| /* |
| * Wrapper functions for OpenSSL libcrypto |
| * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi> |
| * |
| * This software may be distributed under the terms of the BSD license. |
| * See README for more details. |
| */ |
| |
| #include "includes.h" |
| #include <openssl/opensslv.h> |
| #include <openssl/err.h> |
| #include <openssl/des.h> |
| #include <openssl/aes.h> |
| #include <openssl/bn.h> |
| #include <openssl/evp.h> |
| #include <openssl/dh.h> |
| #include <openssl/hmac.h> |
| #include <openssl/rand.h> |
| #ifdef CONFIG_OPENSSL_CMAC |
| #include <openssl/cmac.h> |
| #endif /* CONFIG_OPENSSL_CMAC */ |
| #ifdef CONFIG_ECC |
| #include <openssl/ec.h> |
| #endif /* CONFIG_ECC */ |
| |
| #include "common.h" |
| #include "wpabuf.h" |
| #include "dh_group5.h" |
| #include "crypto.h" |
| |
| #if OPENSSL_VERSION_NUMBER < 0x00907000 |
| #define DES_key_schedule des_key_schedule |
| #define DES_cblock des_cblock |
| #define DES_set_key(key, schedule) des_set_key((key), *(schedule)) |
| #define DES_ecb_encrypt(input, output, ks, enc) \ |
| des_ecb_encrypt((input), (output), *(ks), (enc)) |
| #endif /* openssl < 0.9.7 */ |
| |
| static BIGNUM * get_group5_prime(void) |
| { |
| #if OPENSSL_VERSION_NUMBER < 0x00908000 |
| static const unsigned char RFC3526_PRIME_1536[] = { |
| 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, |
| 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, |
| 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, |
| 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, |
| 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, |
| 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, |
| 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, |
| 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, |
| 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, |
| 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, |
| 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, |
| 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, |
| 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, |
| 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, |
| 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, |
| 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, |
| }; |
| return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL); |
| #else /* openssl < 0.9.8 */ |
| return get_rfc3526_prime_1536(NULL); |
| #endif /* openssl < 0.9.8 */ |
| } |
| |
| #if OPENSSL_VERSION_NUMBER < 0x00908000 |
| #ifndef OPENSSL_NO_SHA256 |
| #ifndef OPENSSL_FIPS |
| #define NO_SHA256_WRAPPER |
| #endif |
| #endif |
| |
| #endif /* openssl < 0.9.8 */ |
| |
| #ifdef OPENSSL_NO_SHA256 |
| #define NO_SHA256_WRAPPER |
| #endif |
| |
| static int openssl_digest_vector(const EVP_MD *type, size_t num_elem, |
| const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| EVP_MD_CTX ctx; |
| size_t i; |
| unsigned int mac_len; |
| |
| EVP_MD_CTX_init(&ctx); |
| if (!EVP_DigestInit_ex(&ctx, type, NULL)) { |
| wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s", |
| ERR_error_string(ERR_get_error(), NULL)); |
| return -1; |
| } |
| for (i = 0; i < num_elem; i++) { |
| if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) { |
| wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate " |
| "failed: %s", |
| ERR_error_string(ERR_get_error(), NULL)); |
| return -1; |
| } |
| } |
| if (!EVP_DigestFinal(&ctx, mac, &mac_len)) { |
| wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s", |
| ERR_error_string(ERR_get_error(), NULL)); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| |
| int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac); |
| } |
| |
| |
| void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher) |
| { |
| u8 pkey[8], next, tmp; |
| int i; |
| DES_key_schedule ks; |
| |
| /* Add parity bits to the key */ |
| next = 0; |
| for (i = 0; i < 7; i++) { |
| tmp = key[i]; |
| pkey[i] = (tmp >> i) | next | 1; |
| next = tmp << (7 - i); |
| } |
| pkey[i] = next | 1; |
| |
| DES_set_key(&pkey, &ks); |
| DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks, |
| DES_ENCRYPT); |
| } |
| |
| |
| int rc4_skip(const u8 *key, size_t keylen, size_t skip, |
| u8 *data, size_t data_len) |
| { |
| #ifdef OPENSSL_NO_RC4 |
| return -1; |
| #else /* OPENSSL_NO_RC4 */ |
| EVP_CIPHER_CTX ctx; |
| int outl; |
| int res = -1; |
| unsigned char skip_buf[16]; |
| |
| EVP_CIPHER_CTX_init(&ctx); |
| if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) || |
| !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) || |
| !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) || |
| !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1)) |
| goto out; |
| |
| while (skip >= sizeof(skip_buf)) { |
| size_t len = skip; |
| if (len > sizeof(skip_buf)) |
| len = sizeof(skip_buf); |
| if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len)) |
| goto out; |
| skip -= len; |
| } |
| |
| if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len)) |
| res = 0; |
| |
| out: |
| EVP_CIPHER_CTX_cleanup(&ctx); |
| return res; |
| #endif /* OPENSSL_NO_RC4 */ |
| } |
| |
| |
| int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac); |
| } |
| |
| |
| int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac); |
| } |
| |
| |
| #ifndef NO_SHA256_WRAPPER |
| int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, |
| u8 *mac) |
| { |
| return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac); |
| } |
| #endif /* NO_SHA256_WRAPPER */ |
| |
| |
| static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen) |
| { |
| switch (keylen) { |
| case 16: |
| return EVP_aes_128_ecb(); |
| case 24: |
| return EVP_aes_192_ecb(); |
| case 32: |
| return EVP_aes_256_ecb(); |
| } |
| |
| return NULL; |
| } |
| |
| |
| void * aes_encrypt_init(const u8 *key, size_t len) |
| { |
| EVP_CIPHER_CTX *ctx; |
| const EVP_CIPHER *type; |
| |
| type = aes_get_evp_cipher(len); |
| if (type == NULL) |
| return NULL; |
| |
| ctx = os_malloc(sizeof(*ctx)); |
| if (ctx == NULL) |
| return NULL; |
| EVP_CIPHER_CTX_init(ctx); |
| if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) { |
| os_free(ctx); |
| return NULL; |
| } |
| EVP_CIPHER_CTX_set_padding(ctx, 0); |
| return ctx; |
| } |
| |
| |
| void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt) |
| { |
| EVP_CIPHER_CTX *c = ctx; |
| int clen = 16; |
| if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) { |
| wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s", |
| ERR_error_string(ERR_get_error(), NULL)); |
| } |
| } |
| |
| |
| void aes_encrypt_deinit(void *ctx) |
| { |
| EVP_CIPHER_CTX *c = ctx; |
| u8 buf[16]; |
| int len = sizeof(buf); |
| if (EVP_EncryptFinal_ex(c, buf, &len) != 1) { |
| wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: " |
| "%s", ERR_error_string(ERR_get_error(), NULL)); |
| } |
| if (len != 0) { |
| wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d " |
| "in AES encrypt", len); |
| } |
| EVP_CIPHER_CTX_cleanup(c); |
| os_free(c); |
| } |
| |
| |
| void * aes_decrypt_init(const u8 *key, size_t len) |
| { |
| EVP_CIPHER_CTX *ctx; |
| const EVP_CIPHER *type; |
| |
| type = aes_get_evp_cipher(len); |
| if (type == NULL) |
| return NULL; |
| |
| ctx = os_malloc(sizeof(*ctx)); |
| if (ctx == NULL) |
| return NULL; |
| EVP_CIPHER_CTX_init(ctx); |
| if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) { |
| os_free(ctx); |
| return NULL; |
| } |
| EVP_CIPHER_CTX_set_padding(ctx, 0); |
| return ctx; |
| } |
| |
| |
| void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain) |
| { |
| EVP_CIPHER_CTX *c = ctx; |
| int plen = 16; |
| if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) { |
| wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s", |
| ERR_error_string(ERR_get_error(), NULL)); |
| } |
| } |
| |
| |
| void aes_decrypt_deinit(void *ctx) |
| { |
| EVP_CIPHER_CTX *c = ctx; |
| u8 buf[16]; |
| int len = sizeof(buf); |
| if (EVP_DecryptFinal_ex(c, buf, &len) != 1) { |
| wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: " |
| "%s", ERR_error_string(ERR_get_error(), NULL)); |
| } |
| if (len != 0) { |
| wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d " |
| "in AES decrypt", len); |
| } |
| EVP_CIPHER_CTX_cleanup(c); |
| os_free(ctx); |
| } |
| |
| |
| int crypto_mod_exp(const u8 *base, size_t base_len, |
| const u8 *power, size_t power_len, |
| const u8 *modulus, size_t modulus_len, |
| u8 *result, size_t *result_len) |
| { |
| BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result; |
| int ret = -1; |
| BN_CTX *ctx; |
| |
| ctx = BN_CTX_new(); |
| if (ctx == NULL) |
| return -1; |
| |
| bn_base = BN_bin2bn(base, base_len, NULL); |
| bn_exp = BN_bin2bn(power, power_len, NULL); |
| bn_modulus = BN_bin2bn(modulus, modulus_len, NULL); |
| bn_result = BN_new(); |
| |
| if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL || |
| bn_result == NULL) |
| goto error; |
| |
| if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1) |
| goto error; |
| |
| *result_len = BN_bn2bin(bn_result, result); |
| ret = 0; |
| |
| error: |
| BN_free(bn_base); |
| BN_free(bn_exp); |
| BN_free(bn_modulus); |
| BN_free(bn_result); |
| BN_CTX_free(ctx); |
| return ret; |
| } |
| |
| |
| struct crypto_cipher { |
| EVP_CIPHER_CTX enc; |
| EVP_CIPHER_CTX dec; |
| }; |
| |
| |
| struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, |
| const u8 *iv, const u8 *key, |
| size_t key_len) |
| { |
| struct crypto_cipher *ctx; |
| const EVP_CIPHER *cipher; |
| |
| ctx = os_zalloc(sizeof(*ctx)); |
| if (ctx == NULL) |
| return NULL; |
| |
| switch (alg) { |
| #ifndef OPENSSL_NO_RC4 |
| case CRYPTO_CIPHER_ALG_RC4: |
| cipher = EVP_rc4(); |
| break; |
| #endif /* OPENSSL_NO_RC4 */ |
| #ifndef OPENSSL_NO_AES |
| case CRYPTO_CIPHER_ALG_AES: |
| switch (key_len) { |
| case 16: |
| cipher = EVP_aes_128_cbc(); |
| break; |
| case 24: |
| cipher = EVP_aes_192_cbc(); |
| break; |
| case 32: |
| cipher = EVP_aes_256_cbc(); |
| break; |
| default: |
| os_free(ctx); |
| return NULL; |
| } |
| break; |
| #endif /* OPENSSL_NO_AES */ |
| #ifndef OPENSSL_NO_DES |
| case CRYPTO_CIPHER_ALG_3DES: |
| cipher = EVP_des_ede3_cbc(); |
| break; |
| case CRYPTO_CIPHER_ALG_DES: |
| cipher = EVP_des_cbc(); |
| break; |
| #endif /* OPENSSL_NO_DES */ |
| #ifndef OPENSSL_NO_RC2 |
| case CRYPTO_CIPHER_ALG_RC2: |
| cipher = EVP_rc2_ecb(); |
| break; |
| #endif /* OPENSSL_NO_RC2 */ |
| default: |
| os_free(ctx); |
| return NULL; |
| } |
| |
| EVP_CIPHER_CTX_init(&ctx->enc); |
| EVP_CIPHER_CTX_set_padding(&ctx->enc, 0); |
| if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) || |
| !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) || |
| !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) { |
| EVP_CIPHER_CTX_cleanup(&ctx->enc); |
| os_free(ctx); |
| return NULL; |
| } |
| |
| EVP_CIPHER_CTX_init(&ctx->dec); |
| EVP_CIPHER_CTX_set_padding(&ctx->dec, 0); |
| if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) || |
| !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) || |
| !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) { |
| EVP_CIPHER_CTX_cleanup(&ctx->enc); |
| EVP_CIPHER_CTX_cleanup(&ctx->dec); |
| os_free(ctx); |
| return NULL; |
| } |
| |
| return ctx; |
| } |
| |
| |
| int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain, |
| u8 *crypt, size_t len) |
| { |
| int outl; |
| if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len)) |
| return -1; |
| return 0; |
| } |
| |
| |
| int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt, |
| u8 *plain, size_t len) |
| { |
| int outl; |
| outl = len; |
| if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len)) |
| return -1; |
| return 0; |
| } |
| |
| |
| void crypto_cipher_deinit(struct crypto_cipher *ctx) |
| { |
| EVP_CIPHER_CTX_cleanup(&ctx->enc); |
| EVP_CIPHER_CTX_cleanup(&ctx->dec); |
| os_free(ctx); |
| } |
| |
| |
| void * dh5_init(struct wpabuf **priv, struct wpabuf **publ) |
| { |
| DH *dh; |
| struct wpabuf *pubkey = NULL, *privkey = NULL; |
| size_t publen, privlen; |
| |
| *priv = NULL; |
| *publ = NULL; |
| |
| dh = DH_new(); |
| if (dh == NULL) |
| return NULL; |
| |
| dh->g = BN_new(); |
| if (dh->g == NULL || BN_set_word(dh->g, 2) != 1) |
| goto err; |
| |
| dh->p = get_group5_prime(); |
| if (dh->p == NULL) |
| goto err; |
| |
| if (DH_generate_key(dh) != 1) |
| goto err; |
| |
| publen = BN_num_bytes(dh->pub_key); |
| pubkey = wpabuf_alloc(publen); |
| if (pubkey == NULL) |
| goto err; |
| privlen = BN_num_bytes(dh->priv_key); |
| privkey = wpabuf_alloc(privlen); |
| if (privkey == NULL) |
| goto err; |
| |
| BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen)); |
| BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen)); |
| |
| *priv = privkey; |
| *publ = pubkey; |
| return dh; |
| |
| err: |
| wpabuf_free(pubkey); |
| wpabuf_free(privkey); |
| DH_free(dh); |
| return NULL; |
| } |
| |
| |
| void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ) |
| { |
| DH *dh; |
| |
| dh = DH_new(); |
| if (dh == NULL) |
| return NULL; |
| |
| dh->g = BN_new(); |
| if (dh->g == NULL || BN_set_word(dh->g, 2) != 1) |
| goto err; |
| |
| dh->p = get_group5_prime(); |
| if (dh->p == NULL) |
| goto err; |
| |
| dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL); |
| if (dh->priv_key == NULL) |
| goto err; |
| |
| dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL); |
| if (dh->pub_key == NULL) |
| goto err; |
| |
| if (DH_generate_key(dh) != 1) |
| goto err; |
| |
| return dh; |
| |
| err: |
| DH_free(dh); |
| return NULL; |
| } |
| |
| |
| struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public, |
| const struct wpabuf *own_private) |
| { |
| BIGNUM *pub_key; |
| struct wpabuf *res = NULL; |
| size_t rlen; |
| DH *dh = ctx; |
| int keylen; |
| |
| if (ctx == NULL) |
| return NULL; |
| |
| pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public), |
| NULL); |
| if (pub_key == NULL) |
| return NULL; |
| |
| rlen = DH_size(dh); |
| res = wpabuf_alloc(rlen); |
| if (res == NULL) |
| goto err; |
| |
| keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh); |
| if (keylen < 0) |
| goto err; |
| wpabuf_put(res, keylen); |
| BN_free(pub_key); |
| |
| return res; |
| |
| err: |
| BN_free(pub_key); |
| wpabuf_free(res); |
| return NULL; |
| } |
| |
| |
| void dh5_free(void *ctx) |
| { |
| DH *dh; |
| if (ctx == NULL) |
| return; |
| dh = ctx; |
| DH_free(dh); |
| } |
| |
| |
| struct crypto_hash { |
| HMAC_CTX ctx; |
| }; |
| |
| |
| struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key, |
| size_t key_len) |
| { |
| struct crypto_hash *ctx; |
| const EVP_MD *md; |
| |
| switch (alg) { |
| #ifndef OPENSSL_NO_MD5 |
| case CRYPTO_HASH_ALG_HMAC_MD5: |
| md = EVP_md5(); |
| break; |
| #endif /* OPENSSL_NO_MD5 */ |
| #ifndef OPENSSL_NO_SHA |
| case CRYPTO_HASH_ALG_HMAC_SHA1: |
| md = EVP_sha1(); |
| break; |
| #endif /* OPENSSL_NO_SHA */ |
| #ifndef OPENSSL_NO_SHA256 |
| #ifdef CONFIG_SHA256 |
| case CRYPTO_HASH_ALG_HMAC_SHA256: |
| md = EVP_sha256(); |
| break; |
| #endif /* CONFIG_SHA256 */ |
| #endif /* OPENSSL_NO_SHA256 */ |
| default: |
| return NULL; |
| } |
| |
| ctx = os_zalloc(sizeof(*ctx)); |
| if (ctx == NULL) |
| return NULL; |
| HMAC_CTX_init(&ctx->ctx); |
| |
| #if OPENSSL_VERSION_NUMBER < 0x00909000 |
| HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL); |
| #else /* openssl < 0.9.9 */ |
| if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) { |
| os_free(ctx); |
| return NULL; |
| } |
| #endif /* openssl < 0.9.9 */ |
| |
| return ctx; |
| } |
| |
| |
| void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len) |
| { |
| if (ctx == NULL) |
| return; |
| HMAC_Update(&ctx->ctx, data, len); |
| } |
| |
| |
| int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len) |
| { |
| unsigned int mdlen; |
| int res; |
| |
| if (ctx == NULL) |
| return -2; |
| |
| if (mac == NULL || len == NULL) { |
| os_free(ctx); |
| return 0; |
| } |
| |
| mdlen = *len; |
| #if OPENSSL_VERSION_NUMBER < 0x00909000 |
| HMAC_Final(&ctx->ctx, mac, &mdlen); |
| res = 1; |
| #else /* openssl < 0.9.9 */ |
| res = HMAC_Final(&ctx->ctx, mac, &mdlen); |
| #endif /* openssl < 0.9.9 */ |
| HMAC_CTX_cleanup(&ctx->ctx); |
| os_free(ctx); |
| |
| if (res == 1) { |
| *len = mdlen; |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| |
| int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len, |
| int iterations, u8 *buf, size_t buflen) |
| { |
| #if OPENSSL_VERSION_NUMBER < 0x00908000 |
| if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), |
| (unsigned char *) ssid, |
| ssid_len, 4096, buflen, buf) != 1) |
| return -1; |
| #else /* openssl < 0.9.8 */ |
| if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid, |
| ssid_len, 4096, buflen, buf) != 1) |
| return -1; |
| #endif /* openssl < 0.9.8 */ |
| return 0; |
| } |
| |
| |
| int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem, |
| const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| HMAC_CTX ctx; |
| size_t i; |
| unsigned int mdlen; |
| int res; |
| |
| HMAC_CTX_init(&ctx); |
| #if OPENSSL_VERSION_NUMBER < 0x00909000 |
| HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL); |
| #else /* openssl < 0.9.9 */ |
| if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL) != 1) |
| return -1; |
| #endif /* openssl < 0.9.9 */ |
| |
| for (i = 0; i < num_elem; i++) |
| HMAC_Update(&ctx, addr[i], len[i]); |
| |
| mdlen = 20; |
| #if OPENSSL_VERSION_NUMBER < 0x00909000 |
| HMAC_Final(&ctx, mac, &mdlen); |
| res = 1; |
| #else /* openssl < 0.9.9 */ |
| res = HMAC_Final(&ctx, mac, &mdlen); |
| #endif /* openssl < 0.9.9 */ |
| HMAC_CTX_cleanup(&ctx); |
| |
| return res == 1 ? 0 : -1; |
| } |
| |
| |
| int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len, |
| u8 *mac) |
| { |
| return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac); |
| } |
| |
| |
| #ifdef CONFIG_SHA256 |
| |
| int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem, |
| const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| HMAC_CTX ctx; |
| size_t i; |
| unsigned int mdlen; |
| int res; |
| |
| HMAC_CTX_init(&ctx); |
| #if OPENSSL_VERSION_NUMBER < 0x00909000 |
| HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL); |
| #else /* openssl < 0.9.9 */ |
| if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL) != 1) |
| return -1; |
| #endif /* openssl < 0.9.9 */ |
| |
| for (i = 0; i < num_elem; i++) |
| HMAC_Update(&ctx, addr[i], len[i]); |
| |
| mdlen = 32; |
| #if OPENSSL_VERSION_NUMBER < 0x00909000 |
| HMAC_Final(&ctx, mac, &mdlen); |
| res = 1; |
| #else /* openssl < 0.9.9 */ |
| res = HMAC_Final(&ctx, mac, &mdlen); |
| #endif /* openssl < 0.9.9 */ |
| HMAC_CTX_cleanup(&ctx); |
| |
| return res == 1 ? 0 : -1; |
| } |
| |
| |
| int hmac_sha256(const u8 *key, size_t key_len, const u8 *data, |
| size_t data_len, u8 *mac) |
| { |
| return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac); |
| } |
| |
| #endif /* CONFIG_SHA256 */ |
| |
| |
| int crypto_get_random(void *buf, size_t len) |
| { |
| if (RAND_bytes(buf, len) != 1) |
| return -1; |
| return 0; |
| } |
| |
| |
| #ifdef CONFIG_OPENSSL_CMAC |
| int omac1_aes_128_vector(const u8 *key, size_t num_elem, |
| const u8 *addr[], const size_t *len, u8 *mac) |
| { |
| CMAC_CTX *ctx; |
| int ret = -1; |
| size_t outlen, i; |
| |
| ctx = CMAC_CTX_new(); |
| if (ctx == NULL) |
| return -1; |
| |
| if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL)) |
| goto fail; |
| for (i = 0; i < num_elem; i++) { |
| if (!CMAC_Update(ctx, addr[i], len[i])) |
| goto fail; |
| } |
| if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16) |
| goto fail; |
| |
| ret = 0; |
| fail: |
| CMAC_CTX_free(ctx); |
| return ret; |
| } |
| |
| |
| int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac) |
| { |
| return omac1_aes_128_vector(key, 1, &data, &data_len, mac); |
| } |
| #endif /* CONFIG_OPENSSL_CMAC */ |
| |
| |
| struct crypto_bignum * crypto_bignum_init(void) |
| { |
| return (struct crypto_bignum *) BN_new(); |
| } |
| |
| |
| struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len) |
| { |
| BIGNUM *bn = BN_bin2bn(buf, len, NULL); |
| return (struct crypto_bignum *) bn; |
| } |
| |
| |
| void crypto_bignum_deinit(struct crypto_bignum *n, int clear) |
| { |
| if (clear) |
| BN_clear_free((BIGNUM *) n); |
| else |
| BN_free((BIGNUM *) n); |
| } |
| |
| |
| int crypto_bignum_to_bin(const struct crypto_bignum *a, |
| u8 *buf, size_t buflen, size_t padlen) |
| { |
| int num_bytes, offset; |
| |
| if (padlen > buflen) |
| return -1; |
| |
| num_bytes = BN_num_bytes((const BIGNUM *) a); |
| if ((size_t) num_bytes > buflen) |
| return -1; |
| if (padlen > (size_t) num_bytes) |
| offset = padlen - num_bytes; |
| else |
| offset = 0; |
| |
| os_memset(buf, 0, offset); |
| BN_bn2bin((const BIGNUM *) a, buf + offset); |
| |
| return num_bytes + offset; |
| } |
| |
| |
| int crypto_bignum_add(const struct crypto_bignum *a, |
| const struct crypto_bignum *b, |
| struct crypto_bignum *c) |
| { |
| return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ? |
| 0 : -1; |
| } |
| |
| |
| int crypto_bignum_mod(const struct crypto_bignum *a, |
| const struct crypto_bignum *b, |
| struct crypto_bignum *c) |
| { |
| int res; |
| BN_CTX *bnctx; |
| |
| bnctx = BN_CTX_new(); |
| if (bnctx == NULL) |
| return -1; |
| res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b, |
| bnctx); |
| BN_CTX_free(bnctx); |
| |
| return res ? 0 : -1; |
| } |
| |
| |
| int crypto_bignum_exptmod(const struct crypto_bignum *a, |
| const struct crypto_bignum *b, |
| const struct crypto_bignum *c, |
| struct crypto_bignum *d) |
| { |
| int res; |
| BN_CTX *bnctx; |
| |
| bnctx = BN_CTX_new(); |
| if (bnctx == NULL) |
| return -1; |
| res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b, |
| (const BIGNUM *) c, bnctx); |
| BN_CTX_free(bnctx); |
| |
| return res ? 0 : -1; |
| } |
| |
| |
| int crypto_bignum_rshift(const struct crypto_bignum *a, int n, |
| struct crypto_bignum *b) |
| { |
| return BN_rshift((BIGNUM *) b, (const BIGNUM *) a, n) ? 0 : -1; |
| } |
| |
| |
| int crypto_bignum_inverse(const struct crypto_bignum *a, |
| const struct crypto_bignum *b, |
| struct crypto_bignum *c) |
| { |
| BIGNUM *res; |
| BN_CTX *bnctx; |
| |
| bnctx = BN_CTX_new(); |
| if (bnctx == NULL) |
| return -1; |
| res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a, |
| (const BIGNUM *) b, bnctx); |
| BN_CTX_free(bnctx); |
| |
| return res ? 0 : -1; |
| } |
| |
| |
| int crypto_bignum_sub(const struct crypto_bignum *a, |
| const struct crypto_bignum *b, |
| struct crypto_bignum *c) |
| { |
| return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ? |
| 0 : -1; |
| } |
| |
| |
| int crypto_bignum_div(const struct crypto_bignum *a, |
| const struct crypto_bignum *b, |
| struct crypto_bignum *c) |
| { |
| int res; |
| |
| BN_CTX *bnctx; |
| |
| bnctx = BN_CTX_new(); |
| if (bnctx == NULL) |
| return -1; |
| res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a, |
| (const BIGNUM *) b, bnctx); |
| BN_CTX_free(bnctx); |
| |
| return res ? 0 : -1; |
| } |
| |
| |
| int crypto_bignum_mulmod(const struct crypto_bignum *a, |
| const struct crypto_bignum *b, |
| const struct crypto_bignum *c, |
| struct crypto_bignum *d) |
| { |
| int res; |
| |
| BN_CTX *bnctx; |
| |
| bnctx = BN_CTX_new(); |
| if (bnctx == NULL) |
| return -1; |
| res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b, |
| (const BIGNUM *) c, bnctx); |
| BN_CTX_free(bnctx); |
| |
| return res ? 0 : -1; |
| } |
| |
| |
| int crypto_bignum_cmp(const struct crypto_bignum *a, |
| const struct crypto_bignum *b) |
| { |
| return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b); |
| } |
| |
| |
| int crypto_bignum_bits(const struct crypto_bignum *a) |
| { |
| return BN_num_bits((const BIGNUM *) a); |
| } |
| |
| |
| int crypto_bignum_is_zero(const struct crypto_bignum *a) |
| { |
| return BN_is_zero((const BIGNUM *) a); |
| } |
| |
| |
| int crypto_bignum_is_one(const struct crypto_bignum *a) |
| { |
| return BN_is_one((const BIGNUM *) a); |
| } |
| |
| |
| #ifdef CONFIG_ECC |
| |
| struct crypto_ec { |
| EC_GROUP *group; |
| BN_CTX *bnctx; |
| BIGNUM *prime; |
| BIGNUM *order; |
| }; |
| |
| struct crypto_ec * crypto_ec_init(int group) |
| { |
| struct crypto_ec *e; |
| int nid; |
| |
| /* Map from IANA registry for IKE D-H groups to OpenSSL NID */ |
| switch (group) { |
| case 19: |
| nid = NID_X9_62_prime256v1; |
| break; |
| case 20: |
| nid = NID_secp384r1; |
| break; |
| case 21: |
| nid = NID_secp521r1; |
| break; |
| case 25: |
| nid = NID_X9_62_prime192v1; |
| break; |
| case 26: |
| nid = NID_secp224r1; |
| break; |
| default: |
| return NULL; |
| } |
| |
| e = os_zalloc(sizeof(*e)); |
| if (e == NULL) |
| return NULL; |
| |
| e->bnctx = BN_CTX_new(); |
| e->group = EC_GROUP_new_by_curve_name(nid); |
| e->prime = BN_new(); |
| e->order = BN_new(); |
| if (e->group == NULL || e->bnctx == NULL || e->prime == NULL || |
| e->order == NULL || |
| !EC_GROUP_get_curve_GFp(e->group, e->prime, NULL, NULL, e->bnctx) || |
| !EC_GROUP_get_order(e->group, e->order, e->bnctx)) { |
| crypto_ec_deinit(e); |
| e = NULL; |
| } |
| |
| return e; |
| } |
| |
| |
| void crypto_ec_deinit(struct crypto_ec *e) |
| { |
| if (e == NULL) |
| return; |
| BN_free(e->order); |
| EC_GROUP_free(e->group); |
| BN_CTX_free(e->bnctx); |
| os_free(e); |
| } |
| |
| |
| struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e) |
| { |
| if (e == NULL) |
| return NULL; |
| return (struct crypto_ec_point *) EC_POINT_new(e->group); |
| } |
| |
| |
| size_t crypto_ec_prime_len(struct crypto_ec *e) |
| { |
| return BN_num_bytes(e->prime); |
| } |
| |
| |
| size_t crypto_ec_prime_len_bits(struct crypto_ec *e) |
| { |
| return BN_num_bits(e->prime); |
| } |
| |
| |
| const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e) |
| { |
| return (const struct crypto_bignum *) e->prime; |
| } |
| |
| |
| const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e) |
| { |
| return (const struct crypto_bignum *) e->order; |
| } |
| |
| |
| void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear) |
| { |
| if (clear) |
| EC_POINT_clear_free((EC_POINT *) p); |
| else |
| EC_POINT_free((EC_POINT *) p); |
| } |
| |
| |
| int crypto_ec_point_to_bin(struct crypto_ec *e, |
| const struct crypto_ec_point *point, u8 *x, u8 *y) |
| { |
| BIGNUM *x_bn, *y_bn; |
| int ret = -1; |
| int len = BN_num_bytes(e->prime); |
| |
| x_bn = BN_new(); |
| y_bn = BN_new(); |
| |
| if (x_bn && y_bn && |
| EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point, |
| x_bn, y_bn, e->bnctx)) { |
| if (x) { |
| crypto_bignum_to_bin((struct crypto_bignum *) x_bn, |
| x, len, len); |
| } |
| if (y) { |
| crypto_bignum_to_bin((struct crypto_bignum *) y_bn, |
| y, len, len); |
| } |
| ret = 0; |
| } |
| |
| BN_free(x_bn); |
| BN_free(y_bn); |
| return ret; |
| } |
| |
| |
| struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e, |
| const u8 *val) |
| { |
| BIGNUM *x, *y; |
| EC_POINT *elem; |
| int len = BN_num_bytes(e->prime); |
| |
| x = BN_bin2bn(val, len, NULL); |
| y = BN_bin2bn(val + len, len, NULL); |
| elem = EC_POINT_new(e->group); |
| if (x == NULL || y == NULL || elem == NULL) { |
| BN_free(x); |
| BN_free(y); |
| EC_POINT_free(elem); |
| return NULL; |
| } |
| |
| if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y, |
| e->bnctx)) { |
| EC_POINT_free(elem); |
| elem = NULL; |
| } |
| |
| BN_free(x); |
| BN_free(y); |
| |
| return (struct crypto_ec_point *) elem; |
| } |
| |
| |
| int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a, |
| const struct crypto_ec_point *b, |
| struct crypto_ec_point *c) |
| { |
| return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a, |
| (const EC_POINT *) b, e->bnctx) ? 0 : -1; |
| } |
| |
| |
| int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p, |
| const struct crypto_bignum *b, |
| struct crypto_ec_point *res) |
| { |
| return EC_POINT_mul(e->group, (EC_POINT *) res, NULL, |
| (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx) |
| ? 0 : -1; |
| } |
| |
| |
| int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p) |
| { |
| return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1; |
| } |
| |
| |
| int crypto_ec_point_solve_y_coord(struct crypto_ec *e, |
| struct crypto_ec_point *p, |
| const struct crypto_bignum *x, int y_bit) |
| { |
| if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p, |
| (const BIGNUM *) x, y_bit, |
| e->bnctx) || |
| !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx)) |
| return -1; |
| return 0; |
| } |
| |
| |
| int crypto_ec_point_is_at_infinity(struct crypto_ec *e, |
| const struct crypto_ec_point *p) |
| { |
| return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p); |
| } |
| |
| |
| int crypto_ec_point_is_on_curve(struct crypto_ec *e, |
| const struct crypto_ec_point *p) |
| { |
| return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p, e->bnctx); |
| } |
| |
| #endif /* CONFIG_ECC */ |