| /* |
| * Wrapper functions for crypto libraries |
| * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi> |
| * |
| * This software may be distributed under the terms of the BSD license. |
| * See README for more details. |
| * |
| * This file defines the cryptographic functions that need to be implemented |
| * for wpa_supplicant and hostapd. When TLS is not used, internal |
| * implementation of MD5, SHA1, and AES is used and no external libraries are |
| * required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the |
| * crypto library used by the TLS implementation is expected to be used for |
| * non-TLS needs, too, in order to save space by not implementing these |
| * functions twice. |
| * |
| * Wrapper code for using each crypto library is in its own file (crypto*.c) |
| * and one of these files is build and linked in to provide the functions |
| * defined here. |
| */ |
| |
| #ifndef CRYPTO_H |
| #define CRYPTO_H |
| |
| /** |
| * md4_vector - MD4 hash for data vector |
| * @num_elem: Number of elements in the data vector |
| * @addr: Pointers to the data areas |
| * @len: Lengths of the data blocks |
| * @mac: Buffer for the hash |
| * Returns: 0 on success, -1 on failure |
| */ |
| int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); |
| |
| /** |
| * md5_vector - MD5 hash for data vector |
| * @num_elem: Number of elements in the data vector |
| * @addr: Pointers to the data areas |
| * @len: Lengths of the data blocks |
| * @mac: Buffer for the hash |
| * Returns: 0 on success, -1 on failure |
| */ |
| int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); |
| |
| |
| /** |
| * sha1_vector - SHA-1 hash for data vector |
| * @num_elem: Number of elements in the data vector |
| * @addr: Pointers to the data areas |
| * @len: Lengths of the data blocks |
| * @mac: Buffer for the hash |
| * Returns: 0 on success, -1 on failure |
| */ |
| int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, |
| u8 *mac); |
| |
| /** |
| * fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF |
| * @seed: Seed/key for the PRF |
| * @seed_len: Seed length in bytes |
| * @x: Buffer for PRF output |
| * @xlen: Output length in bytes |
| * Returns: 0 on success, -1 on failure |
| * |
| * This function implements random number generation specified in NIST FIPS |
| * Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to |
| * SHA-1, but has different message padding. |
| */ |
| int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, |
| size_t xlen); |
| |
| /** |
| * sha256_vector - SHA256 hash for data vector |
| * @num_elem: Number of elements in the data vector |
| * @addr: Pointers to the data areas |
| * @len: Lengths of the data blocks |
| * @mac: Buffer for the hash |
| * Returns: 0 on success, -1 on failure |
| */ |
| int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, |
| u8 *mac); |
| |
| /** |
| * des_encrypt - Encrypt one block with DES |
| * @clear: 8 octets (in) |
| * @key: 7 octets (in) (no parity bits included) |
| * @cypher: 8 octets (out) |
| */ |
| void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher); |
| |
| /** |
| * aes_encrypt_init - Initialize AES for encryption |
| * @key: Encryption key |
| * @len: Key length in bytes (usually 16, i.e., 128 bits) |
| * Returns: Pointer to context data or %NULL on failure |
| */ |
| void * aes_encrypt_init(const u8 *key, size_t len); |
| |
| /** |
| * aes_encrypt - Encrypt one AES block |
| * @ctx: Context pointer from aes_encrypt_init() |
| * @plain: Plaintext data to be encrypted (16 bytes) |
| * @crypt: Buffer for the encrypted data (16 bytes) |
| */ |
| void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt); |
| |
| /** |
| * aes_encrypt_deinit - Deinitialize AES encryption |
| * @ctx: Context pointer from aes_encrypt_init() |
| */ |
| void aes_encrypt_deinit(void *ctx); |
| |
| /** |
| * aes_decrypt_init - Initialize AES for decryption |
| * @key: Decryption key |
| * @len: Key length in bytes (usually 16, i.e., 128 bits) |
| * Returns: Pointer to context data or %NULL on failure |
| */ |
| void * aes_decrypt_init(const u8 *key, size_t len); |
| |
| /** |
| * aes_decrypt - Decrypt one AES block |
| * @ctx: Context pointer from aes_encrypt_init() |
| * @crypt: Encrypted data (16 bytes) |
| * @plain: Buffer for the decrypted data (16 bytes) |
| */ |
| void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain); |
| |
| /** |
| * aes_decrypt_deinit - Deinitialize AES decryption |
| * @ctx: Context pointer from aes_encrypt_init() |
| */ |
| void aes_decrypt_deinit(void *ctx); |
| |
| |
| enum crypto_hash_alg { |
| CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1, |
| CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1, |
| CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256 |
| }; |
| |
| struct crypto_hash; |
| |
| /** |
| * crypto_hash_init - Initialize hash/HMAC function |
| * @alg: Hash algorithm |
| * @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed |
| * @key_len: Length of the key in bytes |
| * Returns: Pointer to hash context to use with other hash functions or %NULL |
| * on failure |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key, |
| size_t key_len); |
| |
| /** |
| * crypto_hash_update - Add data to hash calculation |
| * @ctx: Context pointer from crypto_hash_init() |
| * @data: Data buffer to add |
| * @len: Length of the buffer |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len); |
| |
| /** |
| * crypto_hash_finish - Complete hash calculation |
| * @ctx: Context pointer from crypto_hash_init() |
| * @hash: Buffer for hash value or %NULL if caller is just freeing the hash |
| * context |
| * @len: Pointer to length of the buffer or %NULL if caller is just freeing the |
| * hash context; on return, this is set to the actual length of the hash value |
| * Returns: 0 on success, -1 if buffer is too small (len set to needed length), |
| * or -2 on other failures (including failed crypto_hash_update() operations) |
| * |
| * This function calculates the hash value and frees the context buffer that |
| * was used for hash calculation. |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len); |
| |
| |
| enum crypto_cipher_alg { |
| CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES, |
| CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4 |
| }; |
| |
| struct crypto_cipher; |
| |
| /** |
| * crypto_cipher_init - Initialize block/stream cipher function |
| * @alg: Cipher algorithm |
| * @iv: Initialization vector for block ciphers or %NULL for stream ciphers |
| * @key: Cipher key |
| * @key_len: Length of key in bytes |
| * Returns: Pointer to cipher context to use with other cipher functions or |
| * %NULL on failure |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, |
| const u8 *iv, const u8 *key, |
| size_t key_len); |
| |
| /** |
| * crypto_cipher_encrypt - Cipher encrypt |
| * @ctx: Context pointer from crypto_cipher_init() |
| * @plain: Plaintext to cipher |
| * @crypt: Resulting ciphertext |
| * @len: Length of the plaintext |
| * Returns: 0 on success, -1 on failure |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx, |
| const u8 *plain, u8 *crypt, size_t len); |
| |
| /** |
| * crypto_cipher_decrypt - Cipher decrypt |
| * @ctx: Context pointer from crypto_cipher_init() |
| * @crypt: Ciphertext to decrypt |
| * @plain: Resulting plaintext |
| * @len: Length of the cipher text |
| * Returns: 0 on success, -1 on failure |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx, |
| const u8 *crypt, u8 *plain, size_t len); |
| |
| /** |
| * crypto_cipher_decrypt - Free cipher context |
| * @ctx: Context pointer from crypto_cipher_init() |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| void crypto_cipher_deinit(struct crypto_cipher *ctx); |
| |
| |
| struct crypto_public_key; |
| struct crypto_private_key; |
| |
| /** |
| * crypto_public_key_import - Import an RSA public key |
| * @key: Key buffer (DER encoded RSA public key) |
| * @len: Key buffer length in bytes |
| * Returns: Pointer to the public key or %NULL on failure |
| * |
| * This function can just return %NULL if the crypto library supports X.509 |
| * parsing. In that case, crypto_public_key_from_cert() is used to import the |
| * public key from a certificate. |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len); |
| |
| /** |
| * crypto_private_key_import - Import an RSA private key |
| * @key: Key buffer (DER encoded RSA private key) |
| * @len: Key buffer length in bytes |
| * @passwd: Key encryption password or %NULL if key is not encrypted |
| * Returns: Pointer to the private key or %NULL on failure |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| struct crypto_private_key * crypto_private_key_import(const u8 *key, |
| size_t len, |
| const char *passwd); |
| |
| /** |
| * crypto_public_key_from_cert - Import an RSA public key from a certificate |
| * @buf: DER encoded X.509 certificate |
| * @len: Certificate buffer length in bytes |
| * Returns: Pointer to public key or %NULL on failure |
| * |
| * This function can just return %NULL if the crypto library does not support |
| * X.509 parsing. In that case, internal code will be used to parse the |
| * certificate and public key is imported using crypto_public_key_import(). |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf, |
| size_t len); |
| |
| /** |
| * crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5) |
| * @key: Public key |
| * @in: Plaintext buffer |
| * @inlen: Length of plaintext buffer in bytes |
| * @out: Output buffer for encrypted data |
| * @outlen: Length of output buffer in bytes; set to used length on success |
| * Returns: 0 on success, -1 on failure |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| int __must_check crypto_public_key_encrypt_pkcs1_v15( |
| struct crypto_public_key *key, const u8 *in, size_t inlen, |
| u8 *out, size_t *outlen); |
| |
| /** |
| * crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5) |
| * @key: Private key |
| * @in: Encrypted buffer |
| * @inlen: Length of encrypted buffer in bytes |
| * @out: Output buffer for encrypted data |
| * @outlen: Length of output buffer in bytes; set to used length on success |
| * Returns: 0 on success, -1 on failure |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| int __must_check crypto_private_key_decrypt_pkcs1_v15( |
| struct crypto_private_key *key, const u8 *in, size_t inlen, |
| u8 *out, size_t *outlen); |
| |
| /** |
| * crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1) |
| * @key: Private key from crypto_private_key_import() |
| * @in: Plaintext buffer |
| * @inlen: Length of plaintext buffer in bytes |
| * @out: Output buffer for encrypted (signed) data |
| * @outlen: Length of output buffer in bytes; set to used length on success |
| * Returns: 0 on success, -1 on failure |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key, |
| const u8 *in, size_t inlen, |
| u8 *out, size_t *outlen); |
| |
| /** |
| * crypto_public_key_free - Free public key |
| * @key: Public key |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| void crypto_public_key_free(struct crypto_public_key *key); |
| |
| /** |
| * crypto_private_key_free - Free private key |
| * @key: Private key from crypto_private_key_import() |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| void crypto_private_key_free(struct crypto_private_key *key); |
| |
| /** |
| * crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature |
| * @key: Public key |
| * @crypt: Encrypted signature data (using the private key) |
| * @crypt_len: Encrypted signature data length |
| * @plain: Buffer for plaintext (at least crypt_len bytes) |
| * @plain_len: Plaintext length (max buffer size on input, real len on output); |
| * Returns: 0 on success, -1 on failure |
| */ |
| int __must_check crypto_public_key_decrypt_pkcs1( |
| struct crypto_public_key *key, const u8 *crypt, size_t crypt_len, |
| u8 *plain, size_t *plain_len); |
| |
| /** |
| * crypto_global_init - Initialize crypto wrapper |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| int __must_check crypto_global_init(void); |
| |
| /** |
| * crypto_global_deinit - Deinitialize crypto wrapper |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| void crypto_global_deinit(void); |
| |
| /** |
| * crypto_mod_exp - Modular exponentiation of large integers |
| * @base: Base integer (big endian byte array) |
| * @base_len: Length of base integer in bytes |
| * @power: Power integer (big endian byte array) |
| * @power_len: Length of power integer in bytes |
| * @modulus: Modulus integer (big endian byte array) |
| * @modulus_len: Length of modulus integer in bytes |
| * @result: Buffer for the result |
| * @result_len: Result length (max buffer size on input, real len on output) |
| * Returns: 0 on success, -1 on failure |
| * |
| * This function calculates result = base ^ power mod modulus. modules_len is |
| * used as the maximum size of modulus buffer. It is set to the used size on |
| * success. |
| * |
| * This function is only used with internal TLSv1 implementation |
| * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need |
| * to implement this. |
| */ |
| int __must_check crypto_mod_exp(const u8 *base, size_t base_len, |
| const u8 *power, size_t power_len, |
| const u8 *modulus, size_t modulus_len, |
| u8 *result, size_t *result_len); |
| |
| /** |
| * rc4_skip - XOR RC4 stream to given data with skip-stream-start |
| * @key: RC4 key |
| * @keylen: RC4 key length |
| * @skip: number of bytes to skip from the beginning of the RC4 stream |
| * @data: data to be XOR'ed with RC4 stream |
| * @data_len: buf length |
| * Returns: 0 on success, -1 on failure |
| * |
| * Generate RC4 pseudo random stream for the given key, skip beginning of the |
| * stream, and XOR the end result with the data buffer to perform RC4 |
| * encryption/decryption. |
| */ |
| int rc4_skip(const u8 *key, size_t keylen, size_t skip, |
| u8 *data, size_t data_len); |
| |
| /** |
| * crypto_get_random - Generate cryptographically strong pseudy-random bytes |
| * @buf: Buffer for data |
| * @len: Number of bytes to generate |
| * Returns: 0 on success, -1 on failure |
| * |
| * If the PRNG does not have enough entropy to ensure unpredictable byte |
| * sequence, this functions must return -1. |
| */ |
| int crypto_get_random(void *buf, size_t len); |
| |
| |
| /** |
| * struct crypto_bignum - bignum |
| * |
| * Internal data structure for bignum implementation. The contents is specific |
| * to the used crypto library. |
| */ |
| struct crypto_bignum; |
| |
| /** |
| * crypto_bignum_init - Allocate memory for bignum |
| * Returns: Pointer to allocated bignum or %NULL on failure |
| */ |
| struct crypto_bignum * crypto_bignum_init(void); |
| |
| /** |
| * crypto_bignum_init_set - Allocate memory for bignum and set the value |
| * @buf: Buffer with unsigned binary value |
| * @len: Length of buf in octets |
| * Returns: Pointer to allocated bignum or %NULL on failure |
| */ |
| struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len); |
| |
| /** |
| * crypto_bignum_deinit - Free bignum |
| * @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set() |
| * @clear: Whether to clear the value from memory |
| */ |
| void crypto_bignum_deinit(struct crypto_bignum *n, int clear); |
| |
| /** |
| * crypto_bignum_to_bin - Set binary buffer to unsigned bignum |
| * @a: Bignum |
| * @buf: Buffer for the binary number |
| * @len: Length of @buf in octets |
| * @padlen: Length in octets to pad the result to or 0 to indicate no padding |
| * Returns: Number of octets written on success, -1 on failure |
| */ |
| int crypto_bignum_to_bin(const struct crypto_bignum *a, |
| u8 *buf, size_t buflen, size_t padlen); |
| |
| /** |
| * crypto_bignum_add - c = a + b |
| * @a: Bignum |
| * @b: Bignum |
| * @c: Bignum; used to store the result of a + b |
| * Returns: 0 on success, -1 on failure |
| */ |
| int crypto_bignum_add(const struct crypto_bignum *a, |
| const struct crypto_bignum *b, |
| struct crypto_bignum *c); |
| |
| /** |
| * crypto_bignum_mod - c = a % b |
| * @a: Bignum |
| * @b: Bignum |
| * @c: Bignum; used to store the result of a % b |
| * Returns: 0 on success, -1 on failure |
| */ |
| int crypto_bignum_mod(const struct crypto_bignum *a, |
| const struct crypto_bignum *b, |
| struct crypto_bignum *c); |
| |
| /** |
| * crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c) |
| * @a: Bignum; base |
| * @b: Bignum; exponent |
| * @c: Bignum; modulus |
| * @d: Bignum; used to store the result of a^b (mod c) |
| * Returns: 0 on success, -1 on failure |
| */ |
| int crypto_bignum_exptmod(const struct crypto_bignum *a, |
| const struct crypto_bignum *b, |
| const struct crypto_bignum *c, |
| struct crypto_bignum *d); |
| |
| /** |
| * crypto_bignum_rshift - b = a >> n |
| * @a: Bignum |
| * @n: Number of bits to shift |
| * @b: Bignum; used to store the result of a >> n |
| * Returns: 0 on success, -1 on failure |
| */ |
| int crypto_bignum_rshift(const struct crypto_bignum *a, int n, |
| struct crypto_bignum *b); |
| |
| /** |
| * crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b) |
| * @a: Bignum |
| * @b: Bignum |
| * @c: Bignum; used to store the result |
| * Returns: 0 on success, -1 on failure |
| */ |
| int crypto_bignum_inverse(const struct crypto_bignum *a, |
| const struct crypto_bignum *b, |
| struct crypto_bignum *c); |
| |
| /** |
| * crypto_bignum_sub - c = a - b |
| * @a: Bignum |
| * @b: Bignum |
| * @c: Bignum; used to store the result of a - b |
| * Returns: 0 on success, -1 on failure |
| */ |
| int crypto_bignum_sub(const struct crypto_bignum *a, |
| const struct crypto_bignum *b, |
| struct crypto_bignum *c); |
| |
| /** |
| * crypto_bignum_div - c = a / b |
| * @a: Bignum |
| * @b: Bignum |
| * @c: Bignum; used to store the result of a / b |
| * Returns: 0 on success, -1 on failure |
| */ |
| int crypto_bignum_div(const struct crypto_bignum *a, |
| const struct crypto_bignum *b, |
| struct crypto_bignum *c); |
| |
| /** |
| * crypto_bignum_mulmod - d = a * b (mod c) |
| * @a: Bignum |
| * @b: Bignum |
| * @c: Bignum |
| * @d: Bignum; used to store the result of (a * b) % c |
| * Returns: 0 on success, -1 on failure |
| */ |
| int crypto_bignum_mulmod(const struct crypto_bignum *a, |
| const struct crypto_bignum *b, |
| const struct crypto_bignum *c, |
| struct crypto_bignum *d); |
| |
| /** |
| * crypto_bignum_cmp - Compare two bignums |
| * @a: Bignum |
| * @b: Bignum |
| * Returns: -1 if a < b, 0 if a == b, or 1 if a > b |
| */ |
| int crypto_bignum_cmp(const struct crypto_bignum *a, |
| const struct crypto_bignum *b); |
| |
| /** |
| * crypto_bignum_bits - Get size of a bignum in bits |
| * @a: Bignum |
| * Returns: Number of bits in the bignum |
| */ |
| int crypto_bignum_bits(const struct crypto_bignum *a); |
| |
| /** |
| * crypto_bignum_is_zero - Is the given bignum zero |
| * @a: Bignum |
| * Returns: 1 if @a is zero or 0 if not |
| */ |
| int crypto_bignum_is_zero(const struct crypto_bignum *a); |
| |
| /** |
| * crypto_bignum_is_one - Is the given bignum one |
| * @a: Bignum |
| * Returns: 1 if @a is one or 0 if not |
| */ |
| int crypto_bignum_is_one(const struct crypto_bignum *a); |
| |
| /** |
| * struct crypto_ec - Elliptic curve context |
| * |
| * Internal data structure for EC implementation. The contents is specific |
| * to the used crypto library. |
| */ |
| struct crypto_ec; |
| |
| /** |
| * crypto_ec_init - Initialize elliptic curve context |
| * @group: Identifying number for the ECC group (IANA "Group Description" |
| * attribute registrty for RFC 2409) |
| * Returns: Pointer to EC context or %NULL on failure |
| */ |
| struct crypto_ec * crypto_ec_init(int group); |
| |
| /** |
| * crypto_ec_deinit - Deinitialize elliptic curve context |
| * @e: EC context from crypto_ec_init() |
| */ |
| void crypto_ec_deinit(struct crypto_ec *e); |
| |
| /** |
| * crypto_ec_prime_len - Get length of the prime in octets |
| * @e: EC context from crypto_ec_init() |
| * Returns: Length of the prime defining the group |
| */ |
| size_t crypto_ec_prime_len(struct crypto_ec *e); |
| |
| /** |
| * crypto_ec_prime_len_bits - Get length of the prime in bits |
| * @e: EC context from crypto_ec_init() |
| * Returns: Length of the prime defining the group in bits |
| */ |
| size_t crypto_ec_prime_len_bits(struct crypto_ec *e); |
| |
| /** |
| * crypto_ec_get_prime - Get prime defining an EC group |
| * @e: EC context from crypto_ec_init() |
| * Returns: Prime (bignum) defining the group |
| */ |
| const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e); |
| |
| /** |
| * crypto_ec_get_order - Get order of an EC group |
| * @e: EC context from crypto_ec_init() |
| * Returns: Order (bignum) of the group |
| */ |
| const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e); |
| |
| /** |
| * struct crypto_ec_point - Elliptic curve point |
| * |
| * Internal data structure for EC implementation to represent a point. The |
| * contents is specific to the used crypto library. |
| */ |
| struct crypto_ec_point; |
| |
| /** |
| * crypto_ec_point_init - Initialize data for an EC point |
| * @e: EC context from crypto_ec_init() |
| * Returns: Pointer to EC point data or %NULL on failure |
| */ |
| struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e); |
| |
| /** |
| * crypto_ec_point_deinit - Deinitialize EC point data |
| * @p: EC point data from crypto_ec_point_init() |
| * @clear: Whether to clear the EC point value from memory |
| */ |
| void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear); |
| |
| /** |
| * crypto_ec_point_to_bin - Write EC point value as binary data |
| * @e: EC context from crypto_ec_init() |
| * @p: EC point data from crypto_ec_point_init() |
| * @x: Buffer for writing the binary data for x coordinate or %NULL if not used |
| * @y: Buffer for writing the binary data for y coordinate or %NULL if not used |
| * Returns: 0 on success, -1 on failure |
| * |
| * This function can be used to write an EC point as binary data in a format |
| * that has the x and y coordinates in big endian byte order fields padded to |
| * the length of the prime defining the group. |
| */ |
| int crypto_ec_point_to_bin(struct crypto_ec *e, |
| const struct crypto_ec_point *point, u8 *x, u8 *y); |
| |
| /** |
| * crypto_ec_point_from_bin - Create EC point from binary data |
| * @e: EC context from crypto_ec_init() |
| * @val: Binary data to read the EC point from |
| * Returns: Pointer to EC point data or %NULL on failure |
| * |
| * This function readers x and y coordinates of the EC point from the provided |
| * buffer assuming the values are in big endian byte order with fields padded to |
| * the length of the prime defining the group. |
| */ |
| struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e, |
| const u8 *val); |
| |
| /** |
| * crypto_bignum_add - c = a + b |
| * @e: EC context from crypto_ec_init() |
| * @a: Bignum |
| * @b: Bignum |
| * @c: Bignum; used to store the result of a + b |
| * Returns: 0 on success, -1 on failure |
| */ |
| int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a, |
| const struct crypto_ec_point *b, |
| struct crypto_ec_point *c); |
| |
| /** |
| * crypto_bignum_mul - res = b * p |
| * @e: EC context from crypto_ec_init() |
| * @p: EC point |
| * @b: Bignum |
| * @res: EC point; used to store the result of b * p |
| * Returns: 0 on success, -1 on failure |
| */ |
| int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p, |
| const struct crypto_bignum *b, |
| struct crypto_ec_point *res); |
| |
| /** |
| * crypto_ec_point_invert - Compute inverse of an EC point |
| * @e: EC context from crypto_ec_init() |
| * @p: EC point to invert (and result of the operation) |
| * Returns: 0 on success, -1 on failure |
| */ |
| int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p); |
| |
| /** |
| * crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate |
| * @e: EC context from crypto_ec_init() |
| * @p: EC point to use for the returning the result |
| * @x: x coordinate |
| * @y_bit: y-bit (0 or 1) for selecting the y value to use |
| * Returns: 0 on success, -1 on failure |
| */ |
| int crypto_ec_point_solve_y_coord(struct crypto_ec *e, |
| struct crypto_ec_point *p, |
| const struct crypto_bignum *x, int y_bit); |
| |
| /** |
| * crypto_ec_point_is_at_infinity - Check whether EC point is neutral element |
| * @e: EC context from crypto_ec_init() |
| * @p: EC point |
| * Returns: 1 if the specified EC point is the neutral element of the group or |
| * 0 if not |
| */ |
| int crypto_ec_point_is_at_infinity(struct crypto_ec *e, |
| const struct crypto_ec_point *p); |
| |
| /** |
| * crypto_ec_point_is_on_curve - Check whether EC point is on curve |
| * @e: EC context from crypto_ec_init() |
| * @p: EC point |
| * Returns: 1 if the specified EC point is on the curve or 0 if not |
| */ |
| int crypto_ec_point_is_on_curve(struct crypto_ec *e, |
| const struct crypto_ec_point *p); |
| |
| #endif /* CRYPTO_H */ |