blob: 405f908cc84894c9010da114d31cf00cdf55c61c [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "EffectReverb"
//#define LOG_NDEBUG 0
#include <cutils/log.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include "EffectReverb.h"
#include "EffectsMath.h"
// effect_handle_t interface implementation for reverb effect
const struct effect_interface_s gReverbInterface = {
Reverb_Process,
Reverb_Command,
Reverb_GetDescriptor,
NULL
};
// Google auxiliary environmental reverb UUID: 1f0ae2e0-4ef7-11df-bc09-0002a5d5c51b
static const effect_descriptor_t gAuxEnvReverbDescriptor = {
{0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
{0x1f0ae2e0, 0x4ef7, 0x11df, 0xbc09, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
EFFECT_CONTROL_API_VERSION,
// flags other than EFFECT_FLAG_TYPE_AUXILIARY set for test purpose
EFFECT_FLAG_TYPE_AUXILIARY | EFFECT_FLAG_DEVICE_IND | EFFECT_FLAG_AUDIO_MODE_IND,
0, // TODO
33,
"Aux Environmental Reverb",
"The Android Open Source Project"
};
// Google insert environmental reverb UUID: aa476040-6342-11df-91a4-0002a5d5c51b
static const effect_descriptor_t gInsertEnvReverbDescriptor = {
{0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
{0xaa476040, 0x6342, 0x11df, 0x91a4, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
EFFECT_CONTROL_API_VERSION,
EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
0, // TODO
33,
"Insert Environmental reverb",
"The Android Open Source Project"
};
// Google auxiliary preset reverb UUID: 63909320-53a6-11df-bdbd-0002a5d5c51b
static const effect_descriptor_t gAuxPresetReverbDescriptor = {
{0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
{0x63909320, 0x53a6, 0x11df, 0xbdbd, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
EFFECT_CONTROL_API_VERSION,
EFFECT_FLAG_TYPE_AUXILIARY,
0, // TODO
33,
"Aux Preset Reverb",
"The Android Open Source Project"
};
// Google insert preset reverb UUID: d93dc6a0-6342-11df-b128-0002a5d5c51b
static const effect_descriptor_t gInsertPresetReverbDescriptor = {
{0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
{0xd93dc6a0, 0x6342, 0x11df, 0xb128, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
EFFECT_CONTROL_API_VERSION,
EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
0, // TODO
33,
"Insert Preset Reverb",
"The Android Open Source Project"
};
// gDescriptors contains pointers to all defined effect descriptor in this library
static const effect_descriptor_t * const gDescriptors[] = {
&gAuxEnvReverbDescriptor,
&gInsertEnvReverbDescriptor,
&gAuxPresetReverbDescriptor,
&gInsertPresetReverbDescriptor
};
/*----------------------------------------------------------------------------
* Effect API implementation
*--------------------------------------------------------------------------*/
/*--- Effect Library Interface Implementation ---*/
int EffectQueryNumberEffects(uint32_t *pNumEffects) {
*pNumEffects = sizeof(gDescriptors) / sizeof(const effect_descriptor_t *);
return 0;
}
int EffectQueryEffect(uint32_t index, effect_descriptor_t *pDescriptor) {
if (pDescriptor == NULL) {
return -EINVAL;
}
if (index >= sizeof(gDescriptors) / sizeof(const effect_descriptor_t *)) {
return -EINVAL;
}
memcpy(pDescriptor, gDescriptors[index],
sizeof(effect_descriptor_t));
return 0;
}
int EffectCreate(effect_uuid_t *uuid,
int32_t sessionId,
int32_t ioId,
effect_handle_t *pHandle) {
int ret;
int i;
reverb_module_t *module;
const effect_descriptor_t *desc;
int aux = 0;
int preset = 0;
LOGV("EffectLibCreateEffect start");
if (pHandle == NULL || uuid == NULL) {
return -EINVAL;
}
for (i = 0; gDescriptors[i] != NULL; i++) {
desc = gDescriptors[i];
if (memcmp(uuid, &desc->uuid, sizeof(effect_uuid_t))
== 0) {
break;
}
}
if (gDescriptors[i] == NULL) {
return -ENOENT;
}
module = malloc(sizeof(reverb_module_t));
module->itfe = &gReverbInterface;
module->context.mState = REVERB_STATE_UNINITIALIZED;
if (memcmp(&desc->type, SL_IID_PRESETREVERB, sizeof(effect_uuid_t)) == 0) {
preset = 1;
}
if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
aux = 1;
}
ret = Reverb_Init(module, aux, preset);
if (ret < 0) {
LOGW("EffectLibCreateEffect() init failed");
free(module);
return ret;
}
*pHandle = (effect_handle_t) module;
module->context.mState = REVERB_STATE_INITIALIZED;
LOGV("EffectLibCreateEffect %p ,size %d", module, sizeof(reverb_module_t));
return 0;
}
int EffectRelease(effect_handle_t handle) {
reverb_module_t *pRvbModule = (reverb_module_t *)handle;
LOGV("EffectLibReleaseEffect %p", handle);
if (handle == NULL) {
return -EINVAL;
}
pRvbModule->context.mState = REVERB_STATE_UNINITIALIZED;
free(pRvbModule);
return 0;
}
int EffectGetDescriptor(effect_uuid_t *uuid,
effect_descriptor_t *pDescriptor) {
int i;
int length = sizeof(gDescriptors) / sizeof(const effect_descriptor_t *);
if (pDescriptor == NULL || uuid == NULL){
LOGV("EffectGetDescriptor() called with NULL pointer");
return -EINVAL;
}
for (i = 0; i < length; i++) {
if (memcmp(uuid, &gDescriptors[i]->uuid, sizeof(effect_uuid_t)) == 0) {
memcpy(pDescriptor, gDescriptors[i], sizeof(effect_descriptor_t));
LOGV("EffectGetDescriptor - UUID matched Reverb type %d, UUID = %x",
i, gDescriptors[i]->uuid.timeLow);
return 0;
}
}
return -EINVAL;
} /* end EffectGetDescriptor */
/*--- Effect Control Interface Implementation ---*/
static int Reverb_Process(effect_handle_t self, audio_buffer_t *inBuffer, audio_buffer_t *outBuffer) {
reverb_object_t *pReverb;
int16_t *pSrc, *pDst;
reverb_module_t *pRvbModule = (reverb_module_t *)self;
if (pRvbModule == NULL) {
return -EINVAL;
}
if (inBuffer == NULL || inBuffer->raw == NULL ||
outBuffer == NULL || outBuffer->raw == NULL ||
inBuffer->frameCount != outBuffer->frameCount) {
return -EINVAL;
}
pReverb = (reverb_object_t*) &pRvbModule->context;
if (pReverb->mState == REVERB_STATE_UNINITIALIZED) {
return -EINVAL;
}
if (pReverb->mState == REVERB_STATE_INITIALIZED) {
return -ENODATA;
}
//if bypassed or the preset forces the signal to be completely dry
if (pReverb->m_bBypass != 0) {
if (inBuffer->raw != outBuffer->raw) {
int16_t smp;
pSrc = inBuffer->s16;
pDst = outBuffer->s16;
size_t count = inBuffer->frameCount;
if (pRvbModule->config.inputCfg.channels == pRvbModule->config.outputCfg.channels) {
count *= 2;
while (count--) {
*pDst++ = *pSrc++;
}
} else {
while (count--) {
smp = *pSrc++;
*pDst++ = smp;
*pDst++ = smp;
}
}
}
return 0;
}
if (pReverb->m_nNextRoom != pReverb->m_nCurrentRoom) {
ReverbUpdateRoom(pReverb, true);
}
pSrc = inBuffer->s16;
pDst = outBuffer->s16;
size_t numSamples = outBuffer->frameCount;
while (numSamples) {
uint32_t processedSamples;
if (numSamples > (uint32_t) pReverb->m_nUpdatePeriodInSamples) {
processedSamples = (uint32_t) pReverb->m_nUpdatePeriodInSamples;
} else {
processedSamples = numSamples;
}
/* increment update counter */
pReverb->m_nUpdateCounter += (int16_t) processedSamples;
/* check if update counter needs to be reset */
if (pReverb->m_nUpdateCounter >= pReverb->m_nUpdatePeriodInSamples) {
/* update interval has elapsed, so reset counter */
pReverb->m_nUpdateCounter -= pReverb->m_nUpdatePeriodInSamples;
ReverbUpdateXfade(pReverb, pReverb->m_nUpdatePeriodInSamples);
} /* end if m_nUpdateCounter >= update interval */
Reverb(pReverb, processedSamples, pDst, pSrc);
numSamples -= processedSamples;
if (pReverb->m_Aux) {
pSrc += processedSamples;
} else {
pSrc += processedSamples * NUM_OUTPUT_CHANNELS;
}
pDst += processedSamples * NUM_OUTPUT_CHANNELS;
}
return 0;
}
static int Reverb_Command(effect_handle_t self, uint32_t cmdCode, uint32_t cmdSize,
void *pCmdData, uint32_t *replySize, void *pReplyData) {
reverb_module_t *pRvbModule = (reverb_module_t *) self;
reverb_object_t *pReverb;
int retsize;
if (pRvbModule == NULL ||
pRvbModule->context.mState == REVERB_STATE_UNINITIALIZED) {
return -EINVAL;
}
pReverb = (reverb_object_t*) &pRvbModule->context;
LOGV("Reverb_Command command %d cmdSize %d",cmdCode, cmdSize);
switch (cmdCode) {
case EFFECT_CMD_INIT:
if (pReplyData == NULL || *replySize != sizeof(int)) {
return -EINVAL;
}
*(int *) pReplyData = Reverb_Init(pRvbModule, pReverb->m_Aux, pReverb->m_Preset);
if (*(int *) pReplyData == 0) {
pRvbModule->context.mState = REVERB_STATE_INITIALIZED;
}
break;
case EFFECT_CMD_CONFIGURE:
if (pCmdData == NULL || cmdSize != sizeof(effect_config_t)
|| pReplyData == NULL || *replySize != sizeof(int)) {
return -EINVAL;
}
*(int *) pReplyData = Reverb_Configure(pRvbModule,
(effect_config_t *)pCmdData, false);
break;
case EFFECT_CMD_RESET:
Reverb_Reset(pReverb, false);
break;
case EFFECT_CMD_GET_PARAM:
LOGV("Reverb_Command EFFECT_CMD_GET_PARAM pCmdData %p, *replySize %d, pReplyData: %p",pCmdData, *replySize, pReplyData);
if (pCmdData == NULL || cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)) ||
pReplyData == NULL || *replySize < (int) sizeof(effect_param_t)) {
return -EINVAL;
}
effect_param_t *rep = (effect_param_t *) pReplyData;
memcpy(pReplyData, pCmdData, sizeof(effect_param_t) + sizeof(int32_t));
LOGV("Reverb_Command EFFECT_CMD_GET_PARAM param %d, replySize %d",*(int32_t *)rep->data, rep->vsize);
rep->status = Reverb_getParameter(pReverb, *(int32_t *)rep->data, &rep->vsize,
rep->data + sizeof(int32_t));
*replySize = sizeof(effect_param_t) + sizeof(int32_t) + rep->vsize;
break;
case EFFECT_CMD_SET_PARAM:
LOGV("Reverb_Command EFFECT_CMD_SET_PARAM cmdSize %d pCmdData %p, *replySize %d, pReplyData %p",
cmdSize, pCmdData, *replySize, pReplyData);
if (pCmdData == NULL || (cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)))
|| pReplyData == NULL || *replySize != (int)sizeof(int32_t)) {
return -EINVAL;
}
effect_param_t *cmd = (effect_param_t *) pCmdData;
*(int *)pReplyData = Reverb_setParameter(pReverb, *(int32_t *)cmd->data,
cmd->vsize, cmd->data + sizeof(int32_t));
break;
case EFFECT_CMD_ENABLE:
if (pReplyData == NULL || *replySize != sizeof(int)) {
return -EINVAL;
}
if (pReverb->mState != REVERB_STATE_INITIALIZED) {
return -ENOSYS;
}
pReverb->mState = REVERB_STATE_ACTIVE;
LOGV("EFFECT_CMD_ENABLE() OK");
*(int *)pReplyData = 0;
break;
case EFFECT_CMD_DISABLE:
if (pReplyData == NULL || *replySize != sizeof(int)) {
return -EINVAL;
}
if (pReverb->mState != REVERB_STATE_ACTIVE) {
return -ENOSYS;
}
pReverb->mState = REVERB_STATE_INITIALIZED;
LOGV("EFFECT_CMD_DISABLE() OK");
*(int *)pReplyData = 0;
break;
case EFFECT_CMD_SET_DEVICE:
if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
return -EINVAL;
}
LOGV("Reverb_Command EFFECT_CMD_SET_DEVICE: 0x%08x", *(uint32_t *)pCmdData);
break;
case EFFECT_CMD_SET_VOLUME: {
// audio output is always stereo => 2 channel volumes
if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t) * 2) {
return -EINVAL;
}
float left = (float)(*(uint32_t *)pCmdData) / (1 << 24);
float right = (float)(*((uint32_t *)pCmdData + 1)) / (1 << 24);
LOGV("Reverb_Command EFFECT_CMD_SET_VOLUME: left %f, right %f ", left, right);
break;
}
case EFFECT_CMD_SET_AUDIO_MODE:
if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
return -EINVAL;
}
LOGV("Reverb_Command EFFECT_CMD_SET_AUDIO_MODE: %d", *(uint32_t *)pCmdData);
break;
default:
LOGW("Reverb_Command invalid command %d",cmdCode);
return -EINVAL;
}
return 0;
}
int Reverb_GetDescriptor(effect_handle_t self,
effect_descriptor_t *pDescriptor)
{
reverb_module_t *pRvbModule = (reverb_module_t *) self;
reverb_object_t *pReverb;
const effect_descriptor_t *desc;
if (pRvbModule == NULL ||
pRvbModule->context.mState == REVERB_STATE_UNINITIALIZED) {
return -EINVAL;
}
pReverb = (reverb_object_t*) &pRvbModule->context;
if (pReverb->m_Aux) {
if (pReverb->m_Preset) {
desc = &gAuxPresetReverbDescriptor;
} else {
desc = &gAuxEnvReverbDescriptor;
}
} else {
if (pReverb->m_Preset) {
desc = &gInsertPresetReverbDescriptor;
} else {
desc = &gInsertEnvReverbDescriptor;
}
}
memcpy(pDescriptor, desc, sizeof(effect_descriptor_t));
return 0;
} /* end Reverb_getDescriptor */
/*----------------------------------------------------------------------------
* Reverb internal functions
*--------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
* Reverb_Init()
*----------------------------------------------------------------------------
* Purpose:
* Initialize reverb context and apply default parameters
*
* Inputs:
* pRvbModule - pointer to reverb effect module
* aux - indicates if the reverb is used as auxiliary (1) or insert (0)
* preset - indicates if the reverb is used in preset (1) or environmental (0) mode
*
* Outputs:
*
* Side Effects:
*
*----------------------------------------------------------------------------
*/
int Reverb_Init(reverb_module_t *pRvbModule, int aux, int preset) {
int ret;
LOGV("Reverb_Init module %p, aux: %d, preset: %d", pRvbModule,aux, preset);
memset(&pRvbModule->context, 0, sizeof(reverb_object_t));
pRvbModule->context.m_Aux = (uint16_t)aux;
pRvbModule->context.m_Preset = (uint16_t)preset;
pRvbModule->config.inputCfg.samplingRate = 44100;
if (aux) {
pRvbModule->config.inputCfg.channels = AUDIO_CHANNEL_OUT_MONO;
} else {
pRvbModule->config.inputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
}
pRvbModule->config.inputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
pRvbModule->config.inputCfg.bufferProvider.getBuffer = NULL;
pRvbModule->config.inputCfg.bufferProvider.releaseBuffer = NULL;
pRvbModule->config.inputCfg.bufferProvider.cookie = NULL;
pRvbModule->config.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ;
pRvbModule->config.inputCfg.mask = EFFECT_CONFIG_ALL;
pRvbModule->config.outputCfg.samplingRate = 44100;
pRvbModule->config.outputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
pRvbModule->config.outputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
pRvbModule->config.outputCfg.bufferProvider.getBuffer = NULL;
pRvbModule->config.outputCfg.bufferProvider.releaseBuffer = NULL;
pRvbModule->config.outputCfg.bufferProvider.cookie = NULL;
pRvbModule->config.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_ACCUMULATE;
pRvbModule->config.outputCfg.mask = EFFECT_CONFIG_ALL;
ret = Reverb_Configure(pRvbModule, &pRvbModule->config, true);
if (ret < 0) {
LOGV("Reverb_Init error %d on module %p", ret, pRvbModule);
}
return ret;
}
/*----------------------------------------------------------------------------
* Reverb_Init()
*----------------------------------------------------------------------------
* Purpose:
* Set input and output audio configuration.
*
* Inputs:
* pRvbModule - pointer to reverb effect module
* pConfig - pointer to effect_config_t structure containing input
* and output audio parameters configuration
* init - true if called from init function
* Outputs:
*
* Side Effects:
*
*----------------------------------------------------------------------------
*/
int Reverb_Configure(reverb_module_t *pRvbModule, effect_config_t *pConfig,
bool init) {
reverb_object_t *pReverb = &pRvbModule->context;
int bufferSizeInSamples;
int updatePeriodInSamples;
int xfadePeriodInSamples;
// Check configuration compatibility with build options
if (pConfig->inputCfg.samplingRate
!= pConfig->outputCfg.samplingRate
|| pConfig->outputCfg.channels != OUTPUT_CHANNELS
|| pConfig->inputCfg.format != AUDIO_FORMAT_PCM_16_BIT
|| pConfig->outputCfg.format != AUDIO_FORMAT_PCM_16_BIT) {
LOGV("Reverb_Configure invalid config");
return -EINVAL;
}
if ((pReverb->m_Aux && (pConfig->inputCfg.channels != AUDIO_CHANNEL_OUT_MONO)) ||
(!pReverb->m_Aux && (pConfig->inputCfg.channels != AUDIO_CHANNEL_OUT_STEREO))) {
LOGV("Reverb_Configure invalid config");
return -EINVAL;
}
memcpy(&pRvbModule->config, pConfig, sizeof(effect_config_t));
pReverb->m_nSamplingRate = pRvbModule->config.outputCfg.samplingRate;
switch (pReverb->m_nSamplingRate) {
case 8000:
pReverb->m_nUpdatePeriodInBits = 5;
bufferSizeInSamples = 4096;
pReverb->m_nCosWT_5KHz = -23170;
break;
case 16000:
pReverb->m_nUpdatePeriodInBits = 6;
bufferSizeInSamples = 8192;
pReverb->m_nCosWT_5KHz = -12540;
break;
case 22050:
pReverb->m_nUpdatePeriodInBits = 7;
bufferSizeInSamples = 8192;
pReverb->m_nCosWT_5KHz = 4768;
break;
case 32000:
pReverb->m_nUpdatePeriodInBits = 7;
bufferSizeInSamples = 16384;
pReverb->m_nCosWT_5KHz = 18205;
break;
case 44100:
pReverb->m_nUpdatePeriodInBits = 8;
bufferSizeInSamples = 16384;
pReverb->m_nCosWT_5KHz = 24799;
break;
case 48000:
pReverb->m_nUpdatePeriodInBits = 8;
bufferSizeInSamples = 16384;
pReverb->m_nCosWT_5KHz = 25997;
break;
default:
LOGV("Reverb_Configure invalid sampling rate %d", pReverb->m_nSamplingRate);
return -EINVAL;
}
// Define a mask for circular addressing, so that array index
// can wraparound and stay in array boundary of 0, 1, ..., (buffer size -1)
// The buffer size MUST be a power of two
pReverb->m_nBufferMask = (int32_t) (bufferSizeInSamples - 1);
/* reverb parameters are updated every 2^(pReverb->m_nUpdatePeriodInBits) samples */
updatePeriodInSamples = (int32_t) (0x1L << pReverb->m_nUpdatePeriodInBits);
/*
calculate the update counter by bitwise ANDING with this value to
generate a 2^n modulo value
*/
pReverb->m_nUpdatePeriodInSamples = (int32_t) updatePeriodInSamples;
xfadePeriodInSamples = (int32_t) (REVERB_XFADE_PERIOD_IN_SECONDS
* (double) pReverb->m_nSamplingRate);
// set xfade parameters
pReverb->m_nPhaseIncrement
= (int16_t) (65536 / ((int16_t) xfadePeriodInSamples
/ (int16_t) updatePeriodInSamples));
if (init) {
ReverbReadInPresets(pReverb);
// for debugging purposes, allow noise generator
pReverb->m_bUseNoise = true;
// for debugging purposes, allow bypass
pReverb->m_bBypass = 0;
pReverb->m_nNextRoom = 1;
pReverb->m_nNoise = (int16_t) 0xABCD;
}
Reverb_Reset(pReverb, init);
return 0;
}
/*----------------------------------------------------------------------------
* Reverb_Reset()
*----------------------------------------------------------------------------
* Purpose:
* Reset internal states and clear delay lines.
*
* Inputs:
* pReverb - pointer to reverb context
* init - true if called from init function
*
* Outputs:
*
* Side Effects:
*
*----------------------------------------------------------------------------
*/
void Reverb_Reset(reverb_object_t *pReverb, bool init) {
int bufferSizeInSamples = (int32_t) (pReverb->m_nBufferMask + 1);
int maxApSamples;
int maxDelaySamples;
int maxEarlySamples;
int ap1In;
int delay0In;
int delay1In;
int32_t i;
uint16_t nOffset;
maxApSamples = ((int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16);
maxDelaySamples = ((int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
>> 16);
maxEarlySamples = ((int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
>> 16);
ap1In = (AP0_IN + maxApSamples + GUARD);
delay0In = (ap1In + maxApSamples + GUARD);
delay1In = (delay0In + maxDelaySamples + GUARD);
// Define the max offsets for the end points of each section
// i.e., we don't expect a given section's taps to go beyond
// the following limits
pReverb->m_nEarly0in = (delay1In + maxDelaySamples + GUARD);
pReverb->m_nEarly1in = (pReverb->m_nEarly0in + maxEarlySamples + GUARD);
pReverb->m_sAp0.m_zApIn = AP0_IN;
pReverb->m_zD0In = delay0In;
pReverb->m_sAp1.m_zApIn = ap1In;
pReverb->m_zD1In = delay1In;
pReverb->m_zOutLpfL = 0;
pReverb->m_zOutLpfR = 0;
pReverb->m_nRevFbkR = 0;
pReverb->m_nRevFbkL = 0;
// set base index into circular buffer
pReverb->m_nBaseIndex = 0;
// clear the reverb delay line
for (i = 0; i < bufferSizeInSamples; i++) {
pReverb->m_nDelayLine[i] = 0;
}
ReverbUpdateRoom(pReverb, init);
pReverb->m_nUpdateCounter = 0;
pReverb->m_nPhase = -32768;
pReverb->m_nSin = 0;
pReverb->m_nCos = 0;
pReverb->m_nSinIncrement = 0;
pReverb->m_nCosIncrement = 0;
// set delay tap lengths
nOffset = ReverbCalculateNoise(pReverb);
pReverb->m_zD1Cross = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
+ nOffset;
nOffset = ReverbCalculateNoise(pReverb);
pReverb->m_zD0Cross = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
- nOffset;
nOffset = ReverbCalculateNoise(pReverb);
pReverb->m_zD0Self = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
- nOffset;
nOffset = ReverbCalculateNoise(pReverb);
pReverb->m_zD1Self = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
+ nOffset;
}
/*----------------------------------------------------------------------------
* Reverb_getParameter()
*----------------------------------------------------------------------------
* Purpose:
* Get a Reverb parameter
*
* Inputs:
* pReverb - handle to instance data
* param - parameter
* pValue - pointer to variable to hold retrieved value
* pSize - pointer to value size: maximum size as input
*
* Outputs:
* *pValue updated with parameter value
* *pSize updated with actual value size
*
*
* Side Effects:
*
*----------------------------------------------------------------------------
*/
int Reverb_getParameter(reverb_object_t *pReverb, int32_t param, size_t *pSize,
void *pValue) {
int32_t *pValue32;
int16_t *pValue16;
t_reverb_settings *pProperties;
int32_t i;
int32_t temp;
int32_t temp2;
size_t size;
if (pReverb->m_Preset) {
if (param != REVERB_PARAM_PRESET || *pSize < sizeof(int16_t)) {
return -EINVAL;
}
size = sizeof(int16_t);
pValue16 = (int16_t *)pValue;
// REVERB_PRESET_NONE is mapped to bypass
if (pReverb->m_bBypass != 0) {
*pValue16 = (int16_t)REVERB_PRESET_NONE;
} else {
*pValue16 = (int16_t)(pReverb->m_nNextRoom + 1);
}
LOGV("get REVERB_PARAM_PRESET, preset %d", *pValue16);
} else {
switch (param) {
case REVERB_PARAM_ROOM_LEVEL:
case REVERB_PARAM_ROOM_HF_LEVEL:
case REVERB_PARAM_DECAY_HF_RATIO:
case REVERB_PARAM_REFLECTIONS_LEVEL:
case REVERB_PARAM_REVERB_LEVEL:
case REVERB_PARAM_DIFFUSION:
case REVERB_PARAM_DENSITY:
size = sizeof(int16_t);
break;
case REVERB_PARAM_BYPASS:
case REVERB_PARAM_DECAY_TIME:
case REVERB_PARAM_REFLECTIONS_DELAY:
case REVERB_PARAM_REVERB_DELAY:
size = sizeof(int32_t);
break;
case REVERB_PARAM_PROPERTIES:
size = sizeof(t_reverb_settings);
break;
default:
return -EINVAL;
}
if (*pSize < size) {
return -EINVAL;
}
pValue32 = (int32_t *) pValue;
pValue16 = (int16_t *) pValue;
pProperties = (t_reverb_settings *) pValue;
switch (param) {
case REVERB_PARAM_BYPASS:
*pValue32 = (int32_t) pReverb->m_bBypass;
break;
case REVERB_PARAM_PROPERTIES:
pValue16 = &pProperties->roomLevel;
/* FALL THROUGH */
case REVERB_PARAM_ROOM_LEVEL:
// Convert m_nRoomLpfFwd to millibels
temp = (pReverb->m_nRoomLpfFwd << 15)
/ (32767 - pReverb->m_nRoomLpfFbk);
*pValue16 = Effects_Linear16ToMillibels(temp);
LOGV("get REVERB_PARAM_ROOM_LEVEL %d, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", *pValue16, temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
if (param == REVERB_PARAM_ROOM_LEVEL) {
break;
}
pValue16 = &pProperties->roomHFLevel;
/* FALL THROUGH */
case REVERB_PARAM_ROOM_HF_LEVEL:
// The ratio between linear gain at 0Hz and at 5000Hz for the room low pass is:
// (1 + a1) / sqrt(a1^2 + 2*C*a1 + 1) where:
// - a1 is minus the LP feedback gain: -pReverb->m_nRoomLpfFbk
// - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
temp = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFbk);
LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 %d", temp);
temp2 = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nCosWT_5KHz)
<< 1;
LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, 2 Cos a1 %d", temp2);
temp = 32767 + temp - temp2;
LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 + 2 Cos a1 + 1 %d", temp);
temp = Effects_Sqrt(temp) * 181;
LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, SQRT(a1^2 + 2 Cos a1 + 1) %d", temp);
temp = ((32767 - pReverb->m_nRoomLpfFbk) << 15) / temp;
LOGV("get REVERB_PARAM_ROOM_HF_LEVEL, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
*pValue16 = Effects_Linear16ToMillibels(temp);
if (param == REVERB_PARAM_ROOM_HF_LEVEL) {
break;
}
pValue32 = &pProperties->decayTime;
/* FALL THROUGH */
case REVERB_PARAM_DECAY_TIME:
// Calculate reverb feedback path gain
temp = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
temp = Effects_Linear16ToMillibels(temp);
// Calculate decay time: g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
temp = (-6000 * pReverb->m_nLateDelay) / temp;
// Convert samples to ms
*pValue32 = (temp * 1000) / pReverb->m_nSamplingRate;
LOGV("get REVERB_PARAM_DECAY_TIME, samples %d, ms %d", temp, *pValue32);
if (param == REVERB_PARAM_DECAY_TIME) {
break;
}
pValue16 = &pProperties->decayHFRatio;
/* FALL THROUGH */
case REVERB_PARAM_DECAY_HF_RATIO:
// If r is the decay HF ratio (r = REVERB_PARAM_DECAY_HF_RATIO/1000) we have:
// DT_5000Hz = DT_0Hz * r
// and G_5000Hz = -6000 * d / DT_5000Hz and G_0Hz = -6000 * d / DT_0Hz in millibels so :
// r = G_0Hz/G_5000Hz in millibels
// The linear gain at 5000Hz is b0 / sqrt(a1^2 + 2*C*a1 + 1) where:
// - a1 is minus the LP feedback gain: -pReverb->m_nRvbLpfFbk
// - b0 is the LP forward gain: pReverb->m_nRvbLpfFwd
// - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
if (pReverb->m_nRvbLpfFbk == 0) {
*pValue16 = 1000;
LOGV("get REVERB_PARAM_DECAY_HF_RATIO, pReverb->m_nRvbLpfFbk == 0, ratio %d", *pValue16);
} else {
temp = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFbk);
temp2 = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nCosWT_5KHz)
<< 1;
temp = 32767 + temp - temp2;
temp = Effects_Sqrt(temp) * 181;
temp = (pReverb->m_nRvbLpfFwd << 15) / temp;
// The linear gain at 0Hz is b0 / (a1 + 1)
temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767
- pReverb->m_nRvbLpfFbk);
temp = Effects_Linear16ToMillibels(temp);
temp2 = Effects_Linear16ToMillibels(temp2);
LOGV("get REVERB_PARAM_DECAY_HF_RATIO, gain 5KHz %d mB, gain DC %d mB", temp, temp2);
if (temp == 0)
temp = 1;
temp = (int16_t) ((1000 * temp2) / temp);
if (temp > 1000)
temp = 1000;
*pValue16 = temp;
LOGV("get REVERB_PARAM_DECAY_HF_RATIO, ratio %d", *pValue16);
}
if (param == REVERB_PARAM_DECAY_HF_RATIO) {
break;
}
pValue16 = &pProperties->reflectionsLevel;
/* FALL THROUGH */
case REVERB_PARAM_REFLECTIONS_LEVEL:
*pValue16 = Effects_Linear16ToMillibels(pReverb->m_nEarlyGain);
LOGV("get REVERB_PARAM_REFLECTIONS_LEVEL, %d", *pValue16);
if (param == REVERB_PARAM_REFLECTIONS_LEVEL) {
break;
}
pValue32 = &pProperties->reflectionsDelay;
/* FALL THROUGH */
case REVERB_PARAM_REFLECTIONS_DELAY:
// convert samples to ms
*pValue32 = (pReverb->m_nEarlyDelay * 1000) / pReverb->m_nSamplingRate;
LOGV("get REVERB_PARAM_REFLECTIONS_DELAY, samples %d, ms %d", pReverb->m_nEarlyDelay, *pValue32);
if (param == REVERB_PARAM_REFLECTIONS_DELAY) {
break;
}
pValue16 = &pProperties->reverbLevel;
/* FALL THROUGH */
case REVERB_PARAM_REVERB_LEVEL:
// Convert linear gain to millibels
*pValue16 = Effects_Linear16ToMillibels(pReverb->m_nLateGain << 2);
LOGV("get REVERB_PARAM_REVERB_LEVEL %d", *pValue16);
if (param == REVERB_PARAM_REVERB_LEVEL) {
break;
}
pValue32 = &pProperties->reverbDelay;
/* FALL THROUGH */
case REVERB_PARAM_REVERB_DELAY:
// convert samples to ms
*pValue32 = (pReverb->m_nLateDelay * 1000) / pReverb->m_nSamplingRate;
LOGV("get REVERB_PARAM_REVERB_DELAY, samples %d, ms %d", pReverb->m_nLateDelay, *pValue32);
if (param == REVERB_PARAM_REVERB_DELAY) {
break;
}
pValue16 = &pProperties->diffusion;
/* FALL THROUGH */
case REVERB_PARAM_DIFFUSION:
temp = (int16_t) ((1000 * (pReverb->m_sAp0.m_nApGain - AP0_GAIN_BASE))
/ AP0_GAIN_RANGE);
if (temp < 0)
temp = 0;
if (temp > 1000)
temp = 1000;
*pValue16 = temp;
LOGV("get REVERB_PARAM_DIFFUSION, %d, AP0 gain %d", *pValue16, pReverb->m_sAp0.m_nApGain);
if (param == REVERB_PARAM_DIFFUSION) {
break;
}
pValue16 = &pProperties->density;
/* FALL THROUGH */
case REVERB_PARAM_DENSITY:
// Calculate AP delay in time units
temp = ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn) << 16)
/ pReverb->m_nSamplingRate;
temp = (int16_t) ((1000 * (temp - AP0_TIME_BASE)) / AP0_TIME_RANGE);
if (temp < 0)
temp = 0;
if (temp > 1000)
temp = 1000;
*pValue16 = temp;
LOGV("get REVERB_PARAM_DENSITY, %d, AP0 delay smps %d", *pValue16, pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn);
break;
default:
break;
}
}
*pSize = size;
LOGV("Reverb_getParameter, context %p, param %d, value %d",
pReverb, param, *(int *)pValue);
return 0;
} /* end Reverb_getParameter */
/*----------------------------------------------------------------------------
* Reverb_setParameter()
*----------------------------------------------------------------------------
* Purpose:
* Set a Reverb parameter
*
* Inputs:
* pReverb - handle to instance data
* param - parameter
* pValue - pointer to parameter value
* size - value size
*
* Outputs:
*
*
* Side Effects:
*
*----------------------------------------------------------------------------
*/
int Reverb_setParameter(reverb_object_t *pReverb, int32_t param, size_t size,
void *pValue) {
int32_t value32;
int16_t value16;
t_reverb_settings *pProperties;
int32_t i;
int32_t temp;
int32_t temp2;
reverb_preset_t *pPreset;
int maxSamples;
int32_t averageDelay;
size_t paramSize;
LOGV("Reverb_setParameter, context %p, param %d, value16 %d, value32 %d",
pReverb, param, *(int16_t *)pValue, *(int32_t *)pValue);
if (pReverb->m_Preset) {
if (param != REVERB_PARAM_PRESET || size != sizeof(int16_t)) {
return -EINVAL;
}
value16 = *(int16_t *)pValue;
LOGV("set REVERB_PARAM_PRESET, preset %d", value16);
if (value16 < REVERB_PRESET_NONE || value16 > REVERB_PRESET_PLATE) {
return -EINVAL;
}
// REVERB_PRESET_NONE is mapped to bypass
if (value16 == REVERB_PRESET_NONE) {
pReverb->m_bBypass = 1;
} else {
pReverb->m_bBypass = 0;
pReverb->m_nNextRoom = value16 - 1;
}
} else {
switch (param) {
case REVERB_PARAM_ROOM_LEVEL:
case REVERB_PARAM_ROOM_HF_LEVEL:
case REVERB_PARAM_DECAY_HF_RATIO:
case REVERB_PARAM_REFLECTIONS_LEVEL:
case REVERB_PARAM_REVERB_LEVEL:
case REVERB_PARAM_DIFFUSION:
case REVERB_PARAM_DENSITY:
paramSize = sizeof(int16_t);
break;
case REVERB_PARAM_BYPASS:
case REVERB_PARAM_DECAY_TIME:
case REVERB_PARAM_REFLECTIONS_DELAY:
case REVERB_PARAM_REVERB_DELAY:
paramSize = sizeof(int32_t);
break;
case REVERB_PARAM_PROPERTIES:
paramSize = sizeof(t_reverb_settings);
break;
default:
return -EINVAL;
}
if (size != paramSize) {
return -EINVAL;
}
if (paramSize == sizeof(int16_t)) {
value16 = *(int16_t *) pValue;
} else if (paramSize == sizeof(int32_t)) {
value32 = *(int32_t *) pValue;
} else {
pProperties = (t_reverb_settings *) pValue;
}
pPreset = &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
switch (param) {
case REVERB_PARAM_BYPASS:
pReverb->m_bBypass = (uint16_t)value32;
break;
case REVERB_PARAM_PROPERTIES:
value16 = pProperties->roomLevel;
/* FALL THROUGH */
case REVERB_PARAM_ROOM_LEVEL:
// Convert millibels to linear 16 bit signed => m_nRoomLpfFwd
if (value16 > 0)
return -EINVAL;
temp = Effects_MillibelsToLinear16(value16);
pReverb->m_nRoomLpfFwd
= MULT_EG1_EG1(temp, (32767 - pReverb->m_nRoomLpfFbk));
LOGV("REVERB_PARAM_ROOM_LEVEL, gain %d, new m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
if (param == REVERB_PARAM_ROOM_LEVEL)
break;
value16 = pProperties->roomHFLevel;
/* FALL THROUGH */
case REVERB_PARAM_ROOM_HF_LEVEL:
// Limit to 0 , -40dB range because of low pass implementation
if (value16 > 0 || value16 < -4000)
return -EINVAL;
// Convert attenuation @ 5000H expressed in millibels to => m_nRoomLpfFbk
// m_nRoomLpfFbk is -a1 where a1 is the solution of:
// a1^2 + 2*(C-dG^2)/(1-dG^2)*a1 + 1 = 0 where:
// - C is cos(2*pi*5000/Fs) (pReverb->m_nCosWT_5KHz)
// - dG is G0/Gf (G0 is the linear gain at DC and Gf is the wanted gain at 5000Hz)
// Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
// while changing HF level
temp2 = (pReverb->m_nRoomLpfFwd << 15) / (32767
- pReverb->m_nRoomLpfFbk);
if (value16 == 0) {
pReverb->m_nRoomLpfFbk = 0;
} else {
int32_t dG2, b, delta;
// dG^2
temp = Effects_MillibelsToLinear16(value16);
LOGV("REVERB_PARAM_ROOM_HF_LEVEL, HF gain %d", temp);
temp = (1 << 30) / temp;
LOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain %d", temp);
dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
LOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain ^ 2 %d", dG2);
// b = 2*(C-dG^2)/(1-dG^2)
b = (int32_t) ((((int64_t) 1 << (15 + 1))
* ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
/ ((int64_t) 32767 - (int64_t) dG2));
// delta = b^2 - 4
delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
+ 2)));
LOGV_IF(delta > (1<<30), " delta overflow %d", delta);
LOGV("REVERB_PARAM_ROOM_HF_LEVEL, dG2 %d, b %d, delta %d, m_nCosWT_5KHz %d", dG2, b, delta, pReverb->m_nCosWT_5KHz);
// m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
pReverb->m_nRoomLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
}
LOGV("REVERB_PARAM_ROOM_HF_LEVEL, olg DC gain %d new m_nRoomLpfFbk %d, old m_nRoomLpfFwd %d",
temp2, pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFwd);
pReverb->m_nRoomLpfFwd
= MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRoomLpfFbk));
LOGV("REVERB_PARAM_ROOM_HF_LEVEL, new m_nRoomLpfFwd %d", pReverb->m_nRoomLpfFwd);
if (param == REVERB_PARAM_ROOM_HF_LEVEL)
break;
value32 = pProperties->decayTime;
/* FALL THROUGH */
case REVERB_PARAM_DECAY_TIME:
// Convert milliseconds to => m_nRvbLpfFwd (function of m_nRvbLpfFbk)
// convert ms to samples
value32 = (value32 * pReverb->m_nSamplingRate) / 1000;
// calculate valid decay time range as a function of current reverb delay and
// max feed back gain. Min value <=> -40dB in one pass, Max value <=> feedback gain = -1 dB
// Calculate attenuation for each round in late reverb given a total attenuation of -6000 millibels.
// g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
averageDelay = pReverb->m_nLateDelay - pReverb->m_nMaxExcursion;
averageDelay += ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn)
+ (pReverb->m_sAp1.m_zApOut - pReverb->m_sAp1.m_zApIn)) >> 1;
temp = (-6000 * averageDelay) / value32;
LOGV("REVERB_PARAM_DECAY_TIME, delay smps %d, DT smps %d, gain mB %d",averageDelay, value32, temp);
if (temp < -4000 || temp > -100)
return -EINVAL;
// calculate low pass gain by adding reverb input attenuation (pReverb->m_nLateGain) and substrating output
// xfade and sum gain (max +9dB)
temp -= Effects_Linear16ToMillibels(pReverb->m_nLateGain) + 900;
temp = Effects_MillibelsToLinear16(temp);
// DC gain (temp) = b0 / (1 + a1) = pReverb->m_nRvbLpfFwd / (32767 - pReverb->m_nRvbLpfFbk)
pReverb->m_nRvbLpfFwd
= MULT_EG1_EG1(temp, (32767 - pReverb->m_nRvbLpfFbk));
LOGV("REVERB_PARAM_DECAY_TIME, gain %d, new m_nRvbLpfFwd %d, old m_nRvbLpfFbk %d, reverb gain %d", temp, pReverb->m_nRvbLpfFwd, pReverb->m_nRvbLpfFbk, Effects_Linear16ToMillibels(pReverb->m_nLateGain));
if (param == REVERB_PARAM_DECAY_TIME)
break;
value16 = pProperties->decayHFRatio;
/* FALL THROUGH */
case REVERB_PARAM_DECAY_HF_RATIO:
// We limit max value to 1000 because reverb filter is lowpass only
if (value16 < 100 || value16 > 1000)
return -EINVAL;
// Convert per mille to => m_nLpfFwd, m_nLpfFbk
// Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
// while changing HF level
temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
if (value16 == 1000) {
pReverb->m_nRvbLpfFbk = 0;
} else {
int32_t dG2, b, delta;
temp = Effects_Linear16ToMillibels(temp2);
// G_5000Hz = G_DC * (1000/REVERB_PARAM_DECAY_HF_RATIO) in millibels
value32 = ((int32_t) 1000 << 15) / (int32_t) value16;
LOGV("REVERB_PARAM_DECAY_HF_RATIO, DC gain %d, DC gain mB %d, 1000/R %d", temp2, temp, value32);
temp = (int32_t) (((int64_t) temp * (int64_t) value32) >> 15);
if (temp < -4000) {
LOGV("REVERB_PARAM_DECAY_HF_RATIO HF gain overflow %d mB", temp);
temp = -4000;
}
temp = Effects_MillibelsToLinear16(temp);
LOGV("REVERB_PARAM_DECAY_HF_RATIO, HF gain %d", temp);
// dG^2
temp = (temp2 << 15) / temp;
dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
// b = 2*(C-dG^2)/(1-dG^2)
b = (int32_t) ((((int64_t) 1 << (15 + 1))
* ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
/ ((int64_t) 32767 - (int64_t) dG2));
// delta = b^2 - 4
delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
+ 2)));
// m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
pReverb->m_nRvbLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
LOGV("REVERB_PARAM_DECAY_HF_RATIO, dG2 %d, b %d, delta %d", dG2, b, delta);
}
LOGV("REVERB_PARAM_DECAY_HF_RATIO, gain %d, m_nRvbLpfFbk %d, m_nRvbLpfFwd %d", temp2, pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFwd);
pReverb->m_nRvbLpfFwd
= MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRvbLpfFbk));
if (param == REVERB_PARAM_DECAY_HF_RATIO)
break;
value16 = pProperties->reflectionsLevel;
/* FALL THROUGH */
case REVERB_PARAM_REFLECTIONS_LEVEL:
// We limit max value to 0 because gain is limited to 0dB
if (value16 > 0 || value16 < -6000)
return -EINVAL;
// Convert millibels to linear 16 bit signed and recompute m_sEarlyL.m_nGain[i] and m_sEarlyR.m_nGain[i].
value16 = Effects_MillibelsToLinear16(value16);
for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
pReverb->m_sEarlyL.m_nGain[i]
= MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],value16);
pReverb->m_sEarlyR.m_nGain[i]
= MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],value16);
}
pReverb->m_nEarlyGain = value16;
LOGV("REVERB_PARAM_REFLECTIONS_LEVEL, m_nEarlyGain %d", pReverb->m_nEarlyGain);
if (param == REVERB_PARAM_REFLECTIONS_LEVEL)
break;
value32 = pProperties->reflectionsDelay;
/* FALL THROUGH */
case REVERB_PARAM_REFLECTIONS_DELAY:
// We limit max value MAX_EARLY_TIME
// convert ms to time units
temp = (value32 * 65536) / 1000;
if (temp < 0 || temp > MAX_EARLY_TIME)
return -EINVAL;
maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
>> 16;
temp = (temp * pReverb->m_nSamplingRate) >> 16;
for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
temp2 = temp + (((int32_t) pPreset->m_sEarlyL.m_zDelay[i]
* pReverb->m_nSamplingRate) >> 16);
if (temp2 > maxSamples)
temp2 = maxSamples;
pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp2;
temp2 = temp + (((int32_t) pPreset->m_sEarlyR.m_zDelay[i]
* pReverb->m_nSamplingRate) >> 16);
if (temp2 > maxSamples)
temp2 = maxSamples;
pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp2;
}
pReverb->m_nEarlyDelay = temp;
LOGV("REVERB_PARAM_REFLECTIONS_DELAY, m_nEarlyDelay smps %d max smp delay %d", pReverb->m_nEarlyDelay, maxSamples);
// Convert milliseconds to sample count => m_nEarlyDelay
if (param == REVERB_PARAM_REFLECTIONS_DELAY)
break;
value16 = pProperties->reverbLevel;
/* FALL THROUGH */
case REVERB_PARAM_REVERB_LEVEL:
// We limit max value to 0 because gain is limited to 0dB
if (value16 > 0 || value16 < -6000)
return -EINVAL;
// Convert millibels to linear 16 bits (gange 0 - 8191) => m_nLateGain.
pReverb->m_nLateGain = Effects_MillibelsToLinear16(value16) >> 2;
LOGV("REVERB_PARAM_REVERB_LEVEL, m_nLateGain %d", pReverb->m_nLateGain);
if (param == REVERB_PARAM_REVERB_LEVEL)
break;
value32 = pProperties->reverbDelay;
/* FALL THROUGH */
case REVERB_PARAM_REVERB_DELAY:
// We limit max value to MAX_DELAY_TIME
// convert ms to time units
temp = (value32 * 65536) / 1000;
if (temp < 0 || temp > MAX_DELAY_TIME)
return -EINVAL;
maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
>> 16;
temp = (temp * pReverb->m_nSamplingRate) >> 16;
if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
temp = maxSamples - pReverb->m_nMaxExcursion;
}
if (temp < pReverb->m_nMaxExcursion) {
temp = pReverb->m_nMaxExcursion;
}
temp -= pReverb->m_nLateDelay;
pReverb->m_nDelay0Out += temp;
pReverb->m_nDelay1Out += temp;
pReverb->m_nLateDelay += temp;
LOGV("REVERB_PARAM_REVERB_DELAY, m_nLateDelay smps %d max smp delay %d", pReverb->m_nLateDelay, maxSamples);
// Convert milliseconds to sample count => m_nDelay1Out + m_nMaxExcursion
if (param == REVERB_PARAM_REVERB_DELAY)
break;
value16 = pProperties->diffusion;
/* FALL THROUGH */
case REVERB_PARAM_DIFFUSION:
if (value16 < 0 || value16 > 1000)
return -EINVAL;
// Convert per mille to m_sAp0.m_nApGain, m_sAp1.m_nApGain
pReverb->m_sAp0.m_nApGain = AP0_GAIN_BASE + ((int32_t) value16
* AP0_GAIN_RANGE) / 1000;
pReverb->m_sAp1.m_nApGain = AP1_GAIN_BASE + ((int32_t) value16
* AP1_GAIN_RANGE) / 1000;
LOGV("REVERB_PARAM_DIFFUSION, m_sAp0.m_nApGain %d m_sAp1.m_nApGain %d", pReverb->m_sAp0.m_nApGain, pReverb->m_sAp1.m_nApGain);
if (param == REVERB_PARAM_DIFFUSION)
break;
value16 = pProperties->density;
/* FALL THROUGH */
case REVERB_PARAM_DENSITY:
if (value16 < 0 || value16 > 1000)
return -EINVAL;
// Convert per mille to m_sAp0.m_zApOut, m_sAp1.m_zApOut
maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
temp = AP0_TIME_BASE + ((int32_t) value16 * AP0_TIME_RANGE) / 1000;
/*lint -e{702} shift for performance */
temp = (temp * pReverb->m_nSamplingRate) >> 16;
if (temp > maxSamples)
temp = maxSamples;
pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
LOGV("REVERB_PARAM_DENSITY, Ap0 delay smps %d", temp);
temp = AP1_TIME_BASE + ((int32_t) value16 * AP1_TIME_RANGE) / 1000;
/*lint -e{702} shift for performance */
temp = (temp * pReverb->m_nSamplingRate) >> 16;
if (temp > maxSamples)
temp = maxSamples;
pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
LOGV("Ap1 delay smps %d", temp);
break;
default:
break;
}
}
return 0;
} /* end Reverb_setParameter */
/*----------------------------------------------------------------------------
* ReverbUpdateXfade
*----------------------------------------------------------------------------
* Purpose:
* Update the xfade parameters as required
*
* Inputs:
* nNumSamplesToAdd - number of samples to write to buffer
*
* Outputs:
*
*
* Side Effects:
* - xfade parameters will be changed
*
*----------------------------------------------------------------------------
*/
static int ReverbUpdateXfade(reverb_object_t *pReverb, int nNumSamplesToAdd) {
uint16_t nOffset;
int16_t tempCos;
int16_t tempSin;
if (pReverb->m_nXfadeCounter >= pReverb->m_nXfadeInterval) {
/* update interval has elapsed, so reset counter */
pReverb->m_nXfadeCounter = 0;
// Pin the sin,cos values to min / max values to ensure that the
// modulated taps' coefs are zero (thus no clicks)
if (pReverb->m_nPhaseIncrement > 0) {
// if phase increment > 0, then sin -> 1, cos -> 0
pReverb->m_nSin = 32767;
pReverb->m_nCos = 0;
// reset the phase to match the sin, cos values
pReverb->m_nPhase = 32767;
// modulate the cross taps because their tap coefs are zero
nOffset = ReverbCalculateNoise(pReverb);
pReverb->m_zD1Cross = pReverb->m_nDelay1Out
- pReverb->m_nMaxExcursion + nOffset;
nOffset = ReverbCalculateNoise(pReverb);
pReverb->m_zD0Cross = pReverb->m_nDelay0Out
- pReverb->m_nMaxExcursion - nOffset;
} else {
// if phase increment < 0, then sin -> 0, cos -> 1
pReverb->m_nSin = 0;
pReverb->m_nCos = 32767;
// reset the phase to match the sin, cos values
pReverb->m_nPhase = -32768;
// modulate the self taps because their tap coefs are zero
nOffset = ReverbCalculateNoise(pReverb);
pReverb->m_zD0Self = pReverb->m_nDelay0Out
- pReverb->m_nMaxExcursion - nOffset;
nOffset = ReverbCalculateNoise(pReverb);
pReverb->m_zD1Self = pReverb->m_nDelay1Out
- pReverb->m_nMaxExcursion + nOffset;
} // end if-else (pReverb->m_nPhaseIncrement > 0)
// Reverse the direction of the sin,cos so that the
// tap whose coef was previously increasing now decreases
// and vice versa
pReverb->m_nPhaseIncrement = -pReverb->m_nPhaseIncrement;
} // end if counter >= update interval
//compute what phase will be next time
pReverb->m_nPhase += pReverb->m_nPhaseIncrement;
//calculate what the new sin and cos need to reach by the next update
ReverbCalculateSinCos(pReverb->m_nPhase, &tempSin, &tempCos);
//calculate the per-sample increment required to get there by the next update
/*lint -e{702} shift for performance */
pReverb->m_nSinIncrement = (tempSin - pReverb->m_nSin)
>> pReverb->m_nUpdatePeriodInBits;
/*lint -e{702} shift for performance */
pReverb->m_nCosIncrement = (tempCos - pReverb->m_nCos)
>> pReverb->m_nUpdatePeriodInBits;
/* increment update counter */
pReverb->m_nXfadeCounter += (uint16_t) nNumSamplesToAdd;
return 0;
} /* end ReverbUpdateXfade */
/*----------------------------------------------------------------------------
* ReverbCalculateNoise
*----------------------------------------------------------------------------
* Purpose:
* Calculate a noise sample and limit its value
*
* Inputs:
* nMaxExcursion - noise value is limited to this value
* pnNoise - return new noise sample in this (not limited)
*
* Outputs:
* new limited noise value
*
* Side Effects:
* - *pnNoise noise value is updated
*
*----------------------------------------------------------------------------
*/
static uint16_t ReverbCalculateNoise(reverb_object_t *pReverb) {
int16_t nNoise = pReverb->m_nNoise;
// calculate new noise value
if (pReverb->m_bUseNoise) {
nNoise = (int16_t) (nNoise * 5 + 1);
} else {
nNoise = 0;
}
pReverb->m_nNoise = nNoise;
// return the limited noise value
return (pReverb->m_nMaxExcursion & nNoise);
} /* end ReverbCalculateNoise */
/*----------------------------------------------------------------------------
* ReverbCalculateSinCos
*----------------------------------------------------------------------------
* Purpose:
* Calculate a new sin and cosine value based on the given phase
*
* Inputs:
* nPhase - phase angle
* pnSin - input old value, output new value
* pnCos - input old value, output new value
*
* Outputs:
*
* Side Effects:
* - *pnSin, *pnCos are updated
*
*----------------------------------------------------------------------------
*/
static int ReverbCalculateSinCos(int16_t nPhase, int16_t *pnSin, int16_t *pnCos) {
int32_t nTemp;
int32_t nNetAngle;
// -1 <= nPhase < 1
// However, for the calculation, we need a value
// that ranges from -1/2 to +1/2, so divide the phase by 2
/*lint -e{702} shift for performance */
nNetAngle = nPhase >> 1;
/*
Implement the following
sin(x) = (2-4*c)*x^2 + c + x
cos(x) = (2-4*c)*x^2 + c - x
where c = 1/sqrt(2)
using the a0 + x*(a1 + x*a2) approach
*/
/* limit the input "angle" to be between -0.5 and +0.5 */
if (nNetAngle > EG1_HALF) {
nNetAngle = EG1_HALF;
} else if (nNetAngle < EG1_MINUS_HALF) {
nNetAngle = EG1_MINUS_HALF;
}
/* calculate sin */
nTemp = EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
*pnSin = (int16_t) SATURATE_EG1(nTemp);
/* calculate cos */
nTemp = -EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
*pnCos = (int16_t) SATURATE_EG1(nTemp);
return 0;
} /* end ReverbCalculateSinCos */
/*----------------------------------------------------------------------------
* Reverb
*----------------------------------------------------------------------------
* Purpose:
* apply reverb to the given signal
*
* Inputs:
* nNu
* pnSin - input old value, output new value
* pnCos - input old value, output new value
*
* Outputs:
* number of samples actually reverberated
*
* Side Effects:
*
*----------------------------------------------------------------------------
*/
static int Reverb(reverb_object_t *pReverb, int nNumSamplesToAdd,
short *pOutputBuffer, short *pInputBuffer) {
int32_t i;
int32_t nDelayOut0;
int32_t nDelayOut1;
uint16_t nBase;
uint32_t nAddr;
int32_t nTemp1;
int32_t nTemp2;
int32_t nApIn;
int32_t nApOut;
int32_t j;
int32_t nEarlyOut;
int32_t tempValue;
// get the base address
nBase = pReverb->m_nBaseIndex;
for (i = 0; i < nNumSamplesToAdd; i++) {
// ********** Left Allpass - start
nApIn = *pInputBuffer;
if (!pReverb->m_Aux) {
pInputBuffer++;
}
// store to early delay line
nAddr = CIRCULAR(nBase, pReverb->m_nEarly0in, pReverb->m_nBufferMask);
pReverb->m_nDelayLine[nAddr] = (short) nApIn;
// left input = (left dry * m_nLateGain) + right feedback from previous period
nApIn = SATURATE(nApIn + pReverb->m_nRevFbkR);
nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
// fetch allpass delay line out
//nAddr = CIRCULAR(nBase, psAp0->m_zApOut, pReverb->m_nBufferMask);
nAddr
= CIRCULAR(nBase, pReverb->m_sAp0.m_zApOut, pReverb->m_nBufferMask);
nDelayOut0 = pReverb->m_nDelayLine[nAddr];
// calculate allpass feedforward; subtract the feedforward result
nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp0.m_nApGain);
nApOut = SATURATE(nDelayOut0 - nTemp1); // allpass output
// calculate allpass feedback; add the feedback result
nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp0.m_nApGain);
nTemp1 = SATURATE(nApIn + nTemp1);
// inject into allpass delay
nAddr
= CIRCULAR(nBase, pReverb->m_sAp0.m_zApIn, pReverb->m_nBufferMask);
pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
// inject allpass output into delay line
nAddr = CIRCULAR(nBase, pReverb->m_zD0In, pReverb->m_nBufferMask);
pReverb->m_nDelayLine[nAddr] = (short) nApOut;
// ********** Left Allpass - end
// ********** Right Allpass - start
nApIn = (*pInputBuffer++);
// store to early delay line
nAddr = CIRCULAR(nBase, pReverb->m_nEarly1in, pReverb->m_nBufferMask);
pReverb->m_nDelayLine[nAddr] = (short) nApIn;
// right input = (right dry * m_nLateGain) + left feedback from previous period
/*lint -e{702} use shift for performance */
nApIn = SATURATE(nApIn + pReverb->m_nRevFbkL);
nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
// fetch allpass delay line out
nAddr
= CIRCULAR(nBase, pReverb->m_sAp1.m_zApOut, pReverb->m_nBufferMask);
nDelayOut1 = pReverb->m_nDelayLine[nAddr];
// calculate allpass feedforward; subtract the feedforward result
nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp1.m_nApGain);
nApOut = SATURATE(nDelayOut1 - nTemp1); // allpass output
// calculate allpass feedback; add the feedback result
nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp1.m_nApGain);
nTemp1 = SATURATE(nApIn + nTemp1);
// inject into allpass delay
nAddr
= CIRCULAR(nBase, pReverb->m_sAp1.m_zApIn, pReverb->m_nBufferMask);
pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
// inject allpass output into delay line
nAddr = CIRCULAR(nBase, pReverb->m_zD1In, pReverb->m_nBufferMask);
pReverb->m_nDelayLine[nAddr] = (short) nApOut;
// ********** Right Allpass - end
// ********** D0 output - start
// fetch delay line self out
nAddr = CIRCULAR(nBase, pReverb->m_zD0Self, pReverb->m_nBufferMask);
nDelayOut0 = pReverb->m_nDelayLine[nAddr];
// calculate delay line self out
nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nSin);
// fetch delay line cross out
nAddr = CIRCULAR(nBase, pReverb->m_zD1Cross, pReverb->m_nBufferMask);
nDelayOut0 = pReverb->m_nDelayLine[nAddr];
// calculate delay line self out
nTemp2 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nCos);
// calculate unfiltered delay out
nDelayOut0 = SATURATE(nTemp1 + nTemp2);
// ********** D0 output - end
// ********** D1 output - start
// fetch delay line self out
nAddr = CIRCULAR(nBase, pReverb->m_zD1Self, pReverb->m_nBufferMask);
nDelayOut1 = pReverb->m_nDelayLine[nAddr];
// calculate delay line self out
nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nSin);
// fetch delay line cross out
nAddr = CIRCULAR(nBase, pReverb->m_zD0Cross, pReverb->m_nBufferMask);
nDelayOut1 = pReverb->m_nDelayLine[nAddr];
// calculate delay line self out
nTemp2 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nCos);
// calculate unfiltered delay out
nDelayOut1 = SATURATE(nTemp1 + nTemp2);
// ********** D1 output - end
// ********** mixer and feedback - start
// sum is fedback to right input (R + L)
nDelayOut0 = (short) SATURATE(nDelayOut0 + nDelayOut1);
// difference is feedback to left input (R - L)
/*lint -e{685} lint complains that it can't saturate negative */
nDelayOut1 = (short) SATURATE(nDelayOut1 - nDelayOut0);
// ********** mixer and feedback - end
// calculate lowpass filter (mixer scale factor included in LPF feedforward)
nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRvbLpfFwd);
nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkL, pReverb->m_nRvbLpfFbk);
// calculate filtered delay out and simultaneously update LPF state variable
// filtered delay output is stored in m_nRevFbkL
pReverb->m_nRevFbkL = (short) SATURATE(nTemp1 + nTemp2);
// calculate lowpass filter (mixer scale factor included in LPF feedforward)
nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRvbLpfFwd);
nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkR, pReverb->m_nRvbLpfFbk);
// calculate filtered delay out and simultaneously update LPF state variable
// filtered delay output is stored in m_nRevFbkR
pReverb->m_nRevFbkR = (short) SATURATE(nTemp1 + nTemp2);
// ********** start early reflection generator, left
//psEarly = &(pReverb->m_sEarlyL);
for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
// fetch delay line out
//nAddr = CIRCULAR(nBase, psEarly->m_zDelay[j], pReverb->m_nBufferMask);
nAddr
= CIRCULAR(nBase, pReverb->m_sEarlyL.m_zDelay[j], pReverb->m_nBufferMask);
nTemp1 = pReverb->m_nDelayLine[nAddr];
// calculate reflection
//nTemp1 = MULT_EG1_EG1(nDelayOut0, psEarly->m_nGain[j]);
nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyL.m_nGain[j]);
nDelayOut0 = SATURATE(nDelayOut0 + nTemp1);
} // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
// apply lowpass to early reflections and reverb output
//nTemp1 = MULT_EG1_EG1(nEarlyOut, psEarly->m_nRvbLpfFwd);
nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRoomLpfFwd);
//nTemp2 = MULT_EG1_EG1(psEarly->m_zLpf, psEarly->m_nLpfFbk);
nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfL, pReverb->m_nRoomLpfFbk);
// calculate filtered out and simultaneously update LPF state variable
// filtered output is stored in m_zOutLpfL
pReverb->m_zOutLpfL = (short) SATURATE(nTemp1 + nTemp2);
//sum with output buffer
tempValue = *pOutputBuffer;
*pOutputBuffer++ = (short) SATURATE(tempValue+pReverb->m_zOutLpfL);
// ********** end early reflection generator, left
// ********** start early reflection generator, right
//psEarly = &(pReverb->m_sEarlyR);
for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
// fetch delay line out
nAddr
= CIRCULAR(nBase, pReverb->m_sEarlyR.m_zDelay[j], pReverb->m_nBufferMask);
nTemp1 = pReverb->m_nDelayLine[nAddr];
// calculate reflection
nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyR.m_nGain[j]);
nDelayOut1 = SATURATE(nDelayOut1 + nTemp1);
} // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
// apply lowpass to early reflections
nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRoomLpfFwd);
nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfR, pReverb->m_nRoomLpfFbk);
// calculate filtered out and simultaneously update LPF state variable
// filtered output is stored in m_zOutLpfR
pReverb->m_zOutLpfR = (short) SATURATE(nTemp1 + nTemp2);
//sum with output buffer
tempValue = *pOutputBuffer;
*pOutputBuffer++ = (short) SATURATE(tempValue + pReverb->m_zOutLpfR);
// ********** end early reflection generator, right
// decrement base addr for next sample period
nBase--;
pReverb->m_nSin += pReverb->m_nSinIncrement;
pReverb->m_nCos += pReverb->m_nCosIncrement;
} // end for (i=0; i < nNumSamplesToAdd; i++)
// store the most up to date version
pReverb->m_nBaseIndex = nBase;
return 0;
} /* end Reverb */
/*----------------------------------------------------------------------------
* ReverbUpdateRoom
*----------------------------------------------------------------------------
* Purpose:
* Update the room's preset parameters as required
*
* Inputs:
*
* Outputs:
*
*
* Side Effects:
* - reverb paramters (fbk, fwd, etc) will be changed
* - m_nCurrentRoom := m_nNextRoom
*----------------------------------------------------------------------------
*/
static int ReverbUpdateRoom(reverb_object_t *pReverb, bool fullUpdate) {
int temp;
int i;
int maxSamples;
int earlyDelay;
int earlyGain;
reverb_preset_t *pPreset =
&pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
if (fullUpdate) {
pReverb->m_nRvbLpfFwd = pPreset->m_nRvbLpfFwd;
pReverb->m_nRvbLpfFbk = pPreset->m_nRvbLpfFbk;
pReverb->m_nEarlyGain = pPreset->m_nEarlyGain;
//stored as time based, convert to sample based
pReverb->m_nLateGain = pPreset->m_nLateGain;
pReverb->m_nRoomLpfFbk = pPreset->m_nRoomLpfFbk;
pReverb->m_nRoomLpfFwd = pPreset->m_nRoomLpfFwd;
// set the early reflections gains
earlyGain = pPreset->m_nEarlyGain;
for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
pReverb->m_sEarlyL.m_nGain[i]
= MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],earlyGain);
pReverb->m_sEarlyR.m_nGain[i]
= MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],earlyGain);
}
pReverb->m_nMaxExcursion = pPreset->m_nMaxExcursion;
pReverb->m_sAp0.m_nApGain = pPreset->m_nAp0_ApGain;
pReverb->m_sAp1.m_nApGain = pPreset->m_nAp1_ApGain;
// set the early reflections delay
earlyDelay = ((int) pPreset->m_nEarlyDelay * pReverb->m_nSamplingRate)
>> 16;
pReverb->m_nEarlyDelay = earlyDelay;
maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
>> 16;
for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
//stored as time based, convert to sample based
temp = earlyDelay + (((int) pPreset->m_sEarlyL.m_zDelay[i]
* pReverb->m_nSamplingRate) >> 16);
if (temp > maxSamples)
temp = maxSamples;
pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp;
//stored as time based, convert to sample based
temp = earlyDelay + (((int) pPreset->m_sEarlyR.m_zDelay[i]
* pReverb->m_nSamplingRate) >> 16);
if (temp > maxSamples)
temp = maxSamples;
pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp;
}
maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
>> 16;
//stored as time based, convert to sample based
/*lint -e{702} shift for performance */
temp = (pPreset->m_nLateDelay * pReverb->m_nSamplingRate) >> 16;
if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
temp = maxSamples - pReverb->m_nMaxExcursion;
}
temp -= pReverb->m_nLateDelay;
pReverb->m_nDelay0Out += temp;
pReverb->m_nDelay1Out += temp;
pReverb->m_nLateDelay += temp;
maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
//stored as time based, convert to absolute sample value
temp = pPreset->m_nAp0_ApOut;
/*lint -e{702} shift for performance */
temp = (temp * pReverb->m_nSamplingRate) >> 16;
if (temp > maxSamples)
temp = maxSamples;
pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
//stored as time based, convert to absolute sample value
temp = pPreset->m_nAp1_ApOut;
/*lint -e{702} shift for performance */
temp = (temp * pReverb->m_nSamplingRate) >> 16;
if (temp > maxSamples)
temp = maxSamples;
pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
//gpsReverbObject->m_sAp1.m_zApOut = pPreset->m_nAp1_ApOut;
}
//stored as time based, convert to sample based
temp = pPreset->m_nXfadeInterval;
/*lint -e{702} shift for performance */
temp = (temp * pReverb->m_nSamplingRate) >> 16;
pReverb->m_nXfadeInterval = (uint16_t) temp;
//gsReverbObject.m_nXfadeInterval = pPreset->m_nXfadeInterval;
pReverb->m_nXfadeCounter = pReverb->m_nXfadeInterval + 1; // force update on first iteration
pReverb->m_nCurrentRoom = pReverb->m_nNextRoom;
return 0;
} /* end ReverbUpdateRoom */
/*----------------------------------------------------------------------------
* ReverbReadInPresets()
*----------------------------------------------------------------------------
* Purpose: sets global reverb preset bank to defaults
*
* Inputs:
*
* Outputs:
*
*----------------------------------------------------------------------------
*/
static int ReverbReadInPresets(reverb_object_t *pReverb) {
int preset;
// this is for test only. OpenSL ES presets are mapped to 4 presets.
// REVERB_PRESET_NONE is mapped to bypass
for (preset = 0; preset < REVERB_NUM_PRESETS; preset++) {
reverb_preset_t *pPreset = &pReverb->m_sPreset.m_sPreset[preset];
switch (preset + 1) {
case REVERB_PRESET_PLATE:
case REVERB_PRESET_SMALLROOM:
pPreset->m_nRvbLpfFbk = 5077;
pPreset->m_nRvbLpfFwd = 11076;
pPreset->m_nEarlyGain = 27690;
pPreset->m_nEarlyDelay = 1311;
pPreset->m_nLateGain = 8191;
pPreset->m_nLateDelay = 3932;
pPreset->m_nRoomLpfFbk = 3692;
pPreset->m_nRoomLpfFwd = 20474;
pPreset->m_sEarlyL.m_zDelay[0] = 1376;
pPreset->m_sEarlyL.m_nGain[0] = 22152;
pPreset->m_sEarlyL.m_zDelay[1] = 1462;
pPreset->m_sEarlyL.m_nGain[1] = 17537;
pPreset->m_sEarlyL.m_zDelay[2] = 0;
pPreset->m_sEarlyL.m_nGain[2] = 14768;
pPreset->m_sEarlyL.m_zDelay[3] = 1835;
pPreset->m_sEarlyL.m_nGain[3] = 14307;
pPreset->m_sEarlyL.m_zDelay[4] = 0;
pPreset->m_sEarlyL.m_nGain[4] = 13384;
pPreset->m_sEarlyR.m_zDelay[0] = 721;
pPreset->m_sEarlyR.m_nGain[0] = 20306;
pPreset->m_sEarlyR.m_zDelay[1] = 2621;
pPreset->m_sEarlyR.m_nGain[1] = 17537;
pPreset->m_sEarlyR.m_zDelay[2] = 0;
pPreset->m_sEarlyR.m_nGain[2] = 14768;
pPreset->m_sEarlyR.m_zDelay[3] = 0;
pPreset->m_sEarlyR.m_nGain[3] = 16153;
pPreset->m_sEarlyR.m_zDelay[4] = 0;
pPreset->m_sEarlyR.m_nGain[4] = 13384;
pPreset->m_nMaxExcursion = 127;
pPreset->m_nXfadeInterval = 6470; //6483;
pPreset->m_nAp0_ApGain = 14768;
pPreset->m_nAp0_ApOut = 792;
pPreset->m_nAp1_ApGain = 14777;
pPreset->m_nAp1_ApOut = 1191;
pPreset->m_rfu4 = 0;
pPreset->m_rfu5 = 0;
pPreset->m_rfu6 = 0;
pPreset->m_rfu7 = 0;
pPreset->m_rfu8 = 0;
pPreset->m_rfu9 = 0;
pPreset->m_rfu10 = 0;
break;
case REVERB_PRESET_MEDIUMROOM:
case REVERB_PRESET_LARGEROOM:
pPreset->m_nRvbLpfFbk = 5077;
pPreset->m_nRvbLpfFwd = 12922;
pPreset->m_nEarlyGain = 27690;
pPreset->m_nEarlyDelay = 1311;
pPreset->m_nLateGain = 8191;
pPreset->m_nLateDelay = 3932;
pPreset->m_nRoomLpfFbk = 3692;
pPreset->m_nRoomLpfFwd = 21703;
pPreset->m_sEarlyL.m_zDelay[0] = 1376;
pPreset->m_sEarlyL.m_nGain[0] = 22152;
pPreset->m_sEarlyL.m_zDelay[1] = 1462;
pPreset->m_sEarlyL.m_nGain[1] = 17537;
pPreset->m_sEarlyL.m_zDelay[2] = 0;
pPreset->m_sEarlyL.m_nGain[2] = 14768;
pPreset->m_sEarlyL.m_zDelay[3] = 1835;
pPreset->m_sEarlyL.m_nGain[3] = 14307;
pPreset->m_sEarlyL.m_zDelay[4] = 0;
pPreset->m_sEarlyL.m_nGain[4] = 13384;
pPreset->m_sEarlyR.m_zDelay[0] = 721;
pPreset->m_sEarlyR.m_nGain[0] = 20306;
pPreset->m_sEarlyR.m_zDelay[1] = 2621;
pPreset->m_sEarlyR.m_nGain[1] = 17537;
pPreset->m_sEarlyR.m_zDelay[2] = 0;
pPreset->m_sEarlyR.m_nGain[2] = 14768;
pPreset->m_sEarlyR.m_zDelay[3] = 0;
pPreset->m_sEarlyR.m_nGain[3] = 16153;
pPreset->m_sEarlyR.m_zDelay[4] = 0;
pPreset->m_sEarlyR.m_nGain[4] = 13384;
pPreset->m_nMaxExcursion = 127;
pPreset->m_nXfadeInterval = 6449;
pPreset->m_nAp0_ApGain = 15691;
pPreset->m_nAp0_ApOut = 774;
pPreset->m_nAp1_ApGain = 16317;
pPreset->m_nAp1_ApOut = 1155;
pPreset->m_rfu4 = 0;
pPreset->m_rfu5 = 0;
pPreset->m_rfu6 = 0;
pPreset->m_rfu7 = 0;
pPreset->m_rfu8 = 0;
pPreset->m_rfu9 = 0;
pPreset->m_rfu10 = 0;
break;
case REVERB_PRESET_MEDIUMHALL:
pPreset->m_nRvbLpfFbk = 6461;
pPreset->m_nRvbLpfFwd = 14307;
pPreset->m_nEarlyGain = 27690;
pPreset->m_nEarlyDelay = 1311;
pPreset->m_nLateGain = 8191;
pPreset->m_nLateDelay = 3932;
pPreset->m_nRoomLpfFbk = 3692;
pPreset->m_nRoomLpfFwd = 24569;
pPreset->m_sEarlyL.m_zDelay[0] = 1376;
pPreset->m_sEarlyL.m_nGain[0] = 22152;
pPreset->m_sEarlyL.m_zDelay[1] = 1462;
pPreset->m_sEarlyL.m_nGain[1] = 17537;
pPreset->m_sEarlyL.m_zDelay[2] = 0;
pPreset->m_sEarlyL.m_nGain[2] = 14768;
pPreset->m_sEarlyL.m_zDelay[3] = 1835;
pPreset->m_sEarlyL.m_nGain[3] = 14307;
pPreset->m_sEarlyL.m_zDelay[4] = 0;
pPreset->m_sEarlyL.m_nGain[4] = 13384;
pPreset->m_sEarlyR.m_zDelay[0] = 721;
pPreset->m_sEarlyR.m_nGain[0] = 20306;
pPreset->m_sEarlyR.m_zDelay[1] = 2621;
pPreset->m_sEarlyR.m_nGain[1] = 17537;
pPreset->m_sEarlyR.m_zDelay[2] = 0;
pPreset->m_sEarlyR.m_nGain[2] = 14768;
pPreset->m_sEarlyR.m_zDelay[3] = 0;
pPreset->m_sEarlyR.m_nGain[3] = 16153;
pPreset->m_sEarlyR.m_zDelay[4] = 0;
pPreset->m_sEarlyR.m_nGain[4] = 13384;
pPreset->m_nMaxExcursion = 127;
pPreset->m_nXfadeInterval = 6391;
pPreset->m_nAp0_ApGain = 15230;
pPreset->m_nAp0_ApOut = 708;
pPreset->m_nAp1_ApGain = 15547;
pPreset->m_nAp1_ApOut = 1023;
pPreset->m_rfu4 = 0;
pPreset->m_rfu5 = 0;
pPreset->m_rfu6 = 0;
pPreset->m_rfu7 = 0;
pPreset->m_rfu8 = 0;
pPreset->m_rfu9 = 0;
pPreset->m_rfu10 = 0;
break;
case REVERB_PRESET_LARGEHALL:
pPreset->m_nRvbLpfFbk = 8307;
pPreset->m_nRvbLpfFwd = 14768;
pPreset->m_nEarlyGain = 27690;
pPreset->m_nEarlyDelay = 1311;
pPreset->m_nLateGain = 8191;
pPreset->m_nLateDelay = 3932;
pPreset->m_nRoomLpfFbk = 3692;
pPreset->m_nRoomLpfFwd = 24569;
pPreset->m_sEarlyL.m_zDelay[0] = 1376;
pPreset->m_sEarlyL.m_nGain[0] = 22152;
pPreset->m_sEarlyL.m_zDelay[1] = 2163;
pPreset->m_sEarlyL.m_nGain[1] = 17537;
pPreset->m_sEarlyL.m_zDelay[2] = 0;
pPreset->m_sEarlyL.m_nGain[2] = 14768;
pPreset->m_sEarlyL.m_zDelay[3] = 1835;
pPreset->m_sEarlyL.m_nGain[3] = 14307;
pPreset->m_sEarlyL.m_zDelay[4] = 0;
pPreset->m_sEarlyL.m_nGain[4] = 13384;
pPreset->m_sEarlyR.m_zDelay[0] = 721;
pPreset->m_sEarlyR.m_nGain[0] = 20306;
pPreset->m_sEarlyR.m_zDelay[1] = 2621;
pPreset->m_sEarlyR.m_nGain[1] = 17537;
pPreset->m_sEarlyR.m_zDelay[2] = 0;
pPreset->m_sEarlyR.m_nGain[2] = 14768;
pPreset->m_sEarlyR.m_zDelay[3] = 0;
pPreset->m_sEarlyR.m_nGain[3] = 16153;
pPreset->m_sEarlyR.m_zDelay[4] = 0;
pPreset->m_sEarlyR.m_nGain[4] = 13384;
pPreset->m_nMaxExcursion = 127;
pPreset->m_nXfadeInterval = 6388;
pPreset->m_nAp0_ApGain = 15691;
pPreset->m_nAp0_ApOut = 711;
pPreset->m_nAp1_ApGain = 16317;
pPreset->m_nAp1_ApOut = 1029;
pPreset->m_rfu4 = 0;
pPreset->m_rfu5 = 0;
pPreset->m_rfu6 = 0;
pPreset->m_rfu7 = 0;
pPreset->m_rfu8 = 0;
pPreset->m_rfu9 = 0;
pPreset->m_rfu10 = 0;
break;
}
}
return 0;
}
audio_effect_library_t AUDIO_EFFECT_LIBRARY_INFO_SYM = {
.tag = AUDIO_EFFECT_LIBRARY_TAG,
.version = EFFECT_LIBRARY_API_VERSION,
.name = "Test Equalizer Library",
.implementor = "The Android Open Source Project",
.query_num_effects = EffectQueryNumberEffects,
.query_effect = EffectQueryEffect,
.create_effect = EffectCreate,
.release_effect = EffectRelease,
.get_descriptor = EffectGetDescriptor,
};