEBRTC_SPL_LSHIFT_W32(gains[0], 4); |
| // iterate over samples |
| for (n = 0; n < L; n++) |
| { |
| // For lower band |
| tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out[n], WEBRTC_SPL_RSHIFT_W32(gain32 + 127, 7)); |
| out_tmp = WEBRTC_SPL_RSHIFT_W32(tmp32 , 16); |
| if (out_tmp > 4095) |
| { |
| out[n] = (WebRtc_Word16)32767; |
| } else if (out_tmp < -4096) |
| { |
| out[n] = (WebRtc_Word16)-32768; |
| } else |
| { |
| tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out[n], WEBRTC_SPL_RSHIFT_W32(gain32, 4)); |
| out[n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16); |
| } |
| // For higher band |
| if (FS == 32000) |
| { |
| tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out_H[n], |
| WEBRTC_SPL_RSHIFT_W32(gain32 + 127, 7)); |
| out_tmp = WEBRTC_SPL_RSHIFT_W32(tmp32 , 16); |
| if (out_tmp > 4095) |
| { |
| out_H[n] = (WebRtc_Word16)32767; |
| } else if (out_tmp < -4096) |
| { |
| out_H[n] = (WebRtc_Word16)-32768; |
| } else |
| { |
| tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out_H[n], |
| WEBRTC_SPL_RSHIFT_W32(gain32, 4)); |
| out_H[n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16); |
| } |
| } |
| // |
| |
| gain32 += delta; |
| } |
| // iterate over subframes |
| for (k = 1; k < 10; k++) |
| { |
| delta = WEBRTC_SPL_LSHIFT_W32(gains[k+1] - gains[k], (4 - L2)); |
| gain32 = WEBRTC_SPL_LSHIFT_W32(gains[k], 4); |
| // iterate over samples |
| for (n = 0; n < L; n++) |
| { |
| // For lower band |
| tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out[k * L + n], |
| WEBRTC_SPL_RSHIFT_W32(gain32, 4)); |
| out[k * L + n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16); |
| // For higher band |
| if (FS == 32000) |
| { |
| tmp32 = WEBRTC_SPL_MUL((WebRtc_Word32)out_H[k * L + n], |
| WEBRTC_SPL_RSHIFT_W32(gain32, 4)); |
| out_H[k * L + n] = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32 , 16); |
| } |
| gain32 += delta; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void WebRtcAgc_InitVad(AgcVad_t *state) |
| { |
| WebRtc_Word16 k; |
| |
| state->HPstate = 0; // state of high pass filter |
| state->logRatio = 0; // log( P(active) / P(inactive) ) |
| // average input level (Q10) |
| state->meanLongTerm = WEBRTC_SPL_LSHIFT_W16(15, 10); |
| |
| // variance of input level (Q8) |
| state->varianceLongTerm = WEBRTC_SPL_LSHIFT_W32(500, 8); |
| |
| state->stdLongTerm = 0; // standard deviation of input level in dB |
| // short-term average input level (Q10) |
| state->meanShortTerm = WEBRTC_SPL_LSHIFT_W16(15, 10); |
| |
| // short-term variance of input level (Q8) |
| state->varianceShortTerm = WEBRTC_SPL_LSHIFT_W32(500, 8); |
| |
| state->stdShortTerm = 0; // short-term standard deviation of input level in dB |
| state->counter = 3; // counts updates |
| for (k = 0; k < 8; k++) |
| { |
| // downsampling filter |
| state->downState[k] = 0; |
| } |
| } |
| |
| WebRtc_Word16 WebRtcAgc_ProcessVad(AgcVad_t *state, // (i) VAD state |
| const WebRtc_Word16 *in, // (i) Speech signal |
| WebRtc_Word16 nrSamples) // (i) number of samples |
| { |
| WebRtc_Word32 out, nrg, tmp32, tmp32b; |
| WebRtc_UWord16 tmpU16; |
| WebRtc_Word16 k, subfr, tmp16; |
| WebRtc_Word16 buf1[8]; |
| WebRtc_Word16 buf2[4]; |
| WebRtc_Word16 HPstate; |
| WebRtc_Word16 zeros, dB; |
| |
| // process in 10 sub frames of 1 ms (to save on memory) |
| nrg = 0; |
| HPstate = state->HPstate; |
| for (subfr = 0; subfr < 10; subfr++) |
| { |
| // downsample to 4 kHz |
| if (nrSamples == 160) |
| { |
| for (k = 0; k < 8; k++) |
| { |
| tmp32 = (WebRtc_Word32)in[2 * k] + (WebRtc_Word32)in[2 * k + 1]; |
| tmp32 = WEBRTC_SPL_RSHIFT_W32(tmp32, 1); |
| buf1[k] = (WebRtc_Word16)tmp32; |
| } |
| in += 16; |
| |
| WebRtcSpl_DownsampleBy2(buf1, 8, buf2, state->downState); |
| } else |
| { |
| WebRtcSpl_DownsampleBy2(in, 8, buf2, state->downState); |
| in += 8; |
| } |
| |
| // high pass filter and compute energy |
| for (k = 0; k < 4; k++) |
| { |
| out = buf2[k] + HPstate; |
| tmp32 = WEBRTC_SPL_MUL(600, out); |
| HPstate = (WebRtc_Word16)(WEBRTC_SPL_RSHIFT_W32(tmp32, 10) - buf2[k]); |
| tmp32 = WEBRTC_SPL_MUL(out, out); |
| nrg += WEBRTC_SPL_RSHIFT_W32(tmp32, 6); |
| } |
| } |
| state->HPstate = HPstate; |
| |
| // find number of leading zeros |
| if (!(0xFFFF0000 & nrg)) |
| { |
| zeros = 16; |
| } else |
| { |
| zeros = 0; |
| } |
| if (!(0xFF000000 & (nrg << zeros))) |
| { |
| zeros += 8; |
| } |
| if (!(0xF0000000 & (nrg << zeros))) |
| { |
| zeros += 4; |
| } |
| if (!(0xC0000000 & (nrg << zeros))) |
| { |
| zeros += 2; |
| } |
| if (!(0x80000000 & (nrg << zeros))) |
| { |
| zeros += 1; |
| } |
| |
| // energy level (range {-32..30}) (Q10) |
| dB = WEBRTC_SPL_LSHIFT_W16(15 - zeros, 11); |
| |
| // Update statistics |
| |
| if (state->counter < kAvgDecayTime) |
| { |
| // decay time = AvgDecTime * 10 ms |
| state->counter++; |
| } |
| |
| // update short-term estimate of mean energy level (Q10) |
| tmp32 = (WEBRTC_SPL_MUL_16_16(state->meanShortTerm, 15) + (WebRtc_Word32)dB); |
| state->meanShortTerm = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 4); |
| |
| // update short-term estimate of variance in energy level (Q8) |
| tmp32 = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL_16_16(dB, dB), 12); |
| tmp32 += WEBRTC_SPL_MUL(state->varianceShortTerm, 15); |
| state->varianceShortTerm = WEBRTC_SPL_RSHIFT_W32(tmp32, 4); |
| |
| // update short-term estimate of standard deviation in energy level (Q10) |
| tmp32 = WEBRTC_SPL_MUL_16_16(state->meanShortTerm, state->meanShortTerm); |
| tmp32 = WEBRTC_SPL_LSHIFT_W32(state->varianceShortTerm, 12) - tmp32; |
| state->stdShortTerm = (WebRtc_Word16)WebRtcSpl_Sqrt(tmp32); |
| |
| // update long-term estimate of mean energy level (Q10) |
| tmp32 = WEBRTC_SPL_MUL_16_16(state->meanLongTerm, state->counter) + (WebRtc_Word32)dB; |
| state->meanLongTerm = WebRtcSpl_DivW32W16ResW16(tmp32, |
| WEBRTC_SPL_ADD_SAT_W16(state->counter, 1)); |
| |
| // update long-term estimate of variance in energy level (Q8) |
| tmp32 = WEBRTC_SPL_RSHIFT_W32(WEBRTC_SPL_MUL_16_16(dB, dB), 12); |
| tmp32 += WEBRTC_SPL_MUL(state->varianceLongTerm, state->counter); |
| state->varianceLongTerm = WebRtcSpl_DivW32W16(tmp32, |
| WEBRTC_SPL_ADD_SAT_W16(state->counter, 1)); |
| |
| // update long-term estimate of standard deviation in energy level (Q10) |
| tmp32 = WEBRTC_SPL_MUL_16_16(state->meanLongTerm, state->meanLongTerm); |
| tmp32 = WEBRTC_SPL_LSHIFT_W32(state->varianceLongTerm, 12) - tmp32; |
| state->stdLongTerm = (WebRtc_Word16)WebRtcSpl_Sqrt(tmp32); |
| |
| // update voice activity measure (Q10) |
| tmp16 = WEBRTC_SPL_LSHIFT_W16(3, 12); |
| tmp32 = WEBRTC_SPL_MUL_16_16(tmp16, (dB - state->meanLongTerm)); |
| tmp32 = WebRtcSpl_DivW32W16(tmp32, state->stdLongTerm); |
| tmpU16 = WEBRTC_SPL_LSHIFT_U16((WebRtc_UWord16)13, 12); |
| tmp32b = WEBRTC_SPL_MUL_16_U16(state->logRatio, tmpU16); |
| tmp32 += WEBRTC_SPL_RSHIFT_W32(tmp32b, 10); |
| |
| state->logRatio = (WebRtc_Word16)WEBRTC_SPL_RSHIFT_W32(tmp32, 6); |
| |
| // limit |
| if (state->logRatio > 2048) |
| { |
| state->logRatio = 2048; |
| } |
| if (state->logRatio < -2048) |
| { |
| state->logRatio = -2048; |
| } |
| |
| return state->logRatio; // Q10 |
| } |