blob: cee704f78b17844fb7399033f4ffdfec09513621 [file] [log] [blame]
/*
**
** Copyright 2007, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#define LOG_TAG "AudioFlinger"
//#define LOG_NDEBUG 0
#include <math.h>
#include <signal.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <utils/Log.h>
#include <utils/Trace.h>
#include <binder/Parcel.h>
#include <binder/IPCThreadState.h>
#include <utils/String16.h>
#include <utils/threads.h>
#include <utils/Atomic.h>
#include <cutils/bitops.h>
#include <cutils/properties.h>
#include <cutils/compiler.h>
#undef ADD_BATTERY_DATA
#ifdef ADD_BATTERY_DATA
#include <media/IMediaPlayerService.h>
#include <media/IMediaDeathNotifier.h>
#endif
#include <private/media/AudioTrackShared.h>
#include <private/media/AudioEffectShared.h>
#include <system/audio.h>
#include <hardware/audio.h>
#include "AudioMixer.h"
#include "AudioFlinger.h"
#include "ServiceUtilities.h"
#include <media/EffectsFactoryApi.h>
#include <audio_effects/effect_visualizer.h>
#include <audio_effects/effect_ns.h>
#include <audio_effects/effect_aec.h>
#include <audio_utils/primitives.h>
#include <powermanager/PowerManager.h>
// #define DEBUG_CPU_USAGE 10 // log statistics every n wall clock seconds
#ifdef DEBUG_CPU_USAGE
#include <cpustats/CentralTendencyStatistics.h>
#include <cpustats/ThreadCpuUsage.h>
#endif
#include <common_time/cc_helper.h>
#include <common_time/local_clock.h>
#include "FastMixer.h"
// NBAIO implementations
#include <media/nbaio/AudioStreamOutSink.h>
#include <media/nbaio/MonoPipe.h>
#include <media/nbaio/MonoPipeReader.h>
#include <media/nbaio/Pipe.h>
#include <media/nbaio/PipeReader.h>
#include <media/nbaio/SourceAudioBufferProvider.h>
#include "SchedulingPolicyService.h"
// ----------------------------------------------------------------------------
// Note: the following macro is used for extremely verbose logging message. In
// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
// 0; but one side effect of this is to turn all LOGV's as well. Some messages
// are so verbose that we want to suppress them even when we have ALOG_ASSERT
// turned on. Do not uncomment the #def below unless you really know what you
// are doing and want to see all of the extremely verbose messages.
//#define VERY_VERY_VERBOSE_LOGGING
#ifdef VERY_VERY_VERBOSE_LOGGING
#define ALOGVV ALOGV
#else
#define ALOGVV(a...) do { } while(0)
#endif
namespace android {
static const char kDeadlockedString[] = "AudioFlinger may be deadlocked\n";
static const char kHardwareLockedString[] = "Hardware lock is taken\n";
static const float MAX_GAIN = 4096.0f;
static const uint32_t MAX_GAIN_INT = 0x1000;
// retry counts for buffer fill timeout
// 50 * ~20msecs = 1 second
static const int8_t kMaxTrackRetries = 50;
static const int8_t kMaxTrackStartupRetries = 50;
// allow less retry attempts on direct output thread.
// direct outputs can be a scarce resource in audio hardware and should
// be released as quickly as possible.
static const int8_t kMaxTrackRetriesDirect = 2;
static const int kDumpLockRetries = 50;
static const int kDumpLockSleepUs = 20000;
// don't warn about blocked writes or record buffer overflows more often than this
static const nsecs_t kWarningThrottleNs = seconds(5);
// RecordThread loop sleep time upon application overrun or audio HAL read error
static const int kRecordThreadSleepUs = 5000;
// maximum time to wait for setParameters to complete
static const nsecs_t kSetParametersTimeoutNs = seconds(2);
// minimum sleep time for the mixer thread loop when tracks are active but in underrun
static const uint32_t kMinThreadSleepTimeUs = 5000;
// maximum divider applied to the active sleep time in the mixer thread loop
static const uint32_t kMaxThreadSleepTimeShift = 2;
// minimum normal mix buffer size, expressed in milliseconds rather than frames
static const uint32_t kMinNormalMixBufferSizeMs = 20;
// maximum normal mix buffer size
static const uint32_t kMaxNormalMixBufferSizeMs = 24;
nsecs_t AudioFlinger::mStandbyTimeInNsecs = kDefaultStandbyTimeInNsecs;
// Whether to use fast mixer
static const enum {
FastMixer_Never, // never initialize or use: for debugging only
FastMixer_Always, // always initialize and use, even if not needed: for debugging only
// normal mixer multiplier is 1
FastMixer_Static, // initialize if needed, then use all the time if initialized,
// multiplier is calculated based on min & max normal mixer buffer size
FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load,
// multiplier is calculated based on min & max normal mixer buffer size
// FIXME for FastMixer_Dynamic:
// Supporting this option will require fixing HALs that can't handle large writes.
// For example, one HAL implementation returns an error from a large write,
// and another HAL implementation corrupts memory, possibly in the sample rate converter.
// We could either fix the HAL implementations, or provide a wrapper that breaks
// up large writes into smaller ones, and the wrapper would need to deal with scheduler.
} kUseFastMixer = FastMixer_Static;
static uint32_t gScreenState; // incremented by 2 when screen state changes, bit 0 == 1 means "off"
// AudioFlinger::setParameters() updates, other threads read w/o lock
// Priorities for requestPriority
static const int kPriorityAudioApp = 2;
static const int kPriorityFastMixer = 3;
// IAudioFlinger::createTrack() reports back to client the total size of shared memory area
// for the track. The client then sub-divides this into smaller buffers for its use.
// Currently the client uses double-buffering by default, but doesn't tell us about that.
// So for now we just assume that client is double-buffered.
// FIXME It would be better for client to tell AudioFlinger whether it wants double-buffering or
// N-buffering, so AudioFlinger could allocate the right amount of memory.
// See the client's minBufCount and mNotificationFramesAct calculations for details.
static const int kFastTrackMultiplier = 2;
// ----------------------------------------------------------------------------
#ifdef ADD_BATTERY_DATA
// To collect the amplifier usage
static void addBatteryData(uint32_t params) {
sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
if (service == NULL) {
// it already logged
return;
}
service->addBatteryData(params);
}
#endif
static int load_audio_interface(const char *if_name, audio_hw_device_t **dev)
{
const hw_module_t *mod;
int rc;
rc = hw_get_module_by_class(AUDIO_HARDWARE_MODULE_ID, if_name, &mod);
ALOGE_IF(rc, "%s couldn't load audio hw module %s.%s (%s)", __func__,
AUDIO_HARDWARE_MODULE_ID, if_name, strerror(-rc));
if (rc) {
goto out;
}
rc = audio_hw_device_open(mod, dev);
ALOGE_IF(rc, "%s couldn't open audio hw device in %s.%s (%s)", __func__,
AUDIO_HARDWARE_MODULE_ID, if_name, strerror(-rc));
if (rc) {
goto out;
}
if ((*dev)->common.version != AUDIO_DEVICE_API_VERSION_CURRENT) {
ALOGE("%s wrong audio hw device version %04x", __func__, (*dev)->common.version);
rc = BAD_VALUE;
goto out;
}
return 0;
out:
*dev = NULL;
return rc;
}
// ----------------------------------------------------------------------------
AudioFlinger::AudioFlinger()
: BnAudioFlinger(),
mPrimaryHardwareDev(NULL),
mHardwareStatus(AUDIO_HW_IDLE),
mMasterVolume(1.0f),
mMasterMute(false),
mNextUniqueId(1),
mMode(AUDIO_MODE_INVALID),
mBtNrecIsOff(false)
{
}
void AudioFlinger::onFirstRef()
{
int rc = 0;
Mutex::Autolock _l(mLock);
/* TODO: move all this work into an Init() function */
char val_str[PROPERTY_VALUE_MAX] = { 0 };
if (property_get("ro.audio.flinger_standbytime_ms", val_str, NULL) >= 0) {
uint32_t int_val;
if (1 == sscanf(val_str, "%u", &int_val)) {
mStandbyTimeInNsecs = milliseconds(int_val);
ALOGI("Using %u mSec as standby time.", int_val);
} else {
mStandbyTimeInNsecs = kDefaultStandbyTimeInNsecs;
ALOGI("Using default %u mSec as standby time.",
(uint32_t)(mStandbyTimeInNsecs / 1000000));
}
}
mMode = AUDIO_MODE_NORMAL;
}
AudioFlinger::~AudioFlinger()
{
while (!mRecordThreads.isEmpty()) {
// closeInput_nonvirtual() will remove specified entry from mRecordThreads
closeInput_nonvirtual(mRecordThreads.keyAt(0));
}
while (!mPlaybackThreads.isEmpty()) {
// closeOutput_nonvirtual() will remove specified entry from mPlaybackThreads
closeOutput_nonvirtual(mPlaybackThreads.keyAt(0));
}
for (size_t i = 0; i < mAudioHwDevs.size(); i++) {
// no mHardwareLock needed, as there are no other references to this
audio_hw_device_close(mAudioHwDevs.valueAt(i)->hwDevice());
delete mAudioHwDevs.valueAt(i);
}
}
static const char * const audio_interfaces[] = {
AUDIO_HARDWARE_MODULE_ID_PRIMARY,
AUDIO_HARDWARE_MODULE_ID_A2DP,
AUDIO_HARDWARE_MODULE_ID_USB,
};
#define ARRAY_SIZE(x) (sizeof((x))/sizeof(((x)[0])))
AudioFlinger::AudioHwDevice* AudioFlinger::findSuitableHwDev_l(
audio_module_handle_t module,
audio_devices_t devices)
{
// if module is 0, the request comes from an old policy manager and we should load
// well known modules
if (module == 0) {
ALOGW("findSuitableHwDev_l() loading well know audio hw modules");
for (size_t i = 0; i < ARRAY_SIZE(audio_interfaces); i++) {
loadHwModule_l(audio_interfaces[i]);
}
// then try to find a module supporting the requested device.
for (size_t i = 0; i < mAudioHwDevs.size(); i++) {
AudioHwDevice *audioHwDevice = mAudioHwDevs.valueAt(i);
audio_hw_device_t *dev = audioHwDevice->hwDevice();
if ((dev->get_supported_devices != NULL) &&
(dev->get_supported_devices(dev) & devices) == devices)
return audioHwDevice;
}
} else {
// check a match for the requested module handle
AudioHwDevice *audioHwDevice = mAudioHwDevs.valueFor(module);
if (audioHwDevice != NULL) {
return audioHwDevice;
}
}
return NULL;
}
void AudioFlinger::dumpClients(int fd, const Vector<String16>& args)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
result.append("Clients:\n");
for (size_t i = 0; i < mClients.size(); ++i) {
sp<Client> client = mClients.valueAt(i).promote();
if (client != 0) {
snprintf(buffer, SIZE, " pid: %d\n", client->pid());
result.append(buffer);
}
}
result.append("Global session refs:\n");
result.append(" session pid count\n");
for (size_t i = 0; i < mAudioSessionRefs.size(); i++) {
AudioSessionRef *r = mAudioSessionRefs[i];
snprintf(buffer, SIZE, " %7d %3d %3d\n", r->mSessionid, r->mPid, r->mCnt);
result.append(buffer);
}
write(fd, result.string(), result.size());
}
void AudioFlinger::dumpInternals(int fd, const Vector<String16>& args)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
hardware_call_state hardwareStatus = mHardwareStatus;
snprintf(buffer, SIZE, "Hardware status: %d\n"
"Standby Time mSec: %u\n",
hardwareStatus,
(uint32_t)(mStandbyTimeInNsecs / 1000000));
result.append(buffer);
write(fd, result.string(), result.size());
}
void AudioFlinger::dumpPermissionDenial(int fd, const Vector<String16>& args)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
snprintf(buffer, SIZE, "Permission Denial: "
"can't dump AudioFlinger from pid=%d, uid=%d\n",
IPCThreadState::self()->getCallingPid(),
IPCThreadState::self()->getCallingUid());
result.append(buffer);
write(fd, result.string(), result.size());
}
static bool tryLock(Mutex& mutex)
{
bool locked = false;
for (int i = 0; i < kDumpLockRetries; ++i) {
if (mutex.tryLock() == NO_ERROR) {
locked = true;
break;
}
usleep(kDumpLockSleepUs);
}
return locked;
}
status_t AudioFlinger::dump(int fd, const Vector<String16>& args)
{
if (!dumpAllowed()) {
dumpPermissionDenial(fd, args);
} else {
// get state of hardware lock
bool hardwareLocked = tryLock(mHardwareLock);
if (!hardwareLocked) {
String8 result(kHardwareLockedString);
write(fd, result.string(), result.size());
} else {
mHardwareLock.unlock();
}
bool locked = tryLock(mLock);
// failed to lock - AudioFlinger is probably deadlocked
if (!locked) {
String8 result(kDeadlockedString);
write(fd, result.string(), result.size());
}
dumpClients(fd, args);
dumpInternals(fd, args);
// dump playback threads
for (size_t i = 0; i < mPlaybackThreads.size(); i++) {
mPlaybackThreads.valueAt(i)->dump(fd, args);
}
// dump record threads
for (size_t i = 0; i < mRecordThreads.size(); i++) {
mRecordThreads.valueAt(i)->dump(fd, args);
}
// dump all hardware devs
for (size_t i = 0; i < mAudioHwDevs.size(); i++) {
audio_hw_device_t *dev = mAudioHwDevs.valueAt(i)->hwDevice();
dev->dump(dev, fd);
}
// dump the serially shared record tee sink
if (mRecordTeeSource != 0) {
dumpTee(fd, mRecordTeeSource);
}
if (locked) mLock.unlock();
}
return NO_ERROR;
}
sp<AudioFlinger::Client> AudioFlinger::registerPid_l(pid_t pid)
{
// If pid is already in the mClients wp<> map, then use that entry
// (for which promote() is always != 0), otherwise create a new entry and Client.
sp<Client> client = mClients.valueFor(pid).promote();
if (client == 0) {
client = new Client(this, pid);
mClients.add(pid, client);
}
return client;
}
// IAudioFlinger interface
sp<IAudioTrack> AudioFlinger::createTrack(
pid_t pid,
audio_stream_type_t streamType,
uint32_t sampleRate,
audio_format_t format,
audio_channel_mask_t channelMask,
size_t frameCount,
IAudioFlinger::track_flags_t *flags,
const sp<IMemory>& sharedBuffer,
audio_io_handle_t output,
pid_t tid,
int *sessionId,
status_t *status)
{
sp<PlaybackThread::Track> track;
sp<TrackHandle> trackHandle;
sp<Client> client;
status_t lStatus;
int lSessionId;
// client AudioTrack::set already implements AUDIO_STREAM_DEFAULT => AUDIO_STREAM_MUSIC,
// but if someone uses binder directly they could bypass that and cause us to crash
if (uint32_t(streamType) >= AUDIO_STREAM_CNT) {
ALOGE("createTrack() invalid stream type %d", streamType);
lStatus = BAD_VALUE;
goto Exit;
}
// client is responsible for conversion of 8-bit PCM to 16-bit PCM,
// and we don't yet support 8.24 or 32-bit PCM
if (audio_is_linear_pcm(format) && format != AUDIO_FORMAT_PCM_16_BIT) {
ALOGE("createTrack() invalid format %d", format);
lStatus = BAD_VALUE;
goto Exit;
}
{
Mutex::Autolock _l(mLock);
PlaybackThread *thread = checkPlaybackThread_l(output);
PlaybackThread *effectThread = NULL;
if (thread == NULL) {
ALOGE("unknown output thread");
lStatus = BAD_VALUE;
goto Exit;
}
client = registerPid_l(pid);
ALOGV("createTrack() sessionId: %d", (sessionId == NULL) ? -2 : *sessionId);
if (sessionId != NULL && *sessionId != AUDIO_SESSION_OUTPUT_MIX) {
// check if an effect chain with the same session ID is present on another
// output thread and move it here.
for (size_t i = 0; i < mPlaybackThreads.size(); i++) {
sp<PlaybackThread> t = mPlaybackThreads.valueAt(i);
if (mPlaybackThreads.keyAt(i) != output) {
uint32_t sessions = t->hasAudioSession(*sessionId);
if (sessions & PlaybackThread::EFFECT_SESSION) {
effectThread = t.get();
break;
}
}
}
lSessionId = *sessionId;
} else {
// if no audio session id is provided, create one here
lSessionId = nextUniqueId();
if (sessionId != NULL) {
*sessionId = lSessionId;
}
}
ALOGV("createTrack() lSessionId: %d", lSessionId);
track = thread->createTrack_l(client, streamType, sampleRate, format,
channelMask, frameCount, sharedBuffer, lSessionId, flags, tid, &lStatus);
// move effect chain to this output thread if an effect on same session was waiting
// for a track to be created
if (lStatus == NO_ERROR && effectThread != NULL) {
Mutex::Autolock _dl(thread->mLock);
Mutex::Autolock _sl(effectThread->mLock);
moveEffectChain_l(lSessionId, effectThread, thread, true);
}
// Look for sync events awaiting for a session to be used.
for (int i = 0; i < (int)mPendingSyncEvents.size(); i++) {
if (mPendingSyncEvents[i]->triggerSession() == lSessionId) {
if (thread->isValidSyncEvent(mPendingSyncEvents[i])) {
if (lStatus == NO_ERROR) {
(void) track->setSyncEvent(mPendingSyncEvents[i]);
} else {
mPendingSyncEvents[i]->cancel();
}
mPendingSyncEvents.removeAt(i);
i--;
}
}
}
}
if (lStatus == NO_ERROR) {
trackHandle = new TrackHandle(track);
} else {
// remove local strong reference to Client before deleting the Track so that the Client
// destructor is called by the TrackBase destructor with mLock held
client.clear();
track.clear();
}
Exit:
if (status != NULL) {
*status = lStatus;
}
return trackHandle;
}
uint32_t AudioFlinger::sampleRate(audio_io_handle_t output) const
{
Mutex::Autolock _l(mLock);
PlaybackThread *thread = checkPlaybackThread_l(output);
if (thread == NULL) {
ALOGW("sampleRate() unknown thread %d", output);
return 0;
}
return thread->sampleRate();
}
int AudioFlinger::channelCount(audio_io_handle_t output) const
{
Mutex::Autolock _l(mLock);
PlaybackThread *thread = checkPlaybackThread_l(output);
if (thread == NULL) {
ALOGW("channelCount() unknown thread %d", output);
return 0;
}
return thread->channelCount();
}
audio_format_t AudioFlinger::format(audio_io_handle_t output) const
{
Mutex::Autolock _l(mLock);
PlaybackThread *thread = checkPlaybackThread_l(output);
if (thread == NULL) {
ALOGW("format() unknown thread %d", output);
return AUDIO_FORMAT_INVALID;
}
return thread->format();
}
size_t AudioFlinger::frameCount(audio_io_handle_t output) const
{
Mutex::Autolock _l(mLock);
PlaybackThread *thread = checkPlaybackThread_l(output);
if (thread == NULL) {
ALOGW("frameCount() unknown thread %d", output);
return 0;
}
// FIXME currently returns the normal mixer's frame count to avoid confusing legacy callers;
// should examine all callers and fix them to handle smaller counts
return thread->frameCount();
}
uint32_t AudioFlinger::latency(audio_io_handle_t output) const
{
Mutex::Autolock _l(mLock);
PlaybackThread *thread = checkPlaybackThread_l(output);
if (thread == NULL) {
ALOGW("latency() unknown thread %d", output);
return 0;
}
return thread->latency();
}
status_t AudioFlinger::setMasterVolume(float value)
{
status_t ret = initCheck();
if (ret != NO_ERROR) {
return ret;
}
// check calling permissions
if (!settingsAllowed()) {
return PERMISSION_DENIED;
}
Mutex::Autolock _l(mLock);
mMasterVolume = value;
// Set master volume in the HALs which support it.
for (size_t i = 0; i < mAudioHwDevs.size(); i++) {
AutoMutex lock(mHardwareLock);
AudioHwDevice *dev = mAudioHwDevs.valueAt(i);
mHardwareStatus = AUDIO_HW_SET_MASTER_VOLUME;
if (dev->canSetMasterVolume()) {
dev->hwDevice()->set_master_volume(dev->hwDevice(), value);
}
mHardwareStatus = AUDIO_HW_IDLE;
}
// Now set the master volume in each playback thread. Playback threads
// assigned to HALs which do not have master volume support will apply
// master volume during the mix operation. Threads with HALs which do
// support master volume will simply ignore the setting.
for (size_t i = 0; i < mPlaybackThreads.size(); i++)
mPlaybackThreads.valueAt(i)->setMasterVolume(value);
return NO_ERROR;
}
status_t AudioFlinger::setMode(audio_mode_t mode)
{
status_t ret = initCheck();
if (ret != NO_ERROR) {
return ret;
}
// check calling permissions
if (!settingsAllowed()) {
return PERMISSION_DENIED;
}
if (uint32_t(mode) >= AUDIO_MODE_CNT) {
ALOGW("Illegal value: setMode(%d)", mode);
return BAD_VALUE;
}
{ // scope for the lock
AutoMutex lock(mHardwareLock);
audio_hw_device_t *dev = mPrimaryHardwareDev->hwDevice();
mHardwareStatus = AUDIO_HW_SET_MODE;
ret = dev->set_mode(dev, mode);
mHardwareStatus = AUDIO_HW_IDLE;
}
if (NO_ERROR == ret) {
Mutex::Autolock _l(mLock);
mMode = mode;
for (size_t i = 0; i < mPlaybackThreads.size(); i++)
mPlaybackThreads.valueAt(i)->setMode(mode);
}
return ret;
}
status_t AudioFlinger::setMicMute(bool state)
{
status_t ret = initCheck();
if (ret != NO_ERROR) {
return ret;
}
// check calling permissions
if (!settingsAllowed()) {
return PERMISSION_DENIED;
}
AutoMutex lock(mHardwareLock);
audio_hw_device_t *dev = mPrimaryHardwareDev->hwDevice();
mHardwareStatus = AUDIO_HW_SET_MIC_MUTE;
ret = dev->set_mic_mute(dev, state);
mHardwareStatus = AUDIO_HW_IDLE;
return ret;
}
bool AudioFlinger::getMicMute() const
{
status_t ret = initCheck();
if (ret != NO_ERROR) {
return false;
}
bool state = AUDIO_MODE_INVALID;
AutoMutex lock(mHardwareLock);
audio_hw_device_t *dev = mPrimaryHardwareDev->hwDevice();
mHardwareStatus = AUDIO_HW_GET_MIC_MUTE;
dev->get_mic_mute(dev, &state);
mHardwareStatus = AUDIO_HW_IDLE;
return state;
}
status_t AudioFlinger::setMasterMute(bool muted)
{
status_t ret = initCheck();
if (ret != NO_ERROR) {
return ret;
}
// check calling permissions
if (!settingsAllowed()) {
return PERMISSION_DENIED;
}
Mutex::Autolock _l(mLock);
mMasterMute = muted;
// Set master mute in the HALs which support it.
for (size_t i = 0; i < mAudioHwDevs.size(); i++) {
AutoMutex lock(mHardwareLock);
AudioHwDevice *dev = mAudioHwDevs.valueAt(i);
mHardwareStatus = AUDIO_HW_SET_MASTER_MUTE;
if (dev->canSetMasterMute()) {
dev->hwDevice()->set_master_mute(dev->hwDevice(), muted);
}
mHardwareStatus = AUDIO_HW_IDLE;
}
// Now set the master mute in each playback thread. Playback threads
// assigned to HALs which do not have master mute support will apply master
// mute during the mix operation. Threads with HALs which do support master
// mute will simply ignore the setting.
for (size_t i = 0; i < mPlaybackThreads.size(); i++)
mPlaybackThreads.valueAt(i)->setMasterMute(muted);
return NO_ERROR;
}
float AudioFlinger::masterVolume() const
{
Mutex::Autolock _l(mLock);
return masterVolume_l();
}
bool AudioFlinger::masterMute() const
{
Mutex::Autolock _l(mLock);
return masterMute_l();
}
float AudioFlinger::masterVolume_l() const
{
return mMasterVolume;
}
bool AudioFlinger::masterMute_l() const
{
return mMasterMute;
}
status_t AudioFlinger::setStreamVolume(audio_stream_type_t stream, float value,
audio_io_handle_t output)
{
// check calling permissions
if (!settingsAllowed()) {
return PERMISSION_DENIED;
}
if (uint32_t(stream) >= AUDIO_STREAM_CNT) {
ALOGE("setStreamVolume() invalid stream %d", stream);
return BAD_VALUE;
}
AutoMutex lock(mLock);
PlaybackThread *thread = NULL;
if (output) {
thread = checkPlaybackThread_l(output);
if (thread == NULL) {
return BAD_VALUE;
}
}
mStreamTypes[stream].volume = value;
if (thread == NULL) {
for (size_t i = 0; i < mPlaybackThreads.size(); i++) {
mPlaybackThreads.valueAt(i)->setStreamVolume(stream, value);
}
} else {
thread->setStreamVolume(stream, value);
}
return NO_ERROR;
}
status_t AudioFlinger::setStreamMute(audio_stream_type_t stream, bool muted)
{
// check calling permissions
if (!settingsAllowed()) {
return PERMISSION_DENIED;
}
if (uint32_t(stream) >= AUDIO_STREAM_CNT ||
uint32_t(stream) == AUDIO_STREAM_ENFORCED_AUDIBLE) {
ALOGE("setStreamMute() invalid stream %d", stream);
return BAD_VALUE;
}
AutoMutex lock(mLock);
mStreamTypes[stream].mute = muted;
for (uint32_t i = 0; i < mPlaybackThreads.size(); i++)
mPlaybackThreads.valueAt(i)->setStreamMute(stream, muted);
return NO_ERROR;
}
float AudioFlinger::streamVolume(audio_stream_type_t stream, audio_io_handle_t output) const
{
if (uint32_t(stream) >= AUDIO_STREAM_CNT) {
return 0.0f;
}
AutoMutex lock(mLock);
float volume;
if (output) {
PlaybackThread *thread = checkPlaybackThread_l(output);
if (thread == NULL) {
return 0.0f;
}
volume = thread->streamVolume(stream);
} else {
volume = streamVolume_l(stream);
}
return volume;
}
bool AudioFlinger::streamMute(audio_stream_type_t stream) const
{
if (uint32_t(stream) >= AUDIO_STREAM_CNT) {
return true;
}
AutoMutex lock(mLock);
return streamMute_l(stream);
}
status_t AudioFlinger::setParameters(audio_io_handle_t ioHandle, const String8& keyValuePairs)
{
ALOGV("setParameters(): io %d, keyvalue %s, tid %d, calling pid %d",
ioHandle, keyValuePairs.string(), gettid(), IPCThreadState::self()->getCallingPid());
// check calling permissions
if (!settingsAllowed()) {
return PERMISSION_DENIED;
}
// ioHandle == 0 means the parameters are global to the audio hardware interface
if (ioHandle == 0) {
Mutex::Autolock _l(mLock);
status_t final_result = NO_ERROR;
{
AutoMutex lock(mHardwareLock);
mHardwareStatus = AUDIO_HW_SET_PARAMETER;
for (size_t i = 0; i < mAudioHwDevs.size(); i++) {
audio_hw_device_t *dev = mAudioHwDevs.valueAt(i)->hwDevice();
status_t result = dev->set_parameters(dev, keyValuePairs.string());
final_result = result ?: final_result;
}
mHardwareStatus = AUDIO_HW_IDLE;
}
// disable AEC and NS if the device is a BT SCO headset supporting those pre processings
AudioParameter param = AudioParameter(keyValuePairs);
String8 value;
if (param.get(String8(AUDIO_PARAMETER_KEY_BT_NREC), value) == NO_ERROR) {
bool btNrecIsOff = (value == AUDIO_PARAMETER_VALUE_OFF);
if (mBtNrecIsOff != btNrecIsOff) {
for (size_t i = 0; i < mRecordThreads.size(); i++) {
sp<RecordThread> thread = mRecordThreads.valueAt(i);
audio_devices_t device = thread->inDevice();
bool suspend = audio_is_bluetooth_sco_device(device) && btNrecIsOff;
// collect all of the thread's session IDs
KeyedVector<int, bool> ids = thread->sessionIds();
// suspend effects associated with those session IDs
for (size_t j = 0; j < ids.size(); ++j) {
int sessionId = ids.keyAt(j);
thread->setEffectSuspended(FX_IID_AEC,
suspend,
sessionId);
thread->setEffectSuspended(FX_IID_NS,
suspend,
sessionId);
}
}
mBtNrecIsOff = btNrecIsOff;
}
}
String8 screenState;
if (param.get(String8(AudioParameter::keyScreenState), screenState) == NO_ERROR) {
bool isOff = screenState == "off";
if (isOff != (gScreenState & 1)) {
gScreenState = ((gScreenState & ~1) + 2) | isOff;
}
}
return final_result;
}
// hold a strong ref on thread in case closeOutput() or closeInput() is called
// and the thread is exited once the lock is released
sp<ThreadBase> thread;
{
Mutex::Autolock _l(mLock);
thread = checkPlaybackThread_l(ioHandle);
if (thread == 0) {
thread = checkRecordThread_l(ioHandle);
} else if (thread == primaryPlaybackThread_l()) {
// indicate output device change to all input threads for pre processing
AudioParameter param = AudioParameter(keyValuePairs);
int value;
if ((param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) &&
(value != 0)) {
for (size_t i = 0; i < mRecordThreads.size(); i++) {
mRecordThreads.valueAt(i)->setParameters(keyValuePairs);
}
}
}
}
if (thread != 0) {
return thread->setParameters(keyValuePairs);
}
return BAD_VALUE;
}
String8 AudioFlinger::getParameters(audio_io_handle_t ioHandle, const String8& keys) const
{
ALOGVV("getParameters() io %d, keys %s, tid %d, calling pid %d",
ioHandle, keys.string(), gettid(), IPCThreadState::self()->getCallingPid());
Mutex::Autolock _l(mLock);
if (ioHandle == 0) {
String8 out_s8;
for (size_t i = 0; i < mAudioHwDevs.size(); i++) {
char *s;
{
AutoMutex lock(mHardwareLock);
mHardwareStatus = AUDIO_HW_GET_PARAMETER;
audio_hw_device_t *dev = mAudioHwDevs.valueAt(i)->hwDevice();
s = dev->get_parameters(dev, keys.string());
mHardwareStatus = AUDIO_HW_IDLE;
}
out_s8 += String8(s ? s : "");
free(s);
}
return out_s8;
}
PlaybackThread *playbackThread = checkPlaybackThread_l(ioHandle);
if (playbackThread != NULL) {
return playbackThread->getParameters(keys);
}
RecordThread *recordThread = checkRecordThread_l(ioHandle);
if (recordThread != NULL) {
return recordThread->getParameters(keys);
}
return String8("");
}
size_t AudioFlinger::getInputBufferSize(uint32_t sampleRate, audio_format_t format,
audio_channel_mask_t channelMask) const
{
status_t ret = initCheck();
if (ret != NO_ERROR) {
return 0;
}
AutoMutex lock(mHardwareLock);
mHardwareStatus = AUDIO_HW_GET_INPUT_BUFFER_SIZE;
struct audio_config config = {
sample_rate: sampleRate,
channel_mask: channelMask,
format: format,
};
audio_hw_device_t *dev = mPrimaryHardwareDev->hwDevice();
size_t size = dev->get_input_buffer_size(dev, &config);
mHardwareStatus = AUDIO_HW_IDLE;
return size;
}
unsigned int AudioFlinger::getInputFramesLost(audio_io_handle_t ioHandle) const
{
Mutex::Autolock _l(mLock);
RecordThread *recordThread = checkRecordThread_l(ioHandle);
if (recordThread != NULL) {
return recordThread->getInputFramesLost();
}
return 0;
}
status_t AudioFlinger::setVoiceVolume(float value)
{
status_t ret = initCheck();
if (ret != NO_ERROR) {
return ret;
}
// check calling permissions
if (!settingsAllowed()) {
return PERMISSION_DENIED;
}
AutoMutex lock(mHardwareLock);
audio_hw_device_t *dev = mPrimaryHardwareDev->hwDevice();
mHardwareStatus = AUDIO_HW_SET_VOICE_VOLUME;
ret = dev->set_voice_volume(dev, value);
mHardwareStatus = AUDIO_HW_IDLE;
return ret;
}
status_t AudioFlinger::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames,
audio_io_handle_t output) const
{
status_t status;
Mutex::Autolock _l(mLock);
PlaybackThread *playbackThread = checkPlaybackThread_l(output);
if (playbackThread != NULL) {
return playbackThread->getRenderPosition(halFrames, dspFrames);
}
return BAD_VALUE;
}
void AudioFlinger::registerClient(const sp<IAudioFlingerClient>& client)
{
Mutex::Autolock _l(mLock);
pid_t pid = IPCThreadState::self()->getCallingPid();
if (mNotificationClients.indexOfKey(pid) < 0) {
sp<NotificationClient> notificationClient = new NotificationClient(this,
client,
pid);
ALOGV("registerClient() client %p, pid %d", notificationClient.get(), pid);
mNotificationClients.add(pid, notificationClient);
sp<IBinder> binder = client->asBinder();
binder->linkToDeath(notificationClient);
// the config change is always sent from playback or record threads to avoid deadlock
// with AudioSystem::gLock
for (size_t i = 0; i < mPlaybackThreads.size(); i++) {
mPlaybackThreads.valueAt(i)->sendIoConfigEvent(AudioSystem::OUTPUT_OPENED);
}
for (size_t i = 0; i < mRecordThreads.size(); i++) {
mRecordThreads.valueAt(i)->sendIoConfigEvent(AudioSystem::INPUT_OPENED);
}
}
}
void AudioFlinger::removeNotificationClient(pid_t pid)
{
Mutex::Autolock _l(mLock);
mNotificationClients.removeItem(pid);
ALOGV("%d died, releasing its sessions", pid);
size_t num = mAudioSessionRefs.size();
bool removed = false;
for (size_t i = 0; i< num; ) {
AudioSessionRef *ref = mAudioSessionRefs.itemAt(i);
ALOGV(" pid %d @ %d", ref->mPid, i);
if (ref->mPid == pid) {
ALOGV(" removing entry for pid %d session %d", pid, ref->mSessionid);
mAudioSessionRefs.removeAt(i);
delete ref;
removed = true;
num--;
} else {
i++;
}
}
if (removed) {
purgeStaleEffects_l();
}
}
// audioConfigChanged_l() must be called with AudioFlinger::mLock held
void AudioFlinger::audioConfigChanged_l(int event, audio_io_handle_t ioHandle, const void *param2)
{
size_t size = mNotificationClients.size();
for (size_t i = 0; i < size; i++) {
mNotificationClients.valueAt(i)->audioFlingerClient()->ioConfigChanged(event, ioHandle,
param2);
}
}
// removeClient_l() must be called with AudioFlinger::mLock held
void AudioFlinger::removeClient_l(pid_t pid)
{
ALOGV("removeClient_l() pid %d, tid %d, calling tid %d", pid, gettid(),
IPCThreadState::self()->getCallingPid());
mClients.removeItem(pid);
}
// getEffectThread_l() must be called with AudioFlinger::mLock held
sp<AudioFlinger::PlaybackThread> AudioFlinger::getEffectThread_l(int sessionId, int EffectId)
{
sp<PlaybackThread> thread;
for (size_t i = 0; i < mPlaybackThreads.size(); i++) {
if (mPlaybackThreads.valueAt(i)->getEffect(sessionId, EffectId) != 0) {
ALOG_ASSERT(thread == 0);
thread = mPlaybackThreads.valueAt(i);
}
}
return thread;
}
// ----------------------------------------------------------------------------
AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
audio_devices_t outDevice, audio_devices_t inDevice, type_t type)
: Thread(false /*canCallJava*/),
mType(type),
mAudioFlinger(audioFlinger), mSampleRate(0), mFrameCount(0), mNormalFrameCount(0),
// mChannelMask
mChannelCount(0),
mFrameSize(1), mFormat(AUDIO_FORMAT_INVALID),
mParamStatus(NO_ERROR),
mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
// mName will be set by concrete (non-virtual) subclass
mDeathRecipient(new PMDeathRecipient(this))
{
}
AudioFlinger::ThreadBase::~ThreadBase()
{
mParamCond.broadcast();
// do not lock the mutex in destructor
releaseWakeLock_l();
if (mPowerManager != 0) {
sp<IBinder> binder = mPowerManager->asBinder();
binder->unlinkToDeath(mDeathRecipient);
}
}
void AudioFlinger::ThreadBase::exit()
{
ALOGV("ThreadBase::exit");
// do any cleanup required for exit to succeed
preExit();
{
// This lock prevents the following race in thread (uniprocessor for illustration):
// if (!exitPending()) {
// // context switch from here to exit()
// // exit() calls requestExit(), what exitPending() observes
// // exit() calls signal(), which is dropped since no waiters
// // context switch back from exit() to here
// mWaitWorkCV.wait(...);
// // now thread is hung
// }
AutoMutex lock(mLock);
requestExit();
mWaitWorkCV.broadcast();
}
// When Thread::requestExitAndWait is made virtual and this method is renamed to
// "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
requestExitAndWait();
}
status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
{
status_t status;
ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
Mutex::Autolock _l(mLock);
mNewParameters.add(keyValuePairs);
mWaitWorkCV.signal();
// wait condition with timeout in case the thread loop has exited
// before the request could be processed
if (mParamCond.waitRelative(mLock, kSetParametersTimeoutNs) == NO_ERROR) {
status = mParamStatus;
mWaitWorkCV.signal();
} else {
status = TIMED_OUT;
}
return status;
}
void AudioFlinger::ThreadBase::sendIoConfigEvent(int event, int param)
{
Mutex::Autolock _l(mLock);
sendIoConfigEvent_l(event, param);
}
// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
void AudioFlinger::ThreadBase::sendIoConfigEvent_l(int event, int param)
{
IoConfigEvent *ioEvent = new IoConfigEvent(event, param);
mConfigEvents.add(static_cast<ConfigEvent *>(ioEvent));
ALOGV("sendIoConfigEvent() num events %d event %d, param %d", mConfigEvents.size(), event,
param);
mWaitWorkCV.signal();
}
// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
{
PrioConfigEvent *prioEvent = new PrioConfigEvent(pid, tid, prio);
mConfigEvents.add(static_cast<ConfigEvent *>(prioEvent));
ALOGV("sendPrioConfigEvent_l() num events %d pid %d, tid %d prio %d",
mConfigEvents.size(), pid, tid, prio);
mWaitWorkCV.signal();
}
void AudioFlinger::ThreadBase::processConfigEvents()
{
mLock.lock();
while (!mConfigEvents.isEmpty()) {
ALOGV("processConfigEvents() remaining events %d", mConfigEvents.size());
ConfigEvent *event = mConfigEvents[0];
mConfigEvents.removeAt(0);
// release mLock before locking AudioFlinger mLock: lock order is always
// AudioFlinger then ThreadBase to avoid cross deadlock
mLock.unlock();
switch(event->type()) {
case CFG_EVENT_PRIO: {
PrioConfigEvent *prioEvent = static_cast<PrioConfigEvent *>(event);
int err = requestPriority(prioEvent->pid(), prioEvent->tid(), prioEvent->prio());
if (err != 0) {
ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; "
"error %d",
prioEvent->prio(), prioEvent->pid(), prioEvent->tid(), err);
}
} break;
case CFG_EVENT_IO: {
IoConfigEvent *ioEvent = static_cast<IoConfigEvent *>(event);
mAudioFlinger->mLock.lock();
audioConfigChanged_l(ioEvent->event(), ioEvent->param());
mAudioFlinger->mLock.unlock();
} break;
default:
ALOGE("processConfigEvents() unknown event type %d", event->type());
break;
}
delete event;
mLock.lock();
}
mLock.unlock();
}
void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
bool locked = tryLock(mLock);
if (!locked) {
snprintf(buffer, SIZE, "thread %p maybe dead locked\n", this);
write(fd, buffer, strlen(buffer));
}
snprintf(buffer, SIZE, "io handle: %d\n", mId);
result.append(buffer);
snprintf(buffer, SIZE, "TID: %d\n", getTid());
result.append(buffer);
snprintf(buffer, SIZE, "standby: %d\n", mStandby);
result.append(buffer);
snprintf(buffer, SIZE, "Sample rate: %u\n", mSampleRate);
result.append(buffer);
snprintf(buffer, SIZE, "HAL frame count: %d\n", mFrameCount);
result.append(buffer);
snprintf(buffer, SIZE, "Normal frame count: %d\n", mNormalFrameCount);
result.append(buffer);
snprintf(buffer, SIZE, "Channel Count: %d\n", mChannelCount);
result.append(buffer);
snprintf(buffer, SIZE, "Channel Mask: 0x%08x\n", mChannelMask);
result.append(buffer);
snprintf(buffer, SIZE, "Format: %d\n", mFormat);
result.append(buffer);
snprintf(buffer, SIZE, "Frame size: %u\n", mFrameSize);
result.append(buffer);
snprintf(buffer, SIZE, "\nPending setParameters commands: \n");
result.append(buffer);
result.append(" Index Command");
for (size_t i = 0; i < mNewParameters.size(); ++i) {
snprintf(buffer, SIZE, "\n %02d ", i);
result.append(buffer);
result.append(mNewParameters[i]);
}
snprintf(buffer, SIZE, "\n\nPending config events: \n");
result.append(buffer);
for (size_t i = 0; i < mConfigEvents.size(); i++) {
mConfigEvents[i]->dump(buffer, SIZE);
result.append(buffer);
}
result.append("\n");
write(fd, result.string(), result.size());
if (locked) {
mLock.unlock();
}
}
void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
snprintf(buffer, SIZE, "\n- %d Effect Chains:\n", mEffectChains.size());
write(fd, buffer, strlen(buffer));
for (size_t i = 0; i < mEffectChains.size(); ++i) {
sp<EffectChain> chain = mEffectChains[i];
if (chain != 0) {
chain->dump(fd, args);
}
}
}
void AudioFlinger::ThreadBase::acquireWakeLock()
{
Mutex::Autolock _l(mLock);
acquireWakeLock_l();
}
void AudioFlinger::ThreadBase::acquireWakeLock_l()
{
if (mPowerManager == 0) {
// use checkService() to avoid blocking if power service is not up yet
sp<IBinder> binder =
defaultServiceManager()->checkService(String16("power"));
if (binder == 0) {
ALOGW("Thread %s cannot connect to the power manager service", mName);
} else {
mPowerManager = interface_cast<IPowerManager>(binder);
binder->linkToDeath(mDeathRecipient);
}
}
if (mPowerManager != 0) {
sp<IBinder> binder = new BBinder();
status_t status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
binder,
String16(mName));
if (status == NO_ERROR) {
mWakeLockToken = binder;
}
ALOGV("acquireWakeLock_l() %s status %d", mName, status);
}
}
void AudioFlinger::ThreadBase::releaseWakeLock()
{
Mutex::Autolock _l(mLock);
releaseWakeLock_l();
}
void AudioFlinger::ThreadBase::releaseWakeLock_l()
{
if (mWakeLockToken != 0) {
ALOGV("releaseWakeLock_l() %s", mName);
if (mPowerManager != 0) {
mPowerManager->releaseWakeLock(mWakeLockToken, 0);
}
mWakeLockToken.clear();
}
}
void AudioFlinger::ThreadBase::clearPowerManager()
{
Mutex::Autolock _l(mLock);
releaseWakeLock_l();
mPowerManager.clear();
}
void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who)
{
sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
thread->clearPowerManager();
}
ALOGW("power manager service died !!!");
}
void AudioFlinger::ThreadBase::setEffectSuspended(
const effect_uuid_t *type, bool suspend, int sessionId)
{
Mutex::Autolock _l(mLock);
setEffectSuspended_l(type, suspend, sessionId);
}
void AudioFlinger::ThreadBase::setEffectSuspended_l(
const effect_uuid_t *type, bool suspend, int sessionId)
{
sp<EffectChain> chain = getEffectChain_l(sessionId);
if (chain != 0) {
if (type != NULL) {
chain->setEffectSuspended_l(type, suspend);
} else {
chain->setEffectSuspendedAll_l(suspend);
}
}
updateSuspendedSessions_l(type, suspend, sessionId);
}
void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
{
ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
if (index < 0) {
return;
}
const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
mSuspendedSessions.valueAt(index);
for (size_t i = 0; i < sessionEffects.size(); i++) {
sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
for (int j = 0; j < desc->mRefCount; j++) {
if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
chain->setEffectSuspendedAll_l(true);
} else {
ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
desc->mType.timeLow);
chain->setEffectSuspended_l(&desc->mType, true);
}
}
}
}
void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
bool suspend,
int sessionId)
{
ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
if (suspend) {
if (index >= 0) {
sessionEffects = mSuspendedSessions.valueAt(index);
} else {
mSuspendedSessions.add(sessionId, sessionEffects);
}
} else {
if (index < 0) {
return;
}
sessionEffects = mSuspendedSessions.valueAt(index);
}
int key = EffectChain::kKeyForSuspendAll;
if (type != NULL) {
key = type->timeLow;
}
index = sessionEffects.indexOfKey(key);
sp<SuspendedSessionDesc> desc;
if (suspend) {
if (index >= 0) {
desc = sessionEffects.valueAt(index);
} else {
desc = new SuspendedSessionDesc();
if (type != NULL) {
desc->mType = *type;
}
sessionEffects.add(key, desc);
ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
}
desc->mRefCount++;
} else {
if (index < 0) {
return;
}
desc = sessionEffects.valueAt(index);
if (--desc->mRefCount == 0) {
ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
sessionEffects.removeItemsAt(index);
if (sessionEffects.isEmpty()) {
ALOGV("updateSuspendedSessions_l() restore removing session %d",
sessionId);
mSuspendedSessions.removeItem(sessionId);
}
}
}
if (!sessionEffects.isEmpty()) {
mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
}
}
void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
bool enabled,
int sessionId)
{
Mutex::Autolock _l(mLock);
checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
}
void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
bool enabled,
int sessionId)
{
if (mType != RECORD) {
// suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
// another session. This gives the priority to well behaved effect control panels
// and applications not using global effects.
// Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
// global effects
if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
}
}
sp<EffectChain> chain = getEffectChain_l(sessionId);
if (chain != 0) {
chain->checkSuspendOnEffectEnabled(effect, enabled);
}
}
// ----------------------------------------------------------------------------
AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
AudioStreamOut* output,
audio_io_handle_t id,
audio_devices_t device,
type_t type)
: ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type),
mMixBuffer(NULL), mSuspended(0), mBytesWritten(0),
// mStreamTypes[] initialized in constructor body
mOutput(output),
mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
mMixerStatus(MIXER_IDLE),
mMixerStatusIgnoringFastTracks(MIXER_IDLE),
standbyDelay(AudioFlinger::mStandbyTimeInNsecs),
mScreenState(gScreenState),
// index 0 is reserved for normal mixer's submix
mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1)
{
snprintf(mName, kNameLength, "AudioOut_%X", id);
// Assumes constructor is called by AudioFlinger with it's mLock held, but
// it would be safer to explicitly pass initial masterVolume/masterMute as
// parameter.
//
// If the HAL we are using has support for master volume or master mute,
// then do not attenuate or mute during mixing (just leave the volume at 1.0
// and the mute set to false).
mMasterVolume = audioFlinger->masterVolume_l();
mMasterMute = audioFlinger->masterMute_l();
if (mOutput && mOutput->audioHwDev) {
if (mOutput->audioHwDev->canSetMasterVolume()) {
mMasterVolume = 1.0;
}
if (mOutput->audioHwDev->canSetMasterMute()) {
mMasterMute = false;
}
}
readOutputParameters();
// mStreamTypes[AUDIO_STREAM_CNT] is initialized by stream_type_t default constructor
// There is no AUDIO_STREAM_MIN, and ++ operator does not compile
for (audio_stream_type_t stream = (audio_stream_type_t) 0; stream < AUDIO_STREAM_CNT;
stream = (audio_stream_type_t) (stream + 1)) {
mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
}
// mStreamTypes[AUDIO_STREAM_CNT] exists but isn't explicitly initialized here,
// because mAudioFlinger doesn't have one to copy from
}
AudioFlinger::PlaybackThread::~PlaybackThread()
{
delete [] mMixBuffer;
}
void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
{
dumpInternals(fd, args);
dumpTracks(fd, args);
dumpEffectChains(fd, args);
}
void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
result.appendFormat("Output thread %p stream volumes in dB:\n ", this);
for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
const stream_type_t *st = &mStreamTypes[i];
if (i > 0) {
result.appendFormat(", ");
}
result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
if (st->mute) {
result.append("M");
}
}
result.append("\n");
write(fd, result.string(), result.length());
result.clear();
snprintf(buffer, SIZE, "Output thread %p tracks\n", this);
result.append(buffer);
Track::appendDumpHeader(result);
for (size_t i = 0; i < mTracks.size(); ++i) {
sp<Track> track = mTracks[i];
if (track != 0) {
track->dump(buffer, SIZE);
result.append(buffer);
}
}
snprintf(buffer, SIZE, "Output thread %p active tracks\n", this);
result.append(buffer);
Track::appendDumpHeader(result);
for (size_t i = 0; i < mActiveTracks.size(); ++i) {
sp<Track> track = mActiveTracks[i].promote();
if (track != 0) {
track->dump(buffer, SIZE);
result.append(buffer);
}
}
write(fd, result.string(), result.size());
// These values are "raw"; they will wrap around. See prepareTracks_l() for a better way.
FastTrackUnderruns underruns = getFastTrackUnderruns(0);
fdprintf(fd, "Normal mixer raw underrun counters: partial=%u empty=%u\n",
underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
}
void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
snprintf(buffer, SIZE, "\nOutput thread %p internals\n", this);
result.append(buffer);
snprintf(buffer, SIZE, "last write occurred (msecs): %llu\n",
ns2ms(systemTime() - mLastWriteTime));
result.append(buffer);
snprintf(buffer, SIZE, "total writes: %d\n", mNumWrites);
result.append(buffer);
snprintf(buffer, SIZE, "delayed writes: %d\n", mNumDelayedWrites);
result.append(buffer);
snprintf(buffer, SIZE, "blocked in write: %d\n", mInWrite);
result.append(buffer);
snprintf(buffer, SIZE, "suspend count: %d\n", mSuspended);
result.append(buffer);
snprintf(buffer, SIZE, "mix buffer : %p\n", mMixBuffer);
result.append(buffer);
write(fd, result.string(), result.size());
fdprintf(fd, "Fast track availMask=%#x\n", mFastTrackAvailMask);
dumpBase(fd, args);
}
// Thread virtuals
status_t AudioFlinger::PlaybackThread::readyToRun()
{
status_t status = initCheck();
if (status == NO_ERROR) {
ALOGI("AudioFlinger's thread %p ready to run", this);
} else {
ALOGE("No working audio driver found.");
}
return status;
}
void AudioFlinger::PlaybackThread::onFirstRef()
{
run(mName, ANDROID_PRIORITY_URGENT_AUDIO);
}
// ThreadBase virtuals
void AudioFlinger::PlaybackThread::preExit()
{
ALOGV(" preExit()");
// FIXME this is using hard-coded strings but in the future, this functionality will be
// converted to use audio HAL extensions required to support tunneling
mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
}
// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
const sp<AudioFlinger::Client>& client,
audio_stream_type_t streamType,
uint32_t sampleRate,
audio_format_t format,
audio_channel_mask_t channelMask,
size_t frameCount,
const sp<IMemory>& sharedBuffer,
int sessionId,
IAudioFlinger::track_flags_t *flags,
pid_t tid,
status_t *status)
{
sp<Track> track;
status_t lStatus;
bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
// client expresses a preference for FAST, but we get the final say
if (*flags & IAudioFlinger::TRACK_FAST) {
if (
// not timed
(!isTimed) &&
// either of these use cases:
(
// use case 1: shared buffer with any frame count
(
(sharedBuffer != 0)
) ||
// use case 2: callback handler and frame count is default or at least as large as HAL
(
(tid != -1) &&
((frameCount == 0) ||
(frameCount >= (int) (mFrameCount * kFastTrackMultiplier)))
)
) &&
// PCM data
audio_is_linear_pcm(format) &&
// mono or stereo
( (channelMask == AUDIO_CHANNEL_OUT_MONO) ||
(channelMask == AUDIO_CHANNEL_OUT_STEREO) ) &&
#ifndef FAST_TRACKS_AT_NON_NATIVE_SAMPLE_RATE
// hardware sample rate
(sampleRate == mSampleRate) &&
#endif
// normal mixer has an associated fast mixer
hasFastMixer() &&
// there are sufficient fast track slots available
(mFastTrackAvailMask != 0)
// FIXME test that MixerThread for this fast track has a capable output HAL
// FIXME add a permission test also?
) {
// if frameCount not specified, then it defaults to fast mixer (HAL) frame count
if (frameCount == 0) {
frameCount = mFrameCount * kFastTrackMultiplier;
}
ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
frameCount, mFrameCount);
} else {
ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
"mFrameCount=%d format=%d isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
"hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
isTimed, sharedBuffer.get(), frameCount, mFrameCount, format,
audio_is_linear_pcm(format),
channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
*flags &= ~IAudioFlinger::TRACK_FAST;
// For compatibility with AudioTrack calculation, buffer depth is forced
// to be at least 2 x the normal mixer frame count and cover audio hardware latency.
// This is probably too conservative, but legacy application code may depend on it.
// If you change this calculation, also review the start threshold which is related.
uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
if (minBufCount < 2) {
minBufCount = 2;
}
size_t minFrameCount = mNormalFrameCount * minBufCount;
if (frameCount < minFrameCount) {
frameCount = minFrameCount;
}
}
}
if (mType == DIRECT) {
if ((format & AUDIO_FORMAT_MAIN_MASK) == AUDIO_FORMAT_PCM) {
if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
ALOGE("createTrack_l() Bad parameter: sampleRate %u format %d, channelMask 0x%08x "
"for output %p with format %d",
sampleRate, format, channelMask, mOutput, mFormat);
lStatus = BAD_VALUE;
goto Exit;
}
}
} else {
// Resampler implementation limits input sampling rate to 2 x output sampling rate.
if (sampleRate > mSampleRate*2) {
ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
lStatus = BAD_VALUE;
goto Exit;
}
}
lStatus = initCheck();
if (lStatus != NO_ERROR) {
ALOGE("Audio driver not initialized.");
goto Exit;
}
{ // scope for mLock
Mutex::Autolock _l(mLock);
// all tracks in same audio session must share the same routing strategy otherwise
// conflicts will happen when tracks are moved from one output to another by audio policy
// manager
uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
for (size_t i = 0; i < mTracks.size(); ++i) {
sp<Track> t = mTracks[i];
if (t != 0 && !t->isOutputTrack()) {
uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
if (sessionId == t->sessionId() && strategy != actual) {
ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
strategy, actual);
lStatus = BAD_VALUE;
goto Exit;
}
}
}
if (!isTimed) {
track = new Track(this, client, streamType, sampleRate, format,
channelMask, frameCount, sharedBuffer, sessionId, *flags);
} else {
track = TimedTrack::create(this, client, streamType, sampleRate, format,
channelMask, frameCount, sharedBuffer, sessionId);
}
if (track == 0 || track->getCblk() == NULL || track->name() < 0) {
lStatus = NO_MEMORY;
goto Exit;
}
mTracks.add(track);
sp<EffectChain> chain = getEffectChain_l(sessionId);
if (chain != 0) {
ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
track->setMainBuffer(chain->inBuffer());
chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
chain->incTrackCnt();
}
if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
pid_t callingPid = IPCThreadState::self()->getCallingPid();
// we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
// so ask activity manager to do this on our behalf
sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
}
}
lStatus = NO_ERROR;
Exit:
if (status) {
*status = lStatus;
}
return track;
}
uint32_t AudioFlinger::MixerThread::correctLatency(uint32_t latency) const
{
if (mFastMixer != NULL) {
MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
}
return latency;
}
uint32_t AudioFlinger::PlaybackThread::correctLatency(uint32_t latency) const
{
return latency;
}
uint32_t AudioFlinger::PlaybackThread::latency() const
{
Mutex::Autolock _l(mLock);
return latency_l();
}
uint32_t AudioFlinger::PlaybackThread::latency_l() const
{
if (initCheck() == NO_ERROR) {
return correctLatency(mOutput->stream->get_latency(mOutput->stream));
} else {
return 0;
}
}
void AudioFlinger::PlaybackThread::setMasterVolume(float value)
{
Mutex::Autolock _l(mLock);
// Don't apply master volume in SW if our HAL can do it for us.
if (mOutput && mOutput->audioHwDev &&
mOutput->audioHwDev->canSetMasterVolume()) {
mMasterVolume = 1.0;
} else {
mMasterVolume = value;
}
}
void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
{
Mutex::Autolock _l(mLock);
// Don't apply master mute in SW if our HAL can do it for us.
if (mOutput && mOutput->audioHwDev &&
mOutput->audioHwDev->canSetMasterMute()) {
mMasterMute = false;
} else {
mMasterMute = muted;
}
}
void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
{
Mutex::Autolock _l(mLock);
mStreamTypes[stream].volume = value;
}
void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
{
Mutex::Autolock _l(mLock);
mStreamTypes[stream].mute = muted;
}
float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
{
Mutex::Autolock _l(mLock);
return mStreamTypes[stream].volume;
}
// addTrack_l() must be called with ThreadBase::mLock held
status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
{
status_t status = ALREADY_EXISTS;
// set retry count for buffer fill
track->mRetryCount = kMaxTrackStartupRetries;
if (mActiveTracks.indexOf(track) < 0) {
// the track is newly added, make sure it fills up all its
// buffers before playing. This is to ensure the client will
// effectively get the latency it requested.
track->mFillingUpStatus = Track::FS_FILLING;
track->mResetDone = false;
track->mPresentationCompleteFrames = 0;
mActiveTracks.add(track);
if (track->mainBuffer() != mMixBuffer) {
sp<EffectChain> chain = getEffectChain_l(track->sessionId());
if (chain != 0) {
ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
track->sessionId());
chain->incActiveTrackCnt();
}
}
status = NO_ERROR;
}
ALOGV("mWaitWorkCV.broadcast");
mWaitWorkCV.broadcast();
return status;
}
// destroyTrack_l() must be called with ThreadBase::mLock held
void AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
{
track->mState = TrackBase::TERMINATED;
// active tracks are removed by threadLoop()
if (mActiveTracks.indexOf(track) < 0) {
removeTrack_l(track);
}
}
void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
{
track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
mTracks.remove(track);
deleteTrackName_l(track->name());
// redundant as track is about to be destroyed, for dumpsys only
track->mName = -1;
if (track->isFastTrack()) {
int index = track->mFastIndex;
ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
mFastTrackAvailMask |= 1 << index;
// redundant as track is about to be destroyed, for dumpsys only
track->mFastIndex = -1;
}
sp<EffectChain> chain = getEffectChain_l(track->sessionId());
if (chain != 0) {
chain->decTrackCnt();
}
}
String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
{
String8 out_s8 = String8("");
char *s;
Mutex::Autolock _l(mLock);
if (initCheck() != NO_ERROR) {
return out_s8;
}
s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
out_s8 = String8(s);
free(s);
return out_s8;
}
// audioConfigChanged_l() must be called with AudioFlinger::mLock held
void AudioFlinger::PlaybackThread::audioConfigChanged_l(int event, int param) {
AudioSystem::OutputDescriptor desc;
void *param2 = NULL;
ALOGV("PlaybackThread::audioConfigChanged_l, thread %p, event %d, param %d", this, event,
param);
switch (event) {
case AudioSystem::OUTPUT_OPENED:
case AudioSystem::OUTPUT_CONFIG_CHANGED:
desc.channels = mChannelMask;
desc.samplingRate = mSampleRate;
desc.format = mFormat;
desc.frameCount = mNormalFrameCount; // FIXME see
// AudioFlinger::frameCount(audio_io_handle_t)
desc.latency = latency();
param2 = &desc;
break;
case AudioSystem::STREAM_CONFIG_CHANGED:
param2 = &param;
case AudioSystem::OUTPUT_CLOSED:
default:
break;
}
mAudioFlinger->audioConfigChanged_l(event, mId, param2);
}
void AudioFlinger::PlaybackThread::readOutputParameters()
{
mSampleRate = mOutput->stream->common.get_sample_rate(&mOutput->stream->common);
mChannelMask = mOutput->stream->common.get_channels(&mOutput->stream->common);
mChannelCount = (uint16_t)popcount(mChannelMask);
mFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
mFrameSize = audio_stream_frame_size(&mOutput->stream->common);
mFrameCount = mOutput->stream->common.get_buffer_size(&mOutput->stream->common) / mFrameSize;
if (mFrameCount & 15) {
ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
mFrameCount);
}
// Calculate size of normal mix buffer relative to the HAL output buffer size
double multiplier = 1.0;
if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
kUseFastMixer == FastMixer_Dynamic)) {
size_t minNormalFrameCount = (kMinNormalMixBufferSizeMs * mSampleRate) / 1000;
size_t maxNormalFrameCount = (kMaxNormalMixBufferSizeMs * mSampleRate) / 1000;
// round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
maxNormalFrameCount = maxNormalFrameCount & ~15;
if (maxNormalFrameCount < minNormalFrameCount) {
maxNormalFrameCount = minNormalFrameCount;
}
multiplier = (double) minNormalFrameCount / (double) mFrameCount;
if (multiplier <= 1.0) {
multiplier = 1.0;
} else if (multiplier <= 2.0) {
if (2 * mFrameCount <= maxNormalFrameCount) {
multiplier = 2.0;
} else {
multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
}
} else {
// prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
// SRC (it would be unusual for the normal mix buffer size to not be a multiple of fast
// track, but we sometimes have to do this to satisfy the maximum frame count
// constraint)
// FIXME this rounding up should not be done if no HAL SRC
uint32_t truncMult = (uint32_t) multiplier;
if ((truncMult & 1)) {
if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
++truncMult;
}
}
multiplier = (double) truncMult;
}
}
mNormalFrameCount = multiplier * mFrameCount;
// round up to nearest 16 frames to satisfy AudioMixer
mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
ALOGI("HAL output buffer size %u frames, normal mix buffer size %u frames", mFrameCount,
mNormalFrameCount);
delete[] mMixBuffer;
mMixBuffer = new int16_t[mNormalFrameCount * mChannelCount];
memset(mMixBuffer, 0, mNormalFrameCount * mChannelCount * sizeof(int16_t));
// force reconfiguration of effect chains and engines to take new buffer size and audio
// parameters into account
// Note that mLock is not held when readOutputParameters() is called from the constructor
// but in this case nothing is done below as no audio sessions have effect yet so it doesn't
// matter.
// create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
Vector< sp<EffectChain> > effectChains = mEffectChains;
for (size_t i = 0; i < effectChains.size(); i ++) {
mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
}
}
status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
{
if (halFrames == NULL || dspFrames == NULL) {
return BAD_VALUE;
}
Mutex::Autolock _l(mLock);
if (initCheck() != NO_ERROR) {
return INVALID_OPERATION;
}
*halFrames = mBytesWritten / audio_stream_frame_size(&mOutput->stream->common);
if (isSuspended()) {
// return an estimation of rendered frames when the output is suspended
int32_t frames = mBytesWritten - latency_l();
if (frames < 0) {
frames = 0;
}
*dspFrames = (uint32_t)frames;
return NO_ERROR;
} else {
return mOutput->stream->get_render_position(mOutput->stream, dspFrames);
}
}
uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
{
Mutex::Autolock _l(mLock);
uint32_t result = 0;
if (getEffectChain_l(sessionId) != 0) {
result = EFFECT_SESSION;
}
for (size_t i = 0; i < mTracks.size(); ++i) {
sp<Track> track = mTracks[i];
if (sessionId == track->sessionId() &&
!(track->mCblk->flags & CBLK_INVALID)) {
result |= TRACK_SESSION;
break;
}
}
return result;
}
uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
{
// session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
// it is moved to correct output by audio policy manager when A2DP is connected or disconnected
if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
}
for (size_t i = 0; i < mTracks.size(); i++) {
sp<Track> track = mTracks[i];
if (sessionId == track->sessionId() &&
!(track->mCblk->flags & CBLK_INVALID)) {
return AudioSystem::getStrategyForStream(track->streamType());
}
}
return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
}
AudioFlinger::AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
{
Mutex::Autolock _l(mLock);
return mOutput;
}
AudioFlinger::AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
{
Mutex::Autolock _l(mLock);
AudioStreamOut *output = mOutput;
mOutput = NULL;
// FIXME FastMixer might also have a raw ptr to mOutputSink;
// must push a NULL and wait for ack
mOutputSink.clear();
mPipeSink.clear();
mNormalSink.clear();
return output;
}
// this method must always be called either with ThreadBase mLock held or inside the thread loop
audio_stream_t* AudioFlinger::PlaybackThread::stream() const
{
if (mOutput == NULL) {
return NULL;
}
return &mOutput->stream->common;
}
uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
{
return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
}
status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
{
if (!isValidSyncEvent(event)) {
return BAD_VALUE;
}
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mTracks.size(); ++i) {
sp<Track> track = mTracks[i];
if (event->triggerSession() == track->sessionId()) {
(void) track->setSyncEvent(event);
return NO_ERROR;
}
}
return NAME_NOT_FOUND;
}
bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
{
return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
}
void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
const Vector< sp<Track> >& tracksToRemove)
{
size_t count = tracksToRemove.size();
if (CC_UNLIKELY(count)) {
for (size_t i = 0 ; i < count ; i++) {
const sp<Track>& track = tracksToRemove.itemAt(i);
if ((track->sharedBuffer() != 0) &&
(track->mState == TrackBase::ACTIVE || track->mState == TrackBase::RESUMING)) {
AudioSystem::stopOutput(mId, track->streamType(), track->sessionId());
}
}
}
}
// ----------------------------------------------------------------------------
AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
audio_io_handle_t id, audio_devices_t device, type_t type)
: PlaybackThread(audioFlinger, output, id, device, type),
// mAudioMixer below
// mFastMixer below
mFastMixerFutex(0)
// mOutputSink below
// mPipeSink below
// mNormalSink below
{
ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%d, mFormat=%d, mFrameSize=%u, "
"mFrameCount=%d, mNormalFrameCount=%d",
mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
mNormalFrameCount);
mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
// FIXME - Current mixer implementation only supports stereo output
if (mChannelCount != FCC_2) {
ALOGE("Invalid audio hardware channel count %d", mChannelCount);
}
// create an NBAIO sink for the HAL output stream, and negotiate
mOutputSink = new AudioStreamOutSink(output->stream);
size_t numCounterOffers = 0;
const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount)};
ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
ALOG_ASSERT(index == 0);
// initialize fast mixer depending on configuration
bool initFastMixer;
switch (kUseFastMixer) {
case FastMixer_Never:
initFastMixer = false;
break;
case FastMixer_Always:
initFastMixer = true;
break;
case FastMixer_Static:
case FastMixer_Dynamic:
initFastMixer = mFrameCount < mNormalFrameCount;
break;
}
if (initFastMixer) {
// create a MonoPipe to connect our submix to FastMixer
NBAIO_Format format = mOutputSink->format();
// This pipe depth compensates for scheduling latency of the normal mixer thread.
// When it wakes up after a maximum latency, it runs a few cycles quickly before
// finally blocking. Note the pipe implementation rounds up the request to a power of 2.
MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
const NBAIO_Format offers[1] = {format};
size_t numCounterOffers = 0;
ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
ALOG_ASSERT(index == 0);
monoPipe->setAvgFrames((mScreenState & 1) ?
(monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
mPipeSink = monoPipe;
#ifdef TEE_SINK_FRAMES
// create a Pipe to archive a copy of FastMixer's output for dumpsys
Pipe *teeSink = new Pipe(TEE_SINK_FRAMES, format);
numCounterOffers = 0;
index = teeSink->negotiate(offers, 1, NULL, numCounterOffers);
ALOG_ASSERT(index == 0);
mTeeSink = teeSink;
PipeReader *teeSource = new PipeReader(*teeSink);
numCounterOffers = 0;
index = teeSource->negotiate(offers, 1, NULL, numCounterOffers);
ALOG_ASSERT(index == 0);
mTeeSource = teeSource;
#endif
// create fast mixer and configure it initially with just one fast track for our submix
mFastMixer = new FastMixer();
FastMixerStateQueue *sq = mFastMixer->sq();
#ifdef STATE_QUEUE_DUMP
sq->setObserverDump(&mStateQueueObserverDump);
sq->setMutatorDump(&mStateQueueMutatorDump);
#endif
FastMixerState *state = sq->begin();
FastTrack *fastTrack = &state->mFastTracks[0];
// wrap the source side of the MonoPipe to make it an AudioBufferProvider
fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
fastTrack->mVolumeProvider = NULL;
fastTrack->mGeneration++;
state->mFastTracksGen++;
state->mTrackMask = 1;
// fast mixer will use the HAL output sink
state->mOutputSink = mOutputSink.get();
state->mOutputSinkGen++;
state->mFrameCount = mFrameCount;
state->mCommand = FastMixerState::COLD_IDLE;
// already done in constructor initialization list
//mFastMixerFutex = 0;
state->mColdFutexAddr = &mFastMixerFutex;
state->mColdGen++;
state->mDumpState = &mFastMixerDumpState;
state->mTeeSink = mTeeSink.get();
sq->end();
sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
// start the fast mixer
mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
pid_t tid = mFastMixer->getTid();
int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
if (err != 0) {
ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
kPriorityFastMixer, getpid_cached, tid, err);
}
#ifdef AUDIO_WATCHDOG
// create and start the watchdog
mAudioWatchdog = new AudioWatchdog();
mAudioWatchdog->setDump(&mAudioWatchdogDump);
mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
tid = mAudioWatchdog->getTid();
err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
if (err != 0) {
ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
kPriorityFastMixer, getpid_cached, tid, err);
}
#endif
} else {
mFastMixer = NULL;
}
switch (kUseFastMixer) {
case FastMixer_Never:
case FastMixer_Dynamic:
mNormalSink = mOutputSink;
break;
case FastMixer_Always:
mNormalSink = mPipeSink;
break;
case FastMixer_Static:
mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
break;
}
}
AudioFlinger::MixerThread::~MixerThread()
{
if (mFastMixer != NULL) {
FastMixerStateQueue *sq = mFastMixer->sq();
FastMixerState *state = sq->begin();
if (state->mCommand == FastMixerState::COLD_IDLE) {
int32_t old = android_atomic_inc(&mFastMixerFutex);
if (old == -1) {
__futex_syscall3(&mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
}
}
state->mCommand = FastMixerState::EXIT;
sq->end();
sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
mFastMixer->join();
// Though the fast mixer thread has exited, it's state queue is still valid.
// We'll use that extract the final state which contains one remaining fast track
// corresponding to our sub-mix.
state = sq->begin();
ALOG_ASSERT(state->mTrackMask == 1);
FastTrack *fastTrack = &state->mFastTracks[0];
ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
delete fastTrack->mBufferProvider;
sq->end(false /*didModify*/);
delete mFastMixer;
#ifdef AUDIO_WATCHDOG
if (mAudioWatchdog != 0) {
mAudioWatchdog->requestExit();
mAudioWatchdog->requestExitAndWait();
mAudioWatchdog.clear();
}
#endif
}
delete mAudioMixer;
}
class CpuStats {
public:
CpuStats();
void sample(const String8 &title);
#ifdef DEBUG_CPU_USAGE
private:
ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns
CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
int mCpuNum; // thread's current CPU number
int mCpukHz; // frequency of thread's current CPU in kHz
#endif
};
CpuStats::CpuStats()
#ifdef DEBUG_CPU_USAGE
: mCpuNum(-1), mCpukHz(-1)
#endif
{
}
void CpuStats::sample(const String8 &title) {
#ifdef DEBUG_CPU_USAGE
// get current thread's delta CPU time in wall clock ns
double wcNs;
bool valid = mCpuUsage.sampleAndEnable(wcNs);
// record sample for wall clock statistics
if (valid) {
mWcStats.sample(wcNs);
}
// get the current CPU number
int cpuNum = sched_getcpu();
// get the current CPU frequency in kHz
int cpukHz = mCpuUsage.getCpukHz(cpuNum);
// check if either CPU number or frequency changed
if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
mCpuNum = cpuNum;
mCpukHz = cpukHz;
// ignore sample for purposes of cycles
valid = false;
}
// if no change in CPU number or frequency, then record sample for cycle statistics
if (valid && mCpukHz > 0) {
double cycles = wcNs * cpukHz * 0.000001;
mHzStats.sample(cycles);
}
unsigned n = mWcStats.n();
// mCpuUsage.elapsed() is expensive, so don't call it every loop
if ((n & 127) == 1) {
long long elapsed = mCpuUsage.elapsed();
if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
double perLoop = elapsed / (double) n;
double perLoop100 = perLoop * 0.01;
double perLoop1k = perLoop * 0.001;
double mean = mWcStats.mean();
double stddev = mWcStats.stddev();
double minimum = mWcStats.minimum();
double maximum = mWcStats.maximum();
double meanCycles = mHzStats.mean();
double stddevCycles = mHzStats.stddev();
double minCycles = mHzStats.minimum();
double maxCycles = mHzStats.maximum();
mCpuUsage.resetElapsed();
mWcStats.reset();
mHzStats.reset();
ALOGD("CPU usage for %s over past %.1f secs\n"
" (%u mixer loops at %.1f mean ms per loop):\n"
" us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
" %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
" MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
title.string(),
elapsed * .000000001, n, perLoop * .000001,
mean * .001,
stddev * .001,
minimum * .001,
maximum * .001,
mean / perLoop100,
stddev / perLoop100,
minimum / perLoop100,
maximum / perLoop100,
meanCycles / perLoop1k,
stddevCycles / perLoop1k,
minCycles / perLoop1k,
maxCycles / perLoop1k);
}
}
#endif
};
void AudioFlinger::PlaybackThread::checkSilentMode_l()
{
if (!mMasterMute) {
char value[PROPERTY_VALUE_MAX];
if (property_get("ro.audio.silent", value, "0") > 0) {
char *endptr;
unsigned long ul = strtoul(value, &endptr, 0);
if (*endptr == '\0' && ul != 0) {
ALOGD("Silence is golden");
// The setprop command will not allow a property to be changed after
// the first time it is set, so we don't have to worry about un-muting.
setMasterMute_l(true);
}
}
}
}
bool AudioFlinger::PlaybackThread::threadLoop()
{
Vector< sp<Track> > tracksToRemove;
standbyTime = systemTime();
// MIXER
nsecs_t lastWarning = 0;
// DUPLICATING
// FIXME could this be made local to while loop?
writeFrames = 0;
cacheParameters_l();
sleepTime = idleSleepTime;
if (mType == MIXER) {
sleepTimeShift = 0;
}
CpuStats cpuStats;
const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
acquireWakeLock();
while (!exitPending())
{
cpuStats.sample(myName);
Vector< sp<EffectChain> > effectChains;
processConfigEvents();
{ // scope for mLock
Mutex::Autolock _l(mLock);
if (checkForNewParameters_l()) {
cacheParameters_l();
}
saveOutputTracks();
// put audio hardware into standby after short delay
if (CC_UNLIKELY((!mActiveTracks.size() && systemTime() > standbyTime) ||
isSuspended())) {
if (!mStandby) {
threadLoop_standby();
mStandby = true;
}
if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
// we're about to wait, flush the binder command buffer
IPCThreadState::self()->flushCommands();
clearOutputTracks();
if (exitPending()) break;
releaseWakeLock_l();
// wait until we have something to do...
ALOGV("%s going to sleep", myName.string());
mWaitWorkCV.wait(mLock);
ALOGV("%s waking up", myName.string());
acquireWakeLock_l();
mMixerStatus = MIXER_IDLE;
mMixerStatusIgnoringFastTracks = MIXER_IDLE;
mBytesWritten = 0;
checkSilentMode_l();
standbyTime = systemTime() + standbyDelay;
sleepTime = idleSleepTime;
if (mType == MIXER) {
sleepTimeShift = 0;
}
continue;
}
}
// mMixerStatusIgnoringFastTracks is also updated internally
mMixerStatus = prepareTracks_l(&tracksToRemove);
// prevent any changes in effect chain list and in each effect chain
// during mixing and effect process as the audio buffers could be deleted
// or modified if an effect is created or deleted
lockEffectChains_l(effectChains);
}
if (CC_LIKELY(mMixerStatus == MIXER_TRACKS_READY)) {
threadLoop_mix();
} else {
threadLoop_sleepTime();
}
if (isSuspended()) {
sleepTime = suspendSleepTimeUs();
mBytesWritten += mixBufferSize;
}
// only process effects if we're going to write
if (sleepTime == 0) {
for (size_t i = 0; i < effectChains.size(); i ++) {
effectChains[i]->process_l();
}
}
// enable changes in effect chain
unlockEffectChains(effectChains);
// sleepTime == 0 means we must write to audio hardware
if (sleepTime == 0) {
threadLoop_write();
if (mType == MIXER) {
// write blocked detection
nsecs_t now = systemTime();
nsecs_t delta = now - mLastWriteTime;
if (!mStandby && delta > maxPeriod) {
mNumDelayedWrites++;
if ((now - lastWarning) > kWarningThrottleNs) {
#if defined(ATRACE_TAG) && (ATRACE_TAG != ATRACE_TAG_NEVER)
ScopedTrace st(ATRACE_TAG, "underrun");
#endif
ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
ns2ms(delta), mNumDelayedWrites, this);
lastWarning = now;
}
}
}
mStandby = false;
} else {
usleep(sleepTime);
}
// Finally let go of removed track(s), without the lock held
// since we can't guarantee the destructors won't acquire that
// same lock. This will also mutate and push a new fast mixer state.
threadLoop_removeTracks(tracksToRemove);
tracksToRemove.clear();
// FIXME I don't understand the need for this here;
// it was in the original code but maybe the
// assignment in saveOutputTracks() makes this unnecessary?
clearOutputTracks();
// Effect chains will be actually deleted here if they were removed from
// mEffectChains list during mixing or effects processing
effectChains.clear();
// FIXME Note that the above .clear() is no longer necessary since effectChains
// is now local to this block, but will keep it for now (at least until merge done).
}
// for DuplicatingThread, standby mode is handled by the outputTracks, otherwise ...
if (mType == MIXER || mType == DIRECT) {
// put output stream into standby mode
if (!mStandby) {
mOutput->stream->common.standby(&mOutput->stream->common);
}
}
releaseWakeLock();
ALOGV("Thread %p type %d exiting", this, mType);
return false;
}
void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
{
PlaybackThread::threadLoop_removeTracks(tracksToRemove);
}
void AudioFlinger::MixerThread::threadLoop_write()
{
// FIXME we should only do one push per cycle; confirm this is true
// Start the fast mixer if it's not already running
if (mFastMixer != NULL) {
FastMixerStateQueue *sq = mFastMixer->sq();
FastMixerState *state = sq->begin();
if (state->mCommand != FastMixerState::MIX_WRITE &&
(kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
if (state->mCommand == FastMixerState::COLD_IDLE) {
int32_t old = android_atomic_inc(&mFastMixerFutex);
if (old == -1) {
__futex_syscall3(&mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
}
#ifdef AUDIO_WATCHDOG
if (mAudioWatchdog != 0) {
mAudioWatchdog->resume();
}
#endif
}
state->mCommand = FastMixerState::MIX_WRITE;
sq->end();
sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
if (kUseFastMixer == FastMixer_Dynamic) {
mNormalSink = mPipeSink;
}
} else {
sq->end(false /*didModify*/);
}
}
PlaybackThread::threadLoop_write();
}
// shared by MIXER and DIRECT, overridden by DUPLICATING
void AudioFlinger::PlaybackThread::threadLoop_write()
{
// FIXME rewrite to reduce number of system calls
mLastWriteTime = systemTime();
mInWrite = true;
int bytesWritten;
// If an NBAIO sink is present, use it to write the normal mixer's submix
if (mNormalSink != 0) {
#define mBitShift 2 // FIXME
size_t count = mixBufferSize >> mBitShift;
#if defined(ATRACE_TAG) && (ATRACE_TAG != ATRACE_TAG_NEVER)
Tracer::traceBegin(ATRACE_TAG, "write");
#endif
// update the setpoint when gScreenState changes
uint32_t screenState = gScreenState;
if (screenState != mScreenState) {
mScreenState = screenState;
MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
if (pipe != NULL) {
pipe->setAvgFrames((mScreenState & 1) ?
(pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
}
}
ssize_t framesWritten = mNormalSink->write(mMixBuffer, count);
#if defined(ATRACE_TAG) && (ATRACE_TAG != ATRACE_TAG_NEVER)
Tracer::traceEnd(ATRACE_TAG);
#endif
if (framesWritten > 0) {
bytesWritten = framesWritten << mBitShift;
} else {
bytesWritten = framesWritten;
}
// otherwise use the HAL / AudioStreamOut directly
} else {
// Direct output thread.
bytesWritten = (int)mOutput->stream->write(mOutput->stream, mMixBuffer, mixBufferSize);
}
if (bytesWritten > 0) mBytesWritten += mixBufferSize;
mNumWrites++;
mInWrite = false;
}
void AudioFlinger::MixerThread::threadLoop_standby()
{
// Idle the fast mixer if it's currently running
if (mFastMixer != NULL) {
FastMixerStateQueue *sq = mFastMixer->sq();
FastMixerState *state = sq->begin();
if (!(state->mCommand & FastMixerState::IDLE)) {
state->mCommand = FastMixerState::COLD_IDLE;
state->mColdFutexAddr = &mFastMixerFutex;
state->mColdGen++;
mFastMixerFutex = 0;
sq->end();
// BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
if (kUseFastMixer == FastMixer_Dynamic) {
mNormalSink = mOutputSink;
}
#ifdef AUDIO_WATCHDOG
if (mAudioWatchdog != 0) {
mAudioWatchdog->pause();
}
#endif
} else {
sq->end(false /*didModify*/);
}
}
PlaybackThread::threadLoop_standby();
}
// shared by MIXER and DIRECT, overridden by DUPLICATING
void AudioFlinger::PlaybackThread::threadLoop_standby()
{
ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
mOutput->stream->common.standby(&mOutput->stream->common);
}
void AudioFlinger::MixerThread::threadLoop_mix()
{
// obtain the presentation timestamp of the next output buffer
int64_t pts;
status_t status = INVALID_OPERATION;
if (mNormalSink != 0) {
status = mNormalSink->getNextWriteTimestamp(&pts);
} else {
status = mOutputSink->getNextWriteTimestamp(&pts);
}
if (status != NO_ERROR) {
pts = AudioBufferProvider::kInvalidPTS;
}
// mix buffers...
mAudioMixer->process(pts);
// increase sleep time progressively when application underrun condition clears.
// Only increase sleep time if the mixer is ready for two consecutive times to avoid
// that a steady state of alternating ready/not ready conditions keeps the sleep time
// such that we would underrun the audio HAL.
if ((sleepTime == 0) && (sleepTimeShift > 0)) {
sleepTimeShift--;
}
sleepTime = 0;
standbyTime = systemTime() + standbyDelay;
//TODO: delay standby when effects have a tail
}
void AudioFlinger::MixerThread::threadLoop_sleepTime()
{
// If no tracks are ready, sleep once for the duration of an output
// buffer size, then write 0s to the output
if (sleepTime == 0) {
if (mMixerStatus == MIXER_TRACKS_ENABLED) {
sleepTime = activeSleepTime >> sleepTimeShift;
if (sleepTime < kMinThreadSleepTimeUs) {
sleepTime = kMinThreadSleepTimeUs;
}
// reduce sleep time in case of consecutive application underruns to avoid
// starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
// duration we would end up writing less data than needed by the audio HAL if
// the condition persists.
if (sleepTimeShift < kMaxThreadSleepTimeShift) {
sleepTimeShift++;
}
} else {
sleepTime = idleSleepTime;
}
} else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
memset (mMixBuffer, 0, mixBufferSize);
sleepTime = 0;
ALOGV_IF((mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED)),
"anticipated start");
}
// TODO add standby time extension fct of effect tail
}
// prepareTracks_l() must be called with ThreadBase::mLock held
AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
Vector< sp<Track> > *tracksToRemove)
{
mixer_state mixerStatus = MIXER_IDLE;
// find out which tracks need to be processed
size_t count = mActiveTracks.size();
size_t mixedTracks = 0;
size_t tracksWithEffect = 0;
// counts only _active_ fast tracks
size_t fastTracks = 0;
uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
float masterVolume = mMasterVolume;
bool masterMute = mMasterMute;
if (masterMute) {
masterVolume = 0;
}
// Delegate master volume control to effect in output mix effect chain if needed
sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
if (chain != 0) {
uint32_t v = (uint32_t)(masterVolume * (1 << 24));
chain->setVolume_l(&v, &v);
masterVolume = (float)((v + (1 << 23)) >> 24);
chain.clear();
}
// prepare a new state to push
FastMixerStateQueue *sq = NULL;
FastMixerState *state = NULL;
bool didModify = false;
FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
if (mFastMixer != NULL) {
sq = mFastMixer->sq();
state = sq->begin();
}
for (size_t i=0 ; i<count ; i++) {
sp<Track> t = mActiveTracks[i].promote();
if (t == 0) continue;
// this const just means the local variable doesn't change
Track* const track = t.get();
// process fast tracks
if (track->isFastTrack()) {
// It's theoretically possible (though unlikely) for a fast track to be created
// and then removed within the same normal mix cycle. This is not a problem, as
// the track never becomes active so it's fast mixer slot is never touched.
// The converse, of removing an (active) track and then creating a new track
// at the identical fast mixer slot within the same normal mix cycle,
// is impossible because the slot isn't marked available until the end of each cycle.
int j = track->mFastIndex;
ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
FastTrack *fastTrack = &state->mFastTracks[j];
// Determine whether the track is currently in underrun condition,
// and whether it had a recent underrun.
FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
FastTrackUnderruns underruns = ftDump->mUnderruns;
uint32_t recentFull = (underruns.mBitFields.mFull -
track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
uint32_t recentPartial = (underruns.mBitFields.mPartial -
track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
uint32_t recentUnderruns = recentPartial + recentEmpty;
track->mObservedUnderruns = underruns;
// don't count underruns that occur while stopping or pausing
// or stopped which can occur when flush() is called while active
if (!(track->isStopping() || track->isPausing() || track->isStopped())) {
track->mUnderrunCount += recentUnderruns;
}
// This is similar to the state machine for normal tracks,
// with a few modifications for fast tracks.
bool isActive = true;
switch (track->mState) {
case TrackBase::STOPPING_1:
// track stays active in STOPPING_1 state until first underrun
if (recentUnderruns > 0) {
track->mState = TrackBase::STOPPING_2;
}
break;
case TrackBase::PAUSING:
// ramp down is not yet implemented
track->setPaused();
break;
case TrackBase::RESUMING:
// ramp up is not yet implemented
track->mState = TrackBase::ACTIVE;
break;
case TrackBase::ACTIVE:
if (recentFull > 0 || recentPartial > 0) {
// track has provided at least some frames recently: reset retry count
track->mRetryCount = kMaxTrackRetries;
}
if (recentUnderruns == 0) {
// no recent underruns: stay active
break;
}
// there has recently been an underrun of some kind
if (track->sharedBuffer() == 0) {
// were any of the recent underruns "empty" (no frames available)?
if (recentEmpty == 0) {
// no, then ignore the partial underruns as they are allowed indefinitely
break;
}
// there has recently been an "empty" underrun: decrement the retry counter
if (--(track->mRetryCount) > 0) {
break;
}
// indicate to client process that the track was disabled because of underrun;
// it will then automatically call start() when data is available
android_atomic_or(CBLK_DISABLED, &track->mCblk->flags);
// remove from active list, but state remains ACTIVE [confusing but true]
isActive = false;
break;
}
// fall through
case TrackBase::STOPPING_2:
case TrackBase::PAUSED:
case TrackBase::TERMINATED:
case TrackBase::STOPPED:
case TrackBase::FLUSHED: // flush() while active
// Check for presentation complete if track is inactive
// We have consumed all the buffers of this track.
// This would be incomplete if we auto-paused on underrun
{
size_t audioHALFrames =
(mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
size_t framesWritten =
mBytesWritten / audio_stream_frame_size(&mOutput->stream->common);
if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
// track stays in active list until presentation is complete
break;
}
}
if (track->isStopping_2()) {
track->mState = TrackBase::STOPPED;
}
if (track->isStopped()) {
// Can't reset directly, as fast mixer is still polling this track
// track->reset();
// So instead mark this track as needing to be reset after push with ack
resetMask |= 1 << i;
}
isActive = false;
break;
case TrackBase::IDLE:
default:
LOG_FATAL("unexpected track state %d", track->mState);
}
if (isActive) {
// was it previously inactive?
if (!(state->mTrackMask & (1 << j))) {
ExtendedAudioBufferProvider *eabp = track;
VolumeProvider *vp = track;
fastTrack->mBufferProvider = eabp;
fastTrack->mVolumeProvider = vp;
fastTrack->mSampleRate = track->mSampleRate;
fastTrack->mChannelMask = track->mChannelMask;
fastTrack->mGeneration++;
state->mTrackMask |= 1 << j;
didModify = true;
// no acknowledgement required for newly active tracks
}
// cache the combined master volume and stream type volume for fast mixer; this
// lacks any synchronization or barrier so VolumeProvider may read a stale value
track->mCachedVolume = track->isMuted() ?
0 : masterVolume * mStreamTypes[track->streamType()].volume;
++fastTracks;
} else {
// was it previously active?
if (state->mTrackMask & (1 << j)) {
fastTrack->mBufferProvider = NULL;
fastTrack->mGeneration++;
state->mTrackMask &= ~(1 << j);
didModify = true;
// If any fast tracks were removed, we must wait for acknowledgement
// because we're about to decrement the last sp<> on those tracks.
block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
} else {
LOG_FATAL("fast track %d should have been active", j);
}
tracksToRemove->add(track);
// Avoids a misleading display in dumpsys
track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
}
continue;
}
{ // local variable scope to avoid goto warning
audio_track_cblk_t* cblk = track->cblk();
// The first time a track is added we wait
// for all its buffers to be filled before processing it
int name = track->name();
// make sure that we have enough frames to mix one full buffer.
// enforce this condition only once to enable draining the buffer in case the client
// app does not call stop() and relies on underrun to stop:
// hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
// during last round
uint32_t minFrames = 1;
if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
(mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
if (t->sampleRate() == mSampleRate) {
minFrames = mNormalFrameCount;
} else {
// +1 for rounding and +1 for additional sample needed for interpolation
minFrames = (mNormalFrameCount * t->sampleRate()) / mSampleRate + 1 + 1;
// add frames already consumed but not yet released by the resampler
// because cblk->framesReady() will include these frames
minFrames += mAudioMixer->getUnreleasedFrames(track->name());
// the minimum track buffer size is normally twice the number of frames necessary
// to fill one buffer and the resampler should not leave more than one buffer worth
// of unreleased frames after each pass, but just in case...
ALOG_ASSERT(minFrames <= cblk->frameCount);
}
}
if ((track->framesReady() >= minFrames) && track->isReady() &&
!track->isPaused() && !track->isTerminated())
{
ALOGVV("track %d u=%08x, s=%08x [OK] on thread %p", name, cblk->user, cblk->server,
this);
mixedTracks++;
// track->mainBuffer() != mMixBuffer means there is an effect chain
// connected to the track
chain.clear();
if (track->mainBuffer() != mMixBuffer) {
chain = getEffectChain_l(track->sessionId());
// Delegate volume control to effect in track effect chain if needed
if (chain != 0) {
tracksWithEffect++;
} else {
ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
"session %d",
name, track->sessionId());
}
}
int param = AudioMixer::VOLUME;
if (track->mFillingUpStatus == Track::FS_FILLED) {
// no ramp for the first volume setting
track->mFillingUpStatus = Track::FS_ACTIVE;
if (track->mState == TrackBase::RESUMING) {
track->mState = TrackBase::ACTIVE;
param = AudioMixer::RAMP_VOLUME;
}
mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
} else if (cblk->server != 0) {
// If the track is stopped before the first frame was mixed,
// do not apply ramp
param = AudioMixer::RAMP_VOLUME;
}
// compute volume for this track
uint32_t vl, vr, va;
if (track->isMuted() || track->isPausing() ||
mStreamTypes[track->streamType()].mute) {
vl = vr = va = 0;
if (track->isPausing()) {
track->setPaused();
}
} else {
// read original volumes with volume control
float typeVolume = mStreamTypes[track->streamType()].volume;
float v = masterVolume * typeVolume;
uint32_t vlr = cblk->getVolumeLR();
vl = vlr & 0xFFFF;
vr = vlr >> 16;
// track volumes come from shared memory, so can't be trusted and must be clamped
if (vl > MAX_GAIN_INT) {
ALOGV("Track left volume out of range: %04X", vl);
vl = MAX_GAIN_INT;
}
if (vr > MAX_GAIN_INT) {
ALOGV("Track right volume out of range: %04X", vr);
vr = MAX_GAIN_INT;
}
// now apply the master volume and stream type volume
vl = (uint32_t)(v * vl) << 12;
vr = (uint32_t)(v * vr) << 12;
// assuming master volume and stream type volume each go up to 1.0,
// vl and vr are now in 8.24 format
uint16_t sendLevel = cblk->getSendLevel_U4_12();
// send level comes from shared memory and so may be corrupt
if (sendLevel > MAX_GAIN_INT) {
ALOGV("Track send level out of range: %04X", sendLevel);
sendLevel = MAX_GAIN_INT;
}
va = (uint32_t)(v * sendLevel);
}
// Delegate volume control to effect in track effect chain if needed
if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
// Do not ramp volume if volume is controlled by effect
param = AudioMixer::VOLUME;
track->mHasVolumeController = true;
} else {
// force no volume ramp when volume controller was just disabled or removed
// from effect chain to avoid volume spike
if (track->mHasVolumeController) {
param = AudioMixer::VOLUME;
}
track->mHasVolumeController = false;
}
// Convert volumes from 8.24 to 4.12 format
// This additional clamping is needed in case chain->setVolume_l() overshot
vl = (vl + (1 << 11)) >> 12;
if (vl > MAX_GAIN_INT) vl = MAX_GAIN_INT;
vr = (vr + (1 << 11)) >> 12;
if (vr > MAX_GAIN_INT) vr = MAX_GAIN_INT;
if (va > MAX_GAIN_INT) va = MAX_GAIN_INT; // va is uint32_t, so no need to check for -
// XXX: these things DON'T need to be done each time
mAudioMixer->setBufferProvider(name, track);
mAudioMixer->enable(name);
mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, (void *)vl);
mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, (void *)vr);
mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, (void *)va);
mAudioMixer->setParameter(
name,
AudioMixer::TRACK,
AudioMixer::FORMAT, (void *)track->format());
mAudioMixer->setParameter(
name,
AudioMixer::TRACK,
AudioMixer::CHANNEL_MASK, (void *)track->channelMask());
mAudioMixer->setParameter(
name,
AudioMixer::RESAMPLE,
AudioMixer::SAMPLE_RATE,
(void *)(cblk->sampleRate));
mAudioMixer->setParameter(
name,
AudioMixer::TRACK,
AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
mAudioMixer->setParameter(
name,
AudioMixer::TRACK,
AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
// reset retry count
track->mRetryCount = kMaxTrackRetries;
// If one track is ready, set the mixer ready if:
// - the mixer was not ready during previous round OR
// - no other track is not ready
if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
mixerStatus != MIXER_TRACKS_ENABLED) {
mixerStatus = MIXER_TRACKS_READY;
}
} else {
// clear effect chain input buffer if an active track underruns to avoid sending
// previous audio buffer again to effects
chain = getEffectChain_l(track->sessionId());
if (chain != 0) {
chain->clearInputBuffer();
}
ALOGVV("track %d u=%08x, s=%08x [NOT READY] on thread %p", name, cblk->user,
cblk->server, this);
if ((track->sharedBuffer() != 0) || track->isTerminated() ||
track->isStopped() || track->isPaused()) {
// We have consumed all the buffers of this track.
// Remove it from the list of active tracks.
// TODO: use actual buffer filling status instead of latency when available from
// audio HAL
size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
size_t framesWritten =
mBytesWritten / audio_stream_frame_size(&mOutput->stream->common);
if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
if (track->isStopped()) {
track->reset();
}
tracksToRemove->add(track);
}
} else {
track->mUnderrunCount++;
// No buffers for this track. Give it a few chances to
// fill a buffer, then remove it from active list.
if (--(track->mRetryCount) <= 0) {
ALOGV("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
tracksToRemove->add(track);
// indicate to client process that the track was disabled because of underrun;
// it will then automatically call start() when data is available
android_atomic_or(CBLK_DISABLED, &cblk->flags);
// If one track is not ready, mark the mixer also not ready if:
// - the mixer was ready during previous round OR
// - no other track is ready
} else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
mixerStatus != MIXER_TRACKS_READY) {
mixerStatus = MIXER_TRACKS_ENABLED;
}
}
mAudioMixer->disable(name);
}
} // local variable scope to avoid goto warning
track_is_ready: ;
}
// Push the new FastMixer state if necessary
bool pauseAudioWatchdog = false;
if (didModify) {
state->mFastTracksGen++;
// if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
if (kUseFastMixer == FastMixer_Dynamic &&
state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
state->mCommand = FastMixerState::COLD_IDLE;
state->mColdFutexAddr = &mFastMixerFutex;
state->mColdGen++;
mFastMixerFutex = 0;
if (kUseFastMixer == FastMixer_Dynamic) {
mNormalSink = mOutputSink;
}
// If we go into cold idle, need to wait for acknowledgement
// so that fast mixer stops doing I/O.
block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
pauseAudioWatchdog = true;
}
sq->end();
}
if (sq != NULL) {
sq->end(didModify);
sq->push(block);
}
#ifdef AUDIO_WATCHDOG
if (pauseAudioWatchdog && mAudioWatchdog != 0) {
mAudioWatchdog->pause();
}
#endif
// Now perform the deferred reset on fast tracks that have stopped
while (resetMask != 0) {
size_t i = __builtin_ctz(resetMask);
ALOG_ASSERT(i < count);
resetMask &= ~(1 << i);
sp<Track> t = mActiveTracks[i].promote();
if (t == 0) continue;
Track* track = t.get();
ALOG_ASSERT(track->isFastTrack() && track->isStopped());
track->reset();
}
// remove all the tracks that need to be...
count = tracksToRemove->size();
if (CC_UNLIKELY(count)) {
for (size_t i=0 ; i<count ; i++) {
const sp<Track>& track = tracksToRemove->itemAt(i);
mActiveTracks.remove(track);
if (track->mainBuffer() != mMixBuffer) {
chain = getEffectChain_l(track->sessionId());
if (chain != 0) {
ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
track->sessionId());
chain->decActiveTrackCnt();
}
}
if (track->isTerminated()) {
removeTrack_l(track);
}
}
}
// mix buffer must be cleared if all tracks are connected to an
// effect chain as in this case the mixer will not write to
// mix buffer and track effects will accumulate into it
if ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
(mixedTracks == 0 && fastTracks > 0)) {
// FIXME as a performance optimization, should remember previous zero status
memset(mMixBuffer, 0, mNormalFrameCount * mChannelCount * sizeof(int16_t));
}
// if any fast tracks, then status is ready
mMixerStatusIgnoringFastTracks = mixerStatus;
if (fastTracks > 0) {
mixerStatus = MIXER_TRACKS_READY;
}
return mixerStatus;
}
/*
The derived values that are cached:
- mixBufferSize from frame count * frame size
- activeSleepTime from activeSleepTimeUs()
- idleSleepTime from idleSleepTimeUs()
- standbyDelay from mActiveSleepTimeUs (DIRECT only)
- maxPeriod from frame count and sample rate (MIXER only)
The parameters that affect these derived values are:
- frame count
- frame size
- sample rate
- device type: A2DP or not
- device latency
- format: PCM or not
- active sleep time
- idle sleep time
*/
void AudioFlinger::PlaybackThread::cacheParameters_l()
{
mixBufferSize = mNormalFrameCount * mFrameSize;
activeSleepTime = activeSleepTimeUs();
idleSleepTime = idleSleepTimeUs();
}
void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
{
ALOGV ("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
this, streamType, mTracks.size());
Mutex::Autolock _l(mLock);
size_t size = mTracks.size();
for (size_t i = 0; i < size; i++) {
sp<Track> t = mTracks[i];
if (t->streamType() == streamType) {
android_atomic_or(CBLK_INVALID, &t->mCblk->flags);
t->mCblk->cv.signal();
}
}
}
// getTrackName_l() must be called with ThreadBase::mLock held
int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask, int sessionId)
{
return mAudioMixer->getTrackName(channelMask, sessionId);
}
// deleteTrackName_l() must be called with ThreadBase::mLock held
void AudioFlinger::MixerThread::deleteTrackName_l(int name)
{
ALOGV("remove track (%d) and delete from mixer", name);
mAudioMixer->deleteTrackName(name);
}
// checkForNewParameters_l() must be called with ThreadBase::mLock held
bool AudioFlinger::MixerThread::checkForNewParameters_l()
{
// if !&IDLE, holds the FastMixer state to restore after new parameters processed
FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
bool reconfig = false;
while (!mNewParameters.isEmpty()) {
if (mFastMixer != NULL) {
FastMixerStateQueue *sq = mFastMixer->sq();
FastMixerState *state = sq->begin();
if (!(state->mCommand & FastMixerState::IDLE)) {
previousCommand = state->mCommand;
state->mCommand = FastMixerState::HOT_IDLE;
sq->end();
sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
} else {
sq->end(false /*didModify*/);
}
}
status_t status = NO_ERROR;
String8 keyValuePair = mNewParameters[0];
AudioParameter param = AudioParameter(keyValuePair);
int value;
if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
reconfig = true;
}
if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
if ((audio_format_t) value != AUDIO_FORMAT_PCM_16_BIT) {
status = BAD_VALUE;
} else {
reconfig = true;
}
}
if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
if (value != AUDIO_CHANNEL_OUT_STEREO) {
status = BAD_VALUE;
} else {
reconfig = true;
}
}
if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
// do not accept frame count changes if tracks are open as the track buffer
// size depends on frame count and correct behavior would not be guaranteed
// if frame count is changed after track creation
if (!mTracks.isEmpty()) {
status = INVALID_OPERATION;
} else {
reconfig = true;
}
}
if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
#ifdef ADD_BATTERY_DATA
// when changing the audio output device, call addBatteryData to notify
// the change
if (mOutDevice != value) {
uint32_t params = 0;
// check whether speaker is on
if (value & AUDIO_DEVICE_OUT_SPEAKER) {
params |= IMediaPlayerService::kBatteryDataSpeakerOn;
}
audio_devices_t deviceWithoutSpeaker
= AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
// check if any other device (except speaker) is on
if (value & deviceWithoutSpeaker ) {
params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
}
if (params != 0) {
addBatteryData(params);
}
}
#endif
// forward device change to effects that have requested to be
// aware of attached audio device.
mOutDevice = value;
for (size_t i = 0; i < mEffectChains.size(); i++) {
mEffectChains[i]->setDevice_l(mOutDevice);
}
}
if (status == NO_ERROR) {
status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
keyValuePair.string());
if (!mStandby && status == INVALID_OPERATION) {
mOutput->stream->common.standby(&mOutput->stream->common);
mStandby = true;
mBytesWritten = 0;
status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
keyValuePair.string());
}
if (status == NO_ERROR && reconfig) {
delete mAudioMixer;
// for safety in case readOutputParameters() accesses mAudioMixer (it doesn't)
mAudioMixer = NULL;
readOutputParameters();
mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
for (size_t i = 0; i < mTracks.size() ; i++) {
int name = getTrackName_l(mTracks[i]->mChannelMask, mTracks[i]->mSessionId);
if (name < 0) break;
mTracks[i]->mName = name;
// limit track sample rate to 2 x new output sample rate
if (mTracks[i]->mCblk->sampleRate > 2 * sampleRate()) {
mTracks[i]->mCblk->sampleRate = 2 * sampleRate();
}
}
sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
}
}
mNewParameters.removeAt(0);
mParamStatus = status;
mParamCond.signal();
// wait for condition with time out in case the thread calling ThreadBase::setParameters()
// already timed out waiting for the status and will never signal the condition.
mWaitWorkCV.waitRelative(mLock, kSetParametersTimeoutNs);
}
if (!(previousCommand & FastMixerState::IDLE)) {
ALOG_ASSERT(mFastMixer != NULL);
FastMixerStateQueue *sq = mFastMixer->sq();
FastMixerState *state = sq->begin();
ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
state->mCommand = previousCommand;
sq->end();
sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
}
return reconfig;
}
void AudioFlinger::dumpTee(int fd, const sp<NBAIO_Source>& source, audio_io_handle_t id)
{
NBAIO_Source *teeSource = source.get();
if (teeSource != NULL) {
char teeTime[16];
struct timeval tv;
gettimeofday(&tv, NULL);
struct tm tm;
localtime_r(&tv.tv_sec, &tm);
strftime(teeTime, sizeof(teeTime), "%T", &tm);
char teePath[64];
sprintf(teePath, "/data/misc/media/%s_%d.wav", teeTime, id);
int teeFd = open(teePath, O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR);
if (teeFd >= 0) {
char wavHeader[44];
memcpy(wavHeader,
"RIFF\0\0\0\0WAVEfmt \20\0\0\0\1\0\2\0\104\254\0\0\0\0\0\0\4\0\20\0data\0\0\0\0",
sizeof(wavHeader));
NBAIO_Format format = teeSource->format();
unsigned channelCount = Format_channelCount(format);
ALOG_ASSERT(channelCount <= FCC_2);
uint32_t sampleRate = Format_sampleRate(format);
wavHeader[22] = channelCount; // number of channels
wavHeader[24] = sampleRate; // sample rate
wavHeader[25] = sampleRate >> 8;
wavHeader[32] = channelCount * 2; // block alignment
write(teeFd, wavHeader, sizeof(wavHeader));
size_t total = 0;
bool firstRead = true;
for (;;) {
#define TEE_SINK_READ 1024
short buffer[TEE_SINK_READ * FCC_2];
size_t count = TEE_SINK_READ;
ssize_t actual = teeSource->read(buffer, count,
AudioBufferProvider::kInvalidPTS);
bool wasFirstRead = firstRead;
firstRead = false;
if (actual <= 0) {
if (actual == (ssize_t) OVERRUN && wasFirstRead) {
continue;
}
break;
}
ALOG_ASSERT(actual <= (ssize_t)count);
write(teeFd, buffer, actual * channelCount * sizeof(short));
total += actual;
}
lseek(teeFd, (off_t) 4, SEEK_SET);
uint32_t temp = 44 + total * channelCount * sizeof(short) - 8;
write(teeFd, &temp, sizeof(temp));
lseek(teeFd, (off_t) 40, SEEK_SET);
temp = total * channelCount * sizeof(short);
write(teeFd, &temp, sizeof(temp));
close(teeFd);
fdprintf(fd, "FastMixer tee copied to %s\n", teePath);
} else {
fdprintf(fd, "FastMixer unable to create tee %s: \n", strerror(errno));
}
}
}
void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
PlaybackThread::dumpInternals(fd, args);
snprintf(buffer, SIZE, "AudioMixer tracks: %08x\n", mAudioMixer->trackNames());
result.append(buffer);
write(fd, result.string(), result.size());
// Make a non-atomic copy of fast mixer dump state so it won't change underneath us
FastMixerDumpState copy = mFastMixerDumpState;
copy.dump(fd);
#ifdef STATE_QUEUE_DUMP
// Similar for state queue
StateQueueObserverDump observerCopy = mStateQueueObserverDump;
observerCopy.dump(fd);
StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
mutatorCopy.dump(fd);
#endif
// Write the tee output to a .wav file
dumpTee(fd, mTeeSource, mId);
#ifdef AUDIO_WATCHDOG
if (mAudioWatchdog != 0) {
// Make a non-atomic copy of audio watchdog dump so it won't change underneath us
AudioWatchdogDump wdCopy = mAudioWatchdogDump;
wdCopy.dump(fd);
}
#endif
}
uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
{
return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
}
uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
{
return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
}
void AudioFlinger::MixerThread::cacheParameters_l()
{
PlaybackThread::cacheParameters_l();
// FIXME: Relaxed timing because of a certain device that can't meet latency
// Should be reduced to 2x after the vendor fixes the driver issue
// increase threshold again due to low power audio mode. The way this warning
// threshold is calculated and its usefulness should be reconsidered anyway.
maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
}
// ----------------------------------------------------------------------------
AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device)
: PlaybackThread(audioFlinger, output, id, device, DIRECT)
// mLeftVolFloat, mRightVolFloat
{
}
AudioFlinger::DirectOutputThread::~DirectOutputThread()
{
}
AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
Vector< sp<Track> > *tracksToRemove
)
{
sp<Track> trackToRemove;
mixer_state mixerStatus = MIXER_IDLE;
// find out which tracks need to be processed
if (mActiveTracks.size() != 0) {
sp<Track> t = mActiveTracks[0].promote();
// The track died recently
if (t == 0) return MIXER_IDLE;
Track* const track = t.get();
audio_track_cblk_t* cblk = track->cblk();
// The first time a track is added we wait
// for all its buffers to be filled before processing it
uint32_t minFrames;
if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing()) {
minFrames = mNormalFrameCount;
} else {
minFrames = 1;
}
if ((track->framesReady() >= minFrames) && track->isReady() &&
!track->isPaused() && !track->isTerminated())
{
ALOGVV("track %d u=%08x, s=%08x [OK]", track->name(), cblk->user, cblk->server);
if (track->mFillingUpStatus == Track::FS_FILLED) {
track->mFillingUpStatus = Track::FS_ACTIVE;
mLeftVolFloat = mRightVolFloat = 0;
if (track->mState == TrackBase::RESUMING) {
track->mState = TrackBase::ACTIVE;
}
}
// compute volume for this track
float left, right;
if (track->isMuted() || mMasterMute || track->isPausing() ||
mStreamTypes[track->streamType()].mute) {
left = right = 0;
if (track->isPausing()) {
track->setPaused();
}
} else {
float typeVolume = mStreamTypes[track->streamType()].volume;
float v = mMasterVolume * typeVolume;
uint32_t vlr = cblk->getVolumeLR();
float v_clamped = v * (vlr & 0xFFFF);
if (v_clamped > MAX_GAIN) v_clamped = MAX_GAIN;
left = v_clamped/MAX_GAIN;
v_clamped = v * (vlr >> 16);
if (v_clamped > MAX_GAIN) v_clamped = MAX_GAIN;
right = v_clamped/MAX_GAIN;
}
if (left != mLeftVolFloat || right != mRightVolFloat) {
mLeftVolFloat = left;
mRightVolFloat = right;
// Convert volumes from float to 8.24
uint32_t vl = (uint32_t)(left * (1 << 24));
uint32_t vr = (uint32_t)(right * (1 << 24));
// Delegate volume control to effect in track effect chain if needed
// only one effect chain can be present on DirectOutputThread, so if
// there is one, the track is connected to it
if (!mEffectChains.isEmpty()) {
// Do not ramp volume if volume is controlled by effect
mEffectChains[0]->setVolume_l(&vl, &vr);
left = (float)vl / (1 << 24);
right = (float)vr / (1 << 24);
}
mOutput->stream->set_volume(mOutput->stream, left, right);
}
// reset retry count
track->mRetryCount = kMaxTrackRetriesDirect;
mActiveTrack = t;
mixerStatus = MIXER_TRACKS_READY;
} else {
// clear effect chain input buffer if an active track underruns to avoid sending
// previous audio buffer again to effects
if (!mEffectChains.isEmpty()) {
mEffectChains[0]->clearInputBuffer();
}
ALOGVV("track %d u=%08x, s=%08x [NOT READY]", track->name(), cblk->user, cblk->server);
if ((track->sharedBuffer() != 0) || track->isTerminated() ||
track->isStopped() || track->isPaused()) {
// We have consumed all the buffers of this track.
// Remove it from the list of active tracks.
// TODO: implement behavior for compressed audio
size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
size_t framesWritten =
mBytesWritten / audio_stream_frame_size(&mOutput->stream->common);
if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
if (track->isStopped()) {
track->reset();
}
trackToRemove = track;
}
} else {
// No buffers for this track. Give it a few chances to
// fill a buffer, then remove it from active list.
if (--(track->mRetryCount) <= 0) {
ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
trackToRemove = track;
} else {
mixerStatus = MIXER_TRACKS_ENABLED;
}
}
}
}
// FIXME merge this with similar code for removing multiple tracks
// remove all the tracks that need to be...
if (CC_UNLIKELY(trackToRemove != 0)) {
tracksToRemove->add(trackToRemove);
mActiveTracks.remove(trackToRemove);
if (!mEffectChains.isEmpty()) {
ALOGV("stopping track on chain %p for session Id: %d", mEffectChains[0].get(),
trackToRemove->sessionId());
mEffectChains[0]->decActiveTrackCnt();
}
if (trackToRemove->isTerminated()) {
removeTrack_l(trackToRemove);
}
}
return mixerStatus;
}
void AudioFlinger::DirectOutputThread::threadLoop_mix()
{
AudioBufferProvider::Buffer buffer;
size_t frameCount = mFrameCount;
int8_t *curBuf = (int8_t *)mMixBuffer;
// output audio to hardware
while (frameCount) {
buffer.frameCount = frameCount;
mActiveTrack->getNextBuffer(&buffer);
if (CC_UNLIKELY(buffer.raw == NULL)) {
memset(curBuf, 0, frameCount * mFrameSize);
break;
}
memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
frameCount -= buffer.frameCount;
curBuf += buffer.frameCount * mFrameSize;
mActiveTrack->releaseBuffer(&buffer);
}
sleepTime = 0;
standbyTime = systemTime() + standbyDelay;
mActiveTrack.clear();
}
void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
{
if (sleepTime == 0) {
if (mMixerStatus == MIXER_TRACKS_ENABLED) {
sleepTime = activeSleepTime;
} else {
sleepTime = idleSleepTime;
}
} else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
memset(mMixBuffer, 0, mFrameCount * mFrameSize);
sleepTime = 0;
}
}
// getTrackName_l() must be called with ThreadBase::mLock held
int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask,
int sessionId)
{
return 0;
}
// deleteTrackName_l() must be called with ThreadBase::mLock held
void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name)
{
}
// checkForNewParameters_l() must be called with ThreadBase::mLock held
bool AudioFlinger::DirectOutputThread::checkForNewParameters_l()
{
bool reconfig = false;
while (!mNewParameters.isEmpty()) {
status_t status = NO_ERROR;
String8 keyValuePair = mNewParameters[0];
AudioParameter param = AudioParameter(keyValuePair);
int value;
if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
// do not accept frame count changes if tracks are open as the track buffer
// size depends on frame count and correct behavior would not be garantied
// if frame count is changed after track creation
if (!mTracks.isEmpty()) {
status = INVALID_OPERATION;
} else {
reconfig = true;
}
}
if (status == NO_ERROR) {
status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
keyValuePair.string());
if (!mStandby && status == INVALID_OPERATION) {
mOutput->stream->common.standby(&mOutput->stream->common);
mStandby = true;
mBytesWritten = 0;
status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
keyValuePair.string());
}
if (status == NO_ERROR && reconfig) {
readOutputParameters();
sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
}
}
mNewParameters.removeAt(0);
mParamStatus = status;
mParamCond.signal();
// wait for condition with time out in case the thread calling ThreadBase::setParameters()
// already timed out waiting for the status and will never signal the condition.
mWaitWorkCV.waitRelative(mLock, kSetParametersTimeoutNs);
}
return reconfig;
}
uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
{
uint32_t time;
if (audio_is_linear_pcm(mFormat)) {
time = PlaybackThread::activeSleepTimeUs();
} else {
time = 10000;
}
return time;
}
uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
{
uint32_t time;
if (audio_is_linear_pcm(mFormat)) {
time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
} else {
time = 10000;
}
return time;
}
uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
{
uint32_t time;
if (audio_is_linear_pcm(mFormat)) {
time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
} else {
time = 10000;
}
return time;
}
void AudioFlinger::DirectOutputThread::cacheParameters_l()
{
PlaybackThread::cacheParameters_l();
// use shorter standby delay as on normal output to release
// hardware resources as soon as possible
standbyDelay = microseconds(activeSleepTime*2);
}
// ----------------------------------------------------------------------------
AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
AudioFlinger::MixerThread* mainThread, audio_io_handle_t id)
: MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
DUPLICATING),
mWaitTimeMs(UINT_MAX)
{
addOutputTrack(mainThread);
}
AudioFlinger::DuplicatingThread::~DuplicatingThread()
{
for (size_t i = 0; i < mOutputTracks.size(); i++) {
mOutputTracks[i]->destroy();
}
}
void AudioFlinger::DuplicatingThread::threadLoop_mix()
{
// mix buffers...
if (outputsReady(outputTracks)) {
mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
} else {
memset(mMixBuffer, 0, mixBufferSize);
}
sleepTime = 0;
writeFrames = mNormalFrameCount;
standbyTime = systemTime() + standbyDelay;
}
void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
{
if (sleepTime == 0) {
if (mMixerStatus == MIXER_TRACKS_ENABLED) {
sleepTime = activeSleepTime;
} else {
sleepTime = idleSleepTime;
}
} else if (mBytesWritten != 0) {
if (mMixerStatus == MIXER_TRACKS_ENABLED) {
writeFrames = mNormalFrameCount;
memset(mMixBuffer, 0, mixBufferSize);
} else {
// flush remaining overflow buffers in output tracks
writeFrames = 0;
}
sleepTime = 0;
}
}
void AudioFlinger::DuplicatingThread::threadLoop_write()
{
for (size_t i = 0; i < outputTracks.size(); i++) {
outputTracks[i]->write(mMixBuffer, writeFrames);
}
mBytesWritten += mixBufferSize;
}
void AudioFlinger::DuplicatingThread::threadLoop_standby()
{
// DuplicatingThread implements standby by stopping all tracks
for (size_t i = 0; i < outputTracks.size(); i++) {
outputTracks[i]->stop();
}
}
void AudioFlinger::DuplicatingThread::saveOutputTracks()
{
outputTracks = mOutputTracks;
}
void AudioFlinger::DuplicatingThread::clearOutputTracks()
{
outputTracks.clear();
}
void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
{
Mutex::Autolock _l(mLock);
// FIXME explain this formula
size_t frameCount = (3 * mNormalFrameCount * mSampleRate) / thread->sampleRate();
OutputTrack *outputTrack = new OutputTrack(thread,
this,
mSampleRate,
mFormat,
mChannelMask,
frameCount);
if (outputTrack->cblk() != NULL) {
thread->setStreamVolume(AUDIO_STREAM_CNT, 1.0f);
mOutputTracks.add(outputTrack);
ALOGV("addOutputTrack() track %p, on thread %p", outputTrack, thread);
updateWaitTime_l();
}
}
void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
{
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mOutputTracks.size(); i++) {
if (mOutputTracks[i]->thread() == thread) {
mOutputTracks[i]->destroy();
mOutputTracks.removeAt(i);
updateWaitTime_l();
return;
}
}
ALOGV("removeOutputTrack(): unkonwn thread: %p", thread);
}
// caller must hold mLock
void AudioFlinger::DuplicatingThread::updateWaitTime_l()
{
mWaitTimeMs = UINT_MAX;
for (size_t i = 0; i < mOutputTracks.size(); i++) {
sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
if (strong != 0) {
uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
if (waitTimeMs < mWaitTimeMs) {
mWaitTimeMs = waitTimeMs;
}
}
}
}
bool AudioFlinger::DuplicatingThread::outputsReady(
const SortedVector< sp<OutputTrack> > &outputTracks)
{
for (size_t i = 0; i < outputTracks.size(); i++) {
sp<ThreadBase> thread = outputTracks[i]->thread().promote();
if (thread == 0) {
ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
outputTracks[i].get());
return false;
}
PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
// see note at standby() declaration
if (playbackThread->standby() && !playbackThread->isSuspended()) {
ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
thread.get());
return false;
}
}
return true;
}
uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
{
return (mWaitTimeMs * 1000) / 2;
}
void AudioFlinger::DuplicatingThread::cacheParameters_l()
{
// updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
updateWaitTime_l();
MixerThread::cacheParameters_l();
}
// ----------------------------------------------------------------------------
// TrackBase constructor must be called with AudioFlinger::mLock held
AudioFlinger::ThreadBase::TrackBase::TrackBase(
ThreadBase *thread,
const sp<Client>& client,
uint32_t sampleRate,
audio_format_t format,
audio_channel_mask_t channelMask,
size_t frameCount,
const sp<IMemory>& sharedBuffer,
int sessionId)
: RefBase(),
mThread(thread),
mClient(client),
mCblk(NULL),
// mBuffer
// mBufferEnd
mStepCount(0),
mState(IDLE),
mSampleRate(sampleRate),
mFormat(format),
mChannelMask(channelMask),
mChannelCount(popcount(channelMask)),
mFrameSize(audio_is_linear_pcm(format) ?
mChannelCount * audio_bytes_per_sample(format) : sizeof(int8_t)),
mStepServerFailed(false),
mSessionId(sessionId)
{
// client == 0 implies sharedBuffer == 0
ALOG_ASSERT(!(client == 0 && sharedBuffer != 0));
ALOGV_IF(sharedBuffer != 0, "sharedBuffer: %p, size: %d", sharedBuffer->pointer(),
sharedBuffer->size());
// ALOGD("Creating track with %d buffers @ %d bytes", bufferCount, bufferSize);
size_t size = sizeof(audio_track_cblk_t);
size_t bufferSize = frameCount * mFrameSize;
if (sharedBuffer == 0) {
size += bufferSize;
}
if (client != 0) {
mCblkMemory = client->heap()->allocate(size);
if (mCblkMemory != 0) {
mCblk = static_cast<audio_track_cblk_t *>(mCblkMemory->pointer());
// can't assume mCblk != NULL
} else {
ALOGE("not enough memory for AudioTrack size=%u", size);
client->heap()->dump("AudioTrack");
return;
}
} else {
mCblk = (audio_track_cblk_t *)(new uint8_t[size]);
// assume mCblk != NULL
}
// construct the shared structure in-place.
if (mCblk != NULL) {
new(mCblk) audio_track_cblk_t();
// clear all buffers
mCblk->frameCount = frameCount;
mCblk->sampleRate = sampleRate;
// uncomment the following lines to quickly test 32-bit wraparound
// mCblk->user = 0xffff0000;
// mCblk->server = 0xffff0000;
// mCblk->userBase = 0xffff0000;
// mCblk->serverBase = 0xffff0000;
if (sharedBuffer == 0) {
mBuffer = (char*)mCblk + sizeof(audio_track_cblk_t);
memset(mBuffer, 0, bufferSize);
// Force underrun condition to avoid false underrun callback until first data is
// written to buffer (other flags are cleared)
mCblk->flags = CBLK_UNDERRUN;
} else {
mBuffer = sharedBuffer->pointer();
}
mBufferEnd = (uint8_t *)mBuffer + bufferSize;
}
}
AudioFlinger::ThreadBase::TrackBase::~TrackBase()
{
if (mCblk != NULL) {
if (mClient == 0) {
delete mCblk;
} else {
mCblk->~audio_track_cblk_t(); // destroy our shared-structure.
}
}
mCblkMemory.clear(); // free the shared memory before releasing the heap it belongs to
if (mClient != 0) {
// Client destructor must run with AudioFlinger mutex locked
Mutex::Autolock _l(mClient->audioFlinger()->mLock);
// If the client's reference count drops to zero, the associated destructor
// must run with AudioFlinger lock held. Thus the explicit clear() rather than
// relying on the automatic clear() at end of scope.
mClient.clear();
}
}
// AudioBufferProvider interface
// getNextBuffer() = 0;
// This implementation of releaseBuffer() is used by Track and RecordTrack, but not TimedTrack
void AudioFlinger::ThreadBase::TrackBase::releaseBuffer(AudioBufferProvider::Buffer* buffer)
{
buffer->raw = NULL;
mStepCount = buffer->frameCount;
// FIXME See note at getNextBuffer()
(void) step(); // ignore return value of step()
buffer->frameCount = 0;
}
bool AudioFlinger::ThreadBase::TrackBase::step() {
bool result;
audio_track_cblk_t* cblk = this->cblk();
result = cblk->stepServer(mStepCount, isOut());
if (!result) {
ALOGV("stepServer failed acquiring cblk mutex");
mStepServerFailed = true;
}
return result;
}
void AudioFlinger::ThreadBase::TrackBase::reset() {
audio_track_cblk_t* cblk = this->cblk();
cblk->user = 0;
cblk->server = 0;
cblk->userBase = 0;
cblk->serverBase = 0;
mStepServerFailed = false;
ALOGV("TrackBase::reset");
}
uint32_t AudioFlinger::ThreadBase::TrackBase::sampleRate() const {
return mCblk->sampleRate;
}
void* AudioFlinger::ThreadBase::TrackBase::getBuffer(uint32_t offset, uint32_t frames) const {
audio_track_cblk_t* cblk = this->cblk();
int8_t *bufferStart = (int8_t *)mBuffer + (offset-cblk->serverBase) * mFrameSize;
int8_t *bufferEnd = bufferStart + frames * mFrameSize;
// Check validity of returned pointer in case the track control block would have been corrupted.
ALOG_ASSERT(!(bufferStart < mBuffer || bufferStart > bufferEnd || bufferEnd > mBufferEnd),
"TrackBase::getBuffer buffer out of range:\n"
" start: %p, end %p , mBuffer %p mBufferEnd %p\n"
" server %u, serverBase %u, user %u, userBase %u, frameSize %u",
bufferStart, bufferEnd, mBuffer, mBufferEnd,
cblk->server, cblk->serverBase, cblk->user, cblk->userBase, mFrameSize);
return bufferStart;
}
status_t AudioFlinger::ThreadBase::TrackBase::setSyncEvent(const sp<SyncEvent>& event)
{
mSyncEvents.add(event);
return NO_ERROR;
}
// ----------------------------------------------------------------------------
// Track constructor must be called with AudioFlinger::mLock and ThreadBase::mLock held
AudioFlinger::PlaybackThread::Track::Track(
PlaybackThread *thread,
const sp<Client>& client,
audio_stream_type_t streamType,
uint32_t sampleRate,
audio_format_t format,
audio_channel_mask_t channelMask,
size_t frameCount,
const sp<IMemory>& sharedBuffer,
int sessionId,
IAudioFlinger::track_flags_t flags)
: TrackBase(thread, client, sampleRate, format, channelMask, frameCount, sharedBuffer,
sessionId),
mMute(false),
mFillingUpStatus(FS_INVALID),
// mRetryCount initialized later when needed
mSharedBuffer(sharedBuffer),
mStreamType(streamType),
mName(-1), // see note below
mMainBuffer(thread->mixBuffer()),
mAuxBuffer(NULL),
mAuxEffectId(0), mHasVolumeController(false),
mPresentationCompleteFrames(0),
mFlags(flags),
mFastIndex(-1),
mUnderrunCount(0),
mCachedVolume(1.0)
{
if (mCblk != NULL) {
// to avoid leaking a track name, do not allocate one unless there is an mCblk
mName = thread->getTrackName_l(channelMask, sessionId);
mCblk->mName = mName;
if (mName < 0) {
ALOGE("no more track names available");
return;
}
// only allocate a fast track index if we were able to allocate a normal track name
if (flags & IAudioFlinger::TRACK_FAST) {
ALOG_ASSERT(thread->mFastTrackAvailMask != 0);
int i = __builtin_ctz(thread->mFastTrackAvailMask);
ALOG_ASSERT(0 < i && i < (int)FastMixerState::kMaxFastTracks);
// FIXME This is too eager. We allocate a fast track index before the
// fast track becomes active. Since fast tracks are a scarce resource,
// this means we are potentially denying other more important fast tracks from
// being created. It would be better to allocate the index dynamically.
mFastIndex = i;
mCblk->mName = i;
// Read the initial underruns because this field is never cleared by the fast mixer
mObservedUnderruns = thread->getFastTrackUnderruns(i);
thread->mFastTrackAvailMask &= ~(1 << i);
}
}
ALOGV("Track constructor name %d, calling pid %d", mName,
IPCThreadState::self()->getCallingPid());
}
AudioFlinger::PlaybackThread::Track::~Track()
{
ALOGV("PlaybackThread::Track destructor");
}
void AudioFlinger::PlaybackThread::Track::destroy()
{
// NOTE: destroyTrack_l() can remove a strong reference to this Track
// by removing it from mTracks vector, so there is a risk that this Tracks's
// destructor is called. As the destructor needs to lock mLock,
// we must acquire a strong reference on this Track before locking mLock
// here so that the destructor is called only when exiting this function.
// On the other hand, as long as Track::destroy() is only called by
// TrackHandle destructor, the TrackHandle still holds a strong ref on
// this Track with its member mTrack.
sp<Track> keep(this);
{ // scope for mLock
sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
if (!isOutputTrack()) {
if (mState == ACTIVE || mState == RESUMING) {
AudioSystem::stopOutput(thread->id(), mStreamType, mSessionId);
#ifdef ADD_BATTERY_DATA
// to track the speaker usage
addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
#endif
}
AudioSystem::releaseOutput(thread->id());
}
Mutex::Autolock _l(thread->mLock);
PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
playbackThread->destroyTrack_l(this);
}
}
}
/*static*/ void AudioFlinger::PlaybackThread::Track::appendDumpHeader(String8& result)
{
result.append(" Name Client Type Fmt Chn mask Session StpCnt fCount S M F SRate "
"L dB R dB Server User Main buf Aux Buf Flags Underruns\n");
}
void AudioFlinger::PlaybackThread::Track::dump(char* buffer, size_t size)
{
uint32_t vlr = mCblk->getVolumeLR();
if (isFastTrack()) {
sprintf(buffer, " F %2d", mFastIndex);
} else {
sprintf(buffer, " %4d", mName - AudioMixer::TRACK0);
}
track_state state = mState;
char stateChar;
switch (state) {
case IDLE:
stateChar = 'I';
break;
case TERMINATED:
stateChar = 'T';
break;
case STOPPING_1:
stateChar = 's';
break;
case STOPPING_2:
stateChar = '5';
break;
case STOPPED:
stateChar = 'S';
break;
case RESUMING:
stateChar = 'R';
break;
case ACTIVE:
stateChar = 'A';
break;
case PAUSING:
stateChar = 'p';
break;
case PAUSED:
stateChar = 'P';
break;
case FLUSHED:
stateChar = 'F';
break;
default:
stateChar = '?';
break;
}
char nowInUnderrun;
switch (mObservedUnderruns.mBitFields.mMostRecent) {
case UNDERRUN_FULL:
nowInUnderrun = ' ';
break;
case UNDERRUN_PARTIAL:
nowInUnderrun = '<';
break;
case UNDERRUN_EMPTY:
nowInUnderrun = '*';
break;
default:
nowInUnderrun = '?';
break;
}
snprintf(&buffer[7], size-7, " %6d %4u %3u 0x%08x %7u %6u %6u %1c %1d %1d %5u %5.2g %5.2g "
"0x%08x 0x%08x 0x%08x 0x%08x %#5x %9u%c\n",
(mClient == 0) ? getpid_cached : mClient->pid(),
mStreamType,
mFormat,
mChannelMask,
mSessionId,
mStepCount,
mCblk->frameCount,
stateChar,
mMute,
mFillingUpStatus,
mCblk->sampleRate,
20.0 * log10((vlr & 0xFFFF) / 4096.0),
20.0 * log10((vlr >> 16) / 4096.0),
mCblk->server,
mCblk->user,
(int)mMainBuffer,
(int)mAuxBuffer,
mCblk->flags,
mUnderrunCount,
nowInUnderrun);
}
// AudioBufferProvider interface
status_t AudioFlinger::PlaybackThread::Track::getNextBuffer(
AudioBufferProvider::Buffer* buffer, int64_t pts)
{
audio_track_cblk_t* cblk = this->cblk();
uint32_t framesReady;
uint32_t framesReq = buffer->frameCount;
// Check if last stepServer failed, try to step now
if (mStepServerFailed) {
// FIXME When called by fast mixer, this takes a mutex with tryLock().
// Since the fast mixer is higher priority than client callback thread,
// it does not result in priority inversion for client.
// But a non-blocking solution would be preferable to avoid
// fast mixer being unable to tryLock(), and
// to avoid the extra context switches if the client wakes up,
// discovers the mutex is locked, then has to wait for fast mixer to unlock.
if (!step()) goto getNextBuffer_exit;
ALOGV("stepServer recovered");
mStepServerFailed = false;
}
// FIXME Same as above
framesReady = cblk->framesReadyOut();
if (CC_LIKELY(framesReady)) {
uint32_t s = cblk->server;
uint32_t bufferEnd = cblk->serverBase + cblk->frameCount;
bufferEnd = (cblk->loopEnd < bufferEnd) ? cblk->loopEnd : bufferEnd;
if (framesReq > framesReady) {
framesReq = framesReady;
}
if (framesReq > bufferEnd - s) {
framesReq = bufferEnd - s;
}
buffer->raw = getBuffer(s, framesReq);
buffer->frameCount = framesReq;
return NO_ERROR;
}
getNextBuffer_exit:
buffer->raw = NULL;
buffer->frameCount = 0;
ALOGV("getNextBuffer() no more data for track %d on thread %p", mName, mThread.unsafe_get());
return NOT_ENOUGH_DATA;
}
// Note that framesReady() takes a mutex on the control block using tryLock().
// This could result in priority inversion if framesReady() is called by the normal mixer,
// as the normal mixer thread runs at lower
// priority than the client's callback thread: there is a short window within framesReady()
// during which the normal mixer could be preempted, and the client callback would block.
// Another problem can occur if framesReady() is called by the fast mixer:
// the tryLock() could block for up to 1 ms, and a sequence of these could delay fast mixer.
// FIXME Replace AudioTrackShared control block implementation by a non-blocking FIFO queue.
size_t AudioFlinger::PlaybackThread::Track::framesReady() const {
return mCblk->framesReadyOut();
}
// Don't call for fast tracks; the framesReady() could result in priority inversion
bool AudioFlinger::PlaybackThread::Track::isReady() const {
if (mFillingUpStatus != FS_FILLING || isStopped() || isPausing()) return true;
if (framesReady() >= mCblk->frameCount ||
(mCblk->flags & CBLK_FORCEREADY)) {
mFillingUpStatus = FS_FILLED;
android_atomic_and(~CBLK_FORCEREADY, &mCblk->flags);
return true;
}
return false;
}
status_t AudioFlinger::PlaybackThread::Track::start(AudioSystem::sync_event_t event,
int triggerSession)
{
status_t status = NO_ERROR;
ALOGV("start(%d), calling pid %d session %d",
mName, IPCThreadState::self()->getCallingPid(), mSessionId);
sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
Mutex::Autolock _l(thread->mLock);
track_state state = mState;
// here the track could be either new, or restarted
// in both cases "unstop" the track
if (mState == PAUSED) {
mState = TrackBase::RESUMING;
ALOGV("PAUSED => RESUMING (%d) on thread %p", mName, this);
} else {
mState = TrackBase::ACTIVE;
ALOGV("? => ACTIVE (%d) on thread %p", mName, this);
}
if (!isOutputTrack() && state != ACTIVE && state != RESUMING) {
thread->mLock.unlock();
status = AudioSystem::startOutput(thread->id(), mStreamType, mSessionId);
thread->mLock.lock();
#ifdef ADD_BATTERY_DATA
// to track the speaker usage
if (status == NO_ERROR) {
addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
}
#endif
}
if (status == NO_ERROR) {
PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
playbackThread->addTrack_l(this);
} else {
mState = state;
triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
}
} else {
status = BAD_VALUE;
}
return status;
}
void AudioFlinger::PlaybackThread::Track::stop()
{
ALOGV("stop(%d), calling pid %d", mName, IPCThreadState::self()->getCallingPid());
sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
Mutex::Autolock _l(thread->mLock);
track_state state = mState;
if (state == RESUMING || state == ACTIVE || state == PAUSING || state == PAUSED) {
// If the track is not active (PAUSED and buffers full), flush buffers
PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
if (playbackThread->mActiveTracks.indexOf(this) < 0) {
reset();
mState = STOPPED;
} else if (!isFastTrack()) {
mState = STOPPED;
} else {
// prepareTracks_l() will set state to STOPPING_2 after next underrun,
// and then to STOPPED and reset() when presentation is complete
mState = STOPPING_1;
}
ALOGV("not stopping/stopped => stopping/stopped (%d) on thread %p", mName,
playbackThread);
}
if (!isOutputTrack() && (state == ACTIVE || state == RESUMING)) {
thread->mLock.unlock();
AudioSystem::stopOutput(thread->id(), mStreamType, mSessionId);
thread->mLock.lock();
#ifdef ADD_BATTERY_DATA
// to track the speaker usage
addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
#endif
}
}
}
void AudioFlinger::PlaybackThread::Track::pause()
{
ALOGV("pause(%d), calling pid %d", mName, IPCThreadState::self()->getCallingPid());
sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
Mutex::Autolock _l(thread->mLock);
if (mState == ACTIVE || mState == RESUMING) {
mState = PAUSING;
ALOGV("ACTIVE/RESUMING => PAUSING (%d) on thread %p", mName, thread.get());
if (!isOutputTrack()) {
thread->mLock.unlock();
AudioSystem::stopOutput(thread->id(), mStreamType, mSessionId);
thread->mLock.lock();
#ifdef ADD_BATTERY_DATA
// to track the speaker usage
addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
#endif
}
}
}
}
void AudioFlinger::PlaybackThread::Track::flush()
{
ALOGV("flush(%d)", mName);
sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
Mutex::Autolock _l(thread->mLock);
if (mState != STOPPING_1 && mState != STOPPING_2 && mState != STOPPED && mState != PAUSED &&
mState != PAUSING) {
return;
}
// No point remaining in PAUSED state after a flush => go to
// FLUSHED state
mState = FLUSHED;
// do not reset the track if it is still in the process of being stopped or paused.
// this will be done by prepareTracks_l() when the track is stopped.
// prepareTracks_l() will see mState == FLUSHED, then
// remove from active track list, reset(), and trigger presentation complete
PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
if (playbackThread->mActiveTracks.indexOf(this) < 0) {
reset();
}
}
}
void AudioFlinger::PlaybackThread::Track::reset()
{
// Do not reset twice to avoid discarding data written just after a flush and before
// the audioflinger thread detects the track is stopped.
if (!mResetDone) {
TrackBase::reset();
// Force underrun condition to avoid false underrun callback until first data is
// written to buffer
android_atomic_and(~CBLK_FORCEREADY, &mCblk->flags);
android_atomic_or(CBLK_UNDERRUN, &mCblk->flags);
mFillingUpStatus = FS_FILLING;
mResetDone = true;
if (mState == FLUSHED) {
mState = IDLE;
}
}
}
void AudioFlinger::PlaybackThread::Track::mute(bool muted)
{
mMute = muted;
}
status_t AudioFlinger::PlaybackThread::Track::attachAuxEffect(int EffectId)
{
status_t status = DEAD_OBJECT;
sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
sp<AudioFlinger> af = mClient->audioFlinger();
Mutex::Autolock _l(af->mLock);
sp<PlaybackThread> srcThread = af->getEffectThread_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
if (EffectId != 0 && srcThread != 0 && playbackThread != srcThread.get()) {
Mutex::Autolock _dl(playbackThread->mLock);
Mutex::Autolock _sl(srcThread->mLock);
sp<EffectChain> chain = srcThread->getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
if (chain == 0) {
return INVALID_OPERATION;
}
sp<EffectModule> effect = chain->getEffectFromId_l(EffectId);
if (effect == 0) {
return INVALID_OPERATION;
}
srcThread->removeEffect_l(effect);
playbackThread->addEffect_l(effect);
// removeEffect_l() has stopped the effect if it was active so it must be restarted
if (effect->state() == EffectModule::ACTIVE ||
effect->state() == EffectModule::STOPPING) {
effect->start();
}
sp<EffectChain> dstChain = effect->chain().promote();
if (dstChain == 0) {
srcThread->addEffect_l(effect);
return INVALID_OPERATION;
}
AudioSystem::unregisterEffect(effect->id());
AudioSystem::registerEffect(&effect->desc(),
srcThread->id(),
dstChain->strategy(),
AUDIO_SESSION_OUTPUT_MIX,
effect->id());
}
status = playbackThread->attachAuxEffect(this, EffectId);
}
return status;
}
void AudioFlinger::PlaybackThread::Track::setAuxBuffer(int EffectId, int32_t *buffer)
{
mAuxEffectId = EffectId;
mAuxBuffer = buffer;
}
bool AudioFlinger::PlaybackThread::Track::presentationComplete(size_t framesWritten,
size_t audioHalFrames)
{
// a track is considered presented when the total number of frames written to audio HAL
// corresponds to the number of frames written when presentationComplete() is called for the
// first time (mPresentationCompleteFrames == 0) plus the buffer filling status at that time.
if (mPresentationCompleteFrames == 0) {
mPresentationCompleteFrames = framesWritten + audioHalFrames;
ALOGV("presentationComplete() reset: mPresentationCompleteFrames %d audioHalFrames %d",
mPresentationCompleteFrames, audioHalFrames);
}
if (framesWritten >= mPresentationCompleteFrames) {
ALOGV("presentationComplete() session %d complete: framesWritten %d",
mSessionId, framesWritten);
triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
return true;
}
return false;
}
void AudioFlinger::PlaybackThread::Track::triggerEvents(AudioSystem::sync_event_t type)
{
for (int i = 0; i < (int)mSyncEvents.size(); i++) {
if (mSyncEvents[i]->type() == type) {
mSyncEvents[i]->trigger();
mSyncEvents.removeAt(i);
i--;
}
}
}
// implement VolumeBufferProvider interface
uint32_t AudioFlinger::PlaybackThread::Track::getVolumeLR()
{
// called by FastMixer, so not allowed to take any locks, block, or do I/O including logs
ALOG_ASSERT(isFastTrack() && (mCblk != NULL));
uint32_t vlr = mCblk->getVolumeLR();
uint32_t vl = vlr & 0xFFFF;
uint32_t vr = vlr >> 16;
// track volumes come from shared memory, so can't be trusted and must be clamped
if (vl > MAX_GAIN_INT) {
vl = MAX_GAIN_INT;
}
if (vr > MAX_GAIN_INT) {
vr = MAX_GAIN_INT;
}
// now apply the cached master volume and stream type volume;
// this is trusted but lacks any synchronization or barrier so may be stale
float v = mCachedVolume;
vl *= v;
vr *= v;
// re-combine into U4.16
vlr = (vr << 16) | (vl & 0xFFFF);
// FIXME look at mute, pause, and stop flags
return vlr;
}
status_t AudioFlinger::PlaybackThread::Track::setSyncEvent(const sp<SyncEvent>& event)
{
if (mState == TERMINATED || mState == PAUSED ||
((framesReady() == 0) && ((mSharedBuffer != 0) ||
(mState == STOPPED)))) {
ALOGW("Track::setSyncEvent() in invalid state %d on session %d %s mode, framesReady %d ",
mState, mSessionId, (mSharedBuffer != 0) ? "static" : "stream", framesReady());
event->cancel();
return INVALID_OPERATION;
}
(void) TrackBase::setSyncEvent(event);
return NO_ERROR;
}
bool AudioFlinger::PlaybackThread::Track::isOut() const
{
return true;
}
// timed audio tracks
sp<AudioFlinger::PlaybackThread::TimedTrack>
AudioFlinger::PlaybackThread::TimedTrack::create(
PlaybackThread *thread,
const sp<Client>& client,
audio_stream_type_t streamType,
uint32_t sampleRate,
audio_format_t format,
audio_channel_mask_t channelMask,
size_t frameCount,
const sp<IMemory>& sharedBuffer,
int sessionId) {
if (!client->reserveTimedTrack())
return 0;
return new TimedTrack(
thread, client, streamType, sampleRate, format, channelMask, frameCount,
sharedBuffer, sessionId);
}
AudioFlinger::PlaybackThread::TimedTrack::TimedTrack(
PlaybackThread *thread,
const sp<Client>& client,
audio_stream_type_t streamType,
uint32_t sampleRate,
audio_format_t format,
audio_channel_mask_t channelMask,
size_t frameCount,
const sp<IMemory>& sharedBuffer,
int sessionId)
: Track(thread, client, streamType, sampleRate, format, channelMask,
frameCount, sharedBuffer, sessionId, IAudioFlinger::TRACK_TIMED),
mQueueHeadInFlight(false),
mTrimQueueHeadOnRelease(false),
mFramesPendingInQueue(0),
mTimedSilenceBuffer(NULL),
mTimedSilenceBufferSize(0),
mTimedAudioOutputOnTime(false),
mMediaTimeTransformValid(false)
{
LocalClock lc;
mLocalTimeFreq = lc.getLocalFreq();
mLocalTimeToSampleTransform.a_zero = 0;
mLocalTimeToSampleTransform.b_zero = 0;
mLocalTimeToSampleTransform.a_to_b_numer = sampleRate;
mLocalTimeToSampleTransform.a_to_b_denom = mLocalTimeFreq;
LinearTransform::reduce(&mLocalTimeToSampleTransform.a_to_b_numer,
&mLocalTimeToSampleTransform.a_to_b_denom);
mMediaTimeToSampleTransform.a_zero = 0;
mMediaTimeToSampleTransform.b_zero = 0;
mMediaTimeToSampleTransform.a_to_b_numer = sampleRate;
mMediaTimeToSampleTransform.a_to_b_denom = 1000000;
LinearTransform::reduce(&mMediaTimeToSampleTransform.a_to_b_numer,
&mMediaTimeToSampleTransform.a_to_b_denom);
}
AudioFlinger::PlaybackThread::TimedTrack::~TimedTrack() {
mClient->releaseTimedTrack();
delete [] mTimedSilenceBuffer;
}
status_t AudioFlinger::PlaybackThread::TimedTrack::allocateTimedBuffer(
size_t size, sp<IMemory>* buffer) {
Mutex::Autolock _l(mTimedBufferQueueLock);
trimTimedBufferQueue_l();
// lazily initialize the shared memory heap for timed buffers
if (mTimedMemoryDealer == NULL) {
const int kTimedBufferHeapSize = 512 << 10;
mTimedMemoryDealer = new MemoryDealer(kTimedBufferHeapSize,
"AudioFlingerTimed");
if (mTimedMemoryDealer == NULL)
return NO_MEMORY;
}
sp<IMemory> newBuffer = mTimedMemoryDealer->allocate(size);
if (newBuffer == NULL) {
newBuffer = mTimedMemoryDealer->allocate(size);
if (newBuffer == NULL)
return NO_MEMORY;
}
*buffer = newBuffer;
return NO_ERROR;
}
// caller must hold mTimedBufferQueueLock
void AudioFlinger::PlaybackThread::TimedTrack::trimTimedBufferQueue_l() {
int64_t mediaTimeNow;
{
Mutex::Autolock mttLock(mMediaTimeTransformLock);
if (!mMediaTimeTransformValid)
return;
int64_t targetTimeNow;
status_t res = (mMediaTimeTransformTarget == TimedAudioTrack::COMMON_TIME)
? mCCHelper.getCommonTime(&targetTimeNow)
: mCCHelper.getLocalTime(&targetTimeNow);
if (OK != res)
return;
if (!mMediaTimeTransform.doReverseTransform(targetTimeNow,
&mediaTimeNow)) {
return;
}
}
size_t trimEnd;
for (trimEnd = 0; trimEnd < mTimedBufferQueue.size(); trimEnd++) {
int64_t bufEnd;
if ((trimEnd + 1) < mTimedBufferQueue.size()) {
// We have a next buffer. Just use its PTS as the PTS of the frame
// following the last frame in this buffer. If the stream is sparse
// (ie, there are deliberate gaps left in the stream which should be
// filled with silence by the TimedAudioTrack), then this can result
// in one extra buffer being left un-trimmed when it could have
// been. In general, this is not typical, and we would rather
// optimized away the TS calculation below for the more common case
// where PTSes are contiguous.
bufEnd = mTimedBufferQueue[trimEnd + 1].pts();
} else {
// We have no next buffer. Compute the PTS of the frame following
// the last frame in this buffer by computing the duration of of
// this frame in media time units and adding it to the PTS of the
// buffer.
int64_t frameCount = mTimedBufferQueue[trimEnd].buffer()->size()
/ mFrameSize;
if (!mMediaTimeToSampleTransform.doReverseTransform(frameCount,
&bufEnd)) {
ALOGE("Failed to convert frame count of %lld to media time"
" duration" " (scale factor %d/%u) in %s",
frameCount,
mMediaTimeToSampleTransform.a_to_b_numer,
mMediaTimeToSampleTransform.a_to_b_denom,
__PRETTY_FUNCTION__);
break;
}
bufEnd += mTimedBufferQueue[trimEnd].pts();
}
if (bufEnd > mediaTimeNow)
break;
// Is the buffer we want to use in the middle of a mix operation right
// now? If so, don't actually trim it. Just wait for the releaseBuffer
// from the mixer which should be coming back shortly.
if (!trimEnd && mQueueHeadInFlight) {
mTrimQueueHeadOnRelease = true;
}
}
size_t trimStart = mTrimQueueHeadOnRelease ? 1 : 0;
if (trimStart < trimEnd) {
// Update the bookkeeping for framesReady()
for (size_t i = trimStart; i < trimEnd; ++i) {
updateFramesPendingAfterTrim_l(mTimedBufferQueue[i], "trim");
}
// Now actually remove the buffers from the queue.
mTimedBufferQueue.removeItemsAt(trimStart, trimEnd);
}
}
void AudioFlinger::PlaybackThread::TimedTrack::trimTimedBufferQueueHead_l(
const char* logTag) {
ALOG_ASSERT(mTimedBufferQueue.size() > 0,
"%s called (reason \"%s\"), but timed buffer queue has no"
" elements to trim.", __FUNCTION__, logTag);
updateFramesPendingAfterTrim_l(mTimedBufferQueue[0], logTag);
mTimedBufferQueue.removeAt(0);
}
void AudioFlinger::PlaybackThread::TimedTrack::updateFramesPendingAfterTrim_l(
const TimedBuffer& buf,
const char* logTag) {
uint32_t bufBytes = buf.buffer()->size();
uint32_t consumedAlready = buf.position();
ALOG_ASSERT(consumedAlready <= bufBytes,
"Bad bookkeeping while updating frames pending. Timed buffer is"
" only %u bytes long, but claims to have consumed %u"
" bytes. (update reason: \"%s\")",
bufBytes, consumedAlready, logTag);
uint32_t bufFrames = (bufBytes - consumedAlready) / mFrameSize;
ALOG_ASSERT(mFramesPendingInQueue >= bufFrames,
"Bad bookkeeping while updating frames pending. Should have at"
" least %u queued frames, but we think we have only %u. (update"
" reason: \"%s\")",
bufFrames, mFramesPendingInQueue, logTag);
mFramesPendingInQueue -= bufFrames;
}
status_t AudioFlinger::PlaybackThread::TimedTrack::queueTimedBuffer(
const sp<IMemory>& buffer, int64_t pts) {
{
Mutex::Autolock mttLock(mMediaTimeTransformLock);
if (!mMediaTimeTransformValid)
return INVALID_OPERATION;
}
Mutex::Autolock _l(mTimedBufferQueueLock);
uint32_t bufFrames = buffer->size() / mFrameSize;
mFramesPendingInQueue += bufFrames;
mTimedBufferQueue.add(TimedBuffer(buffer, pts));
return NO_ERROR;
}
status_t AudioFlinger::PlaybackThread::TimedTrack::setMediaTimeTransform(
const LinearTransform& xform, TimedAudioTrack::TargetTimeline target) {
ALOGVV("setMediaTimeTransform az=%lld bz=%lld n=%d d=%u tgt=%d",
xform.a_zero, xform.b_zero, xform.a_to_b_numer, xform.a_to_b_denom,
target);
if (!(target == TimedAudioTrack::LOCAL_TIME ||
target == TimedAudioTrack::COMMON_TIME)) {
return BAD_VALUE;
}
Mutex::Autolock lock(mMediaTimeTransformLock);
mMediaTimeTransform = xform;
mMediaTimeTransformTarget = target;
mMediaTimeTransformValid = true;
return NO_ERROR;
}
#define min(a, b) ((a) < (b) ? (a) : (b))
// implementation of getNextBuffer for tracks whose buffers have timestamps
status_t AudioFlinger::PlaybackThread::TimedTrack::getNextBuffer(
AudioBufferProvider::Buffer* buffer, int64_t pts)
{
if (pts == AudioBufferProvider::kInvalidPTS) {
buffer->raw = NULL;
buffer->frameCount = 0;
mTimedAudioOutputOnTime = false;
return INVALID_OPERATION;
}
Mutex::Autolock _l(mTimedBufferQueueLock);
ALOG_ASSERT(!mQueueHeadInFlight,
"getNextBuffer called without releaseBuffer!");
while (true) {
// if we have no timed buffers, then fail
if (mTimedBufferQueue.isEmpty()) {
buffer->raw = NULL;
buffer->frameCount = 0;
return NOT_ENOUGH_DATA;
}
TimedBuffer& head = mTimedBufferQueue.editItemAt(0);
// calculate the PTS of the head of the timed buffer queue expressed in
// local time
int64_t headLocalPTS;
{
Mutex::Autolock mttLock(mMediaTimeTransformLock);
ALOG_ASSERT(mMediaTimeTransformValid, "media time transform invalid");
if (mMediaTimeTransform.a_to_b_denom == 0) {
// the transform represents a pause, so yield silence
timedYieldSilence_l(buffer->frameCount, buffer);
return NO_ERROR;
}
int64_t transformedPTS;
if (!mMediaTimeTransform.doForwardTransform(head.pts(),
&transformedPTS)) {
// the transform failed. this shouldn't happen, but if it does
// then just drop this buffer
ALOGW("timedGetNextBuffer transform failed");
buffer->raw = NULL;
buffer->frameCount = 0;
trimTimedBufferQueueHead_l("getNextBuffer; no transform");
return NO_ERROR;
}
if (mMediaTimeTransformTarget == TimedAudioTrack::COMMON_TIME) {
if (OK != mCCHelper.commonTimeToLocalTime(transformedPTS,
&headLocalPTS)) {
buffer->raw = NULL;
buffer->frameCount = 0;
return INVALID_OPERATION;
}
} else {
headLocalPTS = transformedPTS;
}
}
// adjust the head buffer's PTS to reflect the portion of the head buffer
// that has already been consumed
int64_t effectivePTS = headLocalPTS +
((head.position() / mFrameSize) * mLocalTimeFreq / sampleRate());
// Calculate the delta in samples between the head of the input buffer
// queue and the start of the next output buffer that will be written.
// If the transformation fails because of over or underflow, it means
// that the sample's position in the output stream is so far out of
// whack that it should just be dropped.
int64_t sampleDelta;
if (llabs(effectivePTS - pts) >= (static_cast<int64_t>(1) << 31)) {
ALOGV("*** head buffer is too far from PTS: dropped buffer");
trimTimedBufferQueueHead_l("getNextBuffer, buf pts too far from"
" mix");
continue;
}
if (!mLocalTimeToSampleTransform.doForwardTransform(
(effectivePTS - pts) << 32, &sampleDelta)) {
ALOGV("*** too late during sample rate transform: dropped buffer");
trimTimedBufferQueueHead_l("getNextBuffer, bad local to sample");
continue;
}
ALOGVV("*** getNextBuffer head.pts=%lld head.pos=%d pts=%lld"
" sampleDelta=[%d.%08x]",
head.pts(), head.position(), pts,
static_cast<int32_t>((sampleDelta >= 0 ? 0 : 1)
+ (sampleDelta >> 32)),
static_cast<uint32_t>(sampleDelta & 0xFFFFFFFF));
// if the delta between the ideal placement for the next input sample and
// the current output position is within this threshold, then we will
// concatenate the next input samples to the previous output
const int64_t kSampleContinuityThreshold =
(static_cast<int64_t>(sampleRate()) << 32) / 250;
// if this is the first buffer of audio that we're emitting from this track
// then it should be almost exactly on time.
const int64_t kSampleStartupThreshold = 1LL << 32;
if ((mTimedAudioOutputOnTime && llabs(sampleDelta) <= kSampleContinuityThreshold) ||
(!mTimedAudioOutputOnTime && llabs(sampleDelta) <= kSampleStartupThreshold)) {
// the next input is close enough to being on time, so concatenate it
// with the last output
timedYieldSamples_l(buffer);
ALOGVV("*** on time: head.pos=%d frameCount=%u",
head.position(), buffer->frameCount);
return NO_ERROR;
}
// Looks like our output is not on time. Reset our on timed status.
// Next time we mix samples from our input queue, then should be within
// the StartupThreshold.
mTimedAudioOutputOnTime = false;
if (sampleDelta > 0) {
// the gap between the current output position and the proper start of
// the next input sample is too big, so fill it with silence
uint32_t framesUntilNextInput = (sampleDelta + 0x80000000) >> 32;
timedYieldSilence_l(framesUntilNextInput, buffer);
ALOGV("*** silence: frameCount=%u", buffer->frameCount);
return NO_ERROR;
} else {
// the next input sample is late
uint32_t lateFrames = static_cast<uint32_t>(-((sampleDelta + 0x80000000) >> 32));
size_t onTimeSamplePosition =
head.position() + lateFrames * mFrameSize;
if (onTimeSamplePosition > head.buffer()->size()) {
// all the remaining samples in the head are too late, so
// drop it and move on
ALOGV("*** too late: dropped buffer");
trimTimedBufferQueueHead_l("getNextBuffer, dropped late buffer");
continue;
} else {
// skip over the late samples
head.setPosition(onTimeSamplePosition);
// yield the available samples
timedYieldSamples_l(buffer);
ALOGV("*** late: head.pos=%d frameCount=%u", head.position(), buffer->frameCount);
return NO_ERROR;
}
}
}
}
// Yield samples from the timed buffer queue head up to the given output
// buffer's capacity.
//
// Caller must hold mTimedBufferQueueLock
void AudioFlinger::PlaybackThread::TimedTrack::timedYieldSamples_l(
AudioBufferProvider::Buffer* buffer) {
const TimedBuffer& head = mTimedBufferQueue[0];
buffer->raw = (static_cast<uint8_t*>(head.buffer()->pointer()) +
head.position());
uint32_t framesLeftInHead = ((head.buffer()->size() - head.position()) /
mFrameSize);
size_t framesRequested = buffer->frameCount;
buffer->frameCount = min(framesLeftInHead, framesRequested);
mQueueHeadInFlight = true;
mTimedAudioOutputOnTime = true;
}
// Yield samples of silence up to the given output buffer's capacity
//
// Caller must hold mTimedBufferQueueLock
void AudioFlinger::PlaybackThread::TimedTrack::timedYieldSilence_l(
uint32_t numFrames, AudioBufferProvider::Buffer* buffer) {
// lazily allocate a buffer filled with silence
if (mTimedSilenceBufferSize < numFrames * mFrameSize) {
delete [] mTimedSilenceBuffer;
mTimedSilenceBufferSize = numFrames * mFrameSize;
mTimedSilenceBuffer = new uint8_t[mTimedSilenceBufferSize];
memset(mTimedSilenceBuffer, 0, mTimedSilenceBufferSize);
}
buffer->raw = mTimedSilenceBuffer;
size_t framesRequested = buffer->frameCount;
buffer->frameCount = min(numFrames, framesRequested);
mTimedAudioOutputOnTime = false;
}
// AudioBufferProvider interface
void AudioFlinger::PlaybackThread::TimedTrack::releaseBuffer(
AudioBufferProvider::Buffer* buffer) {
Mutex::Autolock _l(mTimedBufferQueueLock);
// If the buffer which was just released is part of the buffer at the head
// of the queue, be sure to update the amt of the buffer which has been
// consumed. If the buffer being returned is not part of the head of the
// queue, its either because the buffer is part of the silence buffer, or
// because the head of the timed queue was trimmed after the mixer called
// getNextBuffer but before the mixer called releaseBuffer.
if (buffer->raw == mTimedSilenceBuffer) {
ALOG_ASSERT(!mQueueHeadInFlight,
"Queue head in flight during release of silence buffer!");
goto done;
}
ALOG_ASSERT(mQueueHeadInFlight,
"TimedTrack::releaseBuffer of non-silence buffer, but no queue"
" head in flight.");
if (mTimedBufferQueue.size()) {
TimedBuffer& head = mTimedBufferQueue.editItemAt(0);
void* start = head.buffer()->pointer();
void* end = reinterpret_cast<void*>(
reinterpret_cast<uint8_t*>(head.buffer()->pointer())
+ head.buffer()->size());
ALOG_ASSERT((buffer->raw >= start) && (buffer->raw < end),
"released buffer not within the head of the timed buffer"
" queue; qHead = [%p, %p], released buffer = %p",
start, end, buffer->raw);
head.setPosition(head.position() +
(buffer->frameCount * mFrameSize));
mQueueHeadInFlight = false;
ALOG_ASSERT(mFramesPendingInQueue >= buffer->frameCount,
"Bad bookkeeping during releaseBuffer! Should have at"
" least %u queued frames, but we think we have only %u",
buffer->frameCount, mFramesPendingInQueue);
mFramesPendingInQueue -= buffer->frameCount;
if ((static_cast<size_t>(head.position()) >= head.buffer()->size())
|| mTrimQueueHeadOnRelease) {
trimTimedBufferQueueHead_l("releaseBuffer");
mTrimQueueHeadOnRelease = false;
}
} else {
LOG_FATAL("TimedTrack::releaseBuffer of non-silence buffer with no"
" buffers in the timed buffer queue");
}
done:
buffer->raw = 0;
buffer->frameCount = 0;
}
size_t AudioFlinger::PlaybackThread::TimedTrack::framesReady() const {
Mutex::Autolock _l(mTimedBufferQueueLock);
return mFramesPendingInQueue;
}
AudioFlinger::PlaybackThread::TimedTrack::TimedBuffer::TimedBuffer()
: mPTS(0), mPosition(0) {}
AudioFlinger::PlaybackThread::TimedTrack::TimedBuffer::TimedBuffer(
const sp<IMemory>& buffer, int64_t pts)
: mBuffer(buffer), mPTS(pts), mPosition(0) {}
// ----------------------------------------------------------------------------
// RecordTrack constructor must be called with AudioFlinger::mLock held
AudioFlinger::RecordThread::RecordTrack::RecordTrack(
RecordThread *thread,
const sp<Client>& client,
uint32_t sampleRate,
audio_format_t format,
audio_channel_mask_t channelMask,
size_t frameCount,
int sessionId)
: TrackBase(thread, client, sampleRate, format,
channelMask, frameCount, 0 /*sharedBuffer*/, sessionId),
mOverflow(false)
{
ALOGV("RecordTrack constructor, size %d", (int)mBufferEnd - (int)mBuffer);
}
AudioFlinger::RecordThread::RecordTrack::~RecordTrack()
{
ALOGV("%s", __func__);
}
// AudioBufferProvider interface
status_t AudioFlinger::RecordThread::RecordTrack::getNextBuffer(AudioBufferProvider::Buffer* buffer,
int64_t pts)
{
audio_track_cblk_t* cblk = this->cblk();
uint32_t framesAvail;
uint32_t framesReq = buffer->frameCount;
// Check if last stepServer failed, try to step now
if (mStepServerFailed) {
if (!step()) goto getNextBuffer_exit;
ALOGV("stepServer recovered");
mStepServerFailed = false;
}
// FIXME lock is not actually held, so overrun is possible
framesAvail = cblk->framesAvailableIn_l();
if (CC_LIKELY(framesAvail)) {
uint32_t s = cblk->server;
uint32_t bufferEnd = cblk->serverBase + cblk->frameCount;
if (framesReq > framesAvail) {
framesReq = framesAvail;
}
if (framesReq > bufferEnd - s) {
framesReq = bufferEnd - s;
}
buffer->raw = getBuffer(s, framesReq);
buffer->frameCount = framesReq;
return NO_ERROR;
}
getNextBuffer_exit:
buffer->raw = NULL;
buffer->frameCount = 0;
return NOT_ENOUGH_DATA;
}
status_t AudioFlinger::RecordThread::RecordTrack::start(AudioSystem::sync_event_t event,
int triggerSession)
{
sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
RecordThread *recordThread = (RecordThread *)thread.get();
return recordThread->start(this, event, triggerSession);
} else {
return BAD_VALUE;
}
}
void AudioFlinger::RecordThread::RecordTrack::stop()
{
sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
RecordThread *recordThread = (RecordThread *)thread.get();
recordThread->mLock.lock();
bool doStop = recordThread->stop_l(this);
if (doStop) {
TrackBase::reset();
// Force overrun condition to avoid false overrun callback until first data is
// read from buffer
android_atomic_or(CBLK_UNDERRUN, &mCblk->flags);
}
recordThread->mLock.unlock();
if (doStop) {
AudioSystem::stopInput(recordThread->id());
}
}
}
/*static*/ void AudioFlinger::RecordThread::RecordTrack::appendDumpHeader(String8& result)
{
result.append(" Clien Fmt Chn mask Session Step S SRate Serv User FrameCount\n");
}
void AudioFlinger::RecordThread::RecordTrack::dump(char* buffer, size_t size)
{
snprintf(buffer, size, " %05d %03u 0x%08x %05d %04u %01d %05u %08x %08x %05d\n",
(mClient == 0) ? getpid_cached : mClient->pid(),
mFormat,
mChannelMask,
mSessionId,
mStepCount,
mState,
mCblk->sampleRate,
mCblk->server,
mCblk->user,
mCblk->frameCount);
}
bool AudioFlinger::RecordThread::RecordTrack::isOut() const
{
return false;
}
// ----------------------------------------------------------------------------
AudioFlinger::PlaybackThread::OutputTrack::OutputTrack(
PlaybackThread *playbackThread,
DuplicatingThread *sourceThread,
uint32_t sampleRate,
audio_format_t format,
audio_channel_mask_t channelMask,
size_t frameCount)
: Track(playbackThread, NULL, AUDIO_STREAM_CNT, sampleRate, format, channelMask, frameCount,
NULL, 0, IAudioFlinger::TRACK_DEFAULT),
mActive(false), mSourceThread(sourceThread), mBuffers(NULL)
{
if (mCblk != NULL) {
mBuffers = (char*)mCblk + sizeof(audio_track_cblk_t);
mOutBuffer.frameCount = 0;
playbackThread->mTracks.add(this);
ALOGV("OutputTrack constructor mCblk %p, mBuffer %p, mCblk->buffers %p, " \
"mCblk->frameCount %d, mCblk->sampleRate %u, mChannelMask 0x%08x mBufferEnd %p",
mCblk, mBuffer, mCblk->buffers,
mCblk->frameCount, mCblk->sampleRate, mChannelMask, mBufferEnd);
} else {
ALOGW("Error creating output track on thread %p", playbackThread);
}
}
AudioFlinger::PlaybackThread::OutputTrack::~OutputTrack()
{
clearBufferQueue();
}
status_t AudioFlinger::PlaybackThread::OutputTrack::start(AudioSystem::sync_event_t event,
int triggerSession)
{
status_t status = Track::start(event, triggerSession);
if (status != NO_ERROR) {
return status;
}
mActive = true;
mRetryCount = 127;
return status;
}
void AudioFlinger::PlaybackThread::OutputTrack::stop()
{
Track::stop();
clearBufferQueue();
mOutBuffer.frameCount = 0;
mActive = false;
}
bool AudioFlinger::PlaybackThread::OutputTrack::write(int16_t* data, uint32_t frames)
{
Buffer *pInBuffer;
Buffer inBuffer;
uint32_t channelCount = mChannelCount;
bool outputBufferFull = false;
inBuffer.frameCount = frames;
inBuffer.i16 = data;
uint32_t waitTimeLeftMs = mSourceThread->waitTimeMs();
if (!mActive && frames != 0) {
start();
sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
MixerThread *mixerThread = (MixerThread *)thread.get();
if (mCblk->frameCount > frames){
if (mBufferQueue.size() < kMaxOverFlowBuffers) {
uint32_t startFrames = (mCblk->frameCount - frames);
pInBuffer = new Buffer;
pInBuffer->mBuffer = new int16_t[startFrames * channelCount];
pInBuffer->frameCount = startFrames;
pInBuffer->i16 = pInBuffer->mBuffer;
memset(pInBuffer->raw, 0, startFrames * channelCount * sizeof(int16_t));
mBufferQueue.add(pInBuffer);
} else {
ALOGW ("OutputTrack::write() %p no more buffers in queue", this);
}
}
}
}
while (waitTimeLeftMs) {
// First write pending buffers, then new data
if (mBufferQueue.size()) {
pInBuffer = mBufferQueue.itemAt(0);
} else {
pInBuffer = &inBuffer;
}
if (pInBuffer->frameCount == 0) {
break;
}
if (mOutBuffer.frameCount == 0) {
mOutBuffer.frameCount = pInBuffer->frameCount;
nsecs_t startTime = systemTime();
if (obtainBuffer(&mOutBuffer, waitTimeLeftMs) == (status_t)NO_MORE_BUFFERS) {
ALOGV ("OutputTrack::write() %p thread %p no more output buffers", this,
mThread.unsafe_get());
outputBufferFull = true;
break;
}
uint32_t waitTimeMs = (uint32_t)ns2ms(systemTime() - startTime);
if (waitTimeLeftMs >= waitTimeMs) {
waitTimeLeftMs -= waitTimeMs;
} else {
waitTimeLeftMs = 0;
}
}
uint32_t outFrames = pInBuffer->frameCount > mOutBuffer.frameCount ? mOutBuffer.frameCount :
pInBuffer->frameCount;
memcpy(mOutBuffer.raw, pInBuffer->raw, outFrames * channelCount * sizeof(int16_t));
mCblk->stepUserOut(outFrames);
pInBuffer->frameCount -= outFrames;
pInBuffer->i16 += outFrames * channelCount;
mOutBuffer.frameCount -= outFrames;
mOutBuffer.i16 += outFrames * channelCount;
if (pInBuffer->frameCount == 0) {
if (mBufferQueue.size()) {
mBufferQueue.removeAt(0);
delete [] pInBuffer->mBuffer;
delete pInBuffer;
ALOGV("OutputTrack::write() %p thread %p released overflow buffer %d", this,
mThread.unsafe_get(), mBufferQueue.size());
} else {
break;
}
}
}
// If we could not write all frames, allocate a buffer and queue it for next time.
if (inBuffer.frameCount) {
sp<ThreadBase> thread = mThread.promote();
if (thread != 0 && !thread->standby()) {
if (mBufferQueue.size() < kMaxOverFlowBuffers) {
pInBuffer = new Buffer;
pInBuffer->mBuffer = new int16_t[inBuffer.frameCount * channelCount];
pInBuffer->frameCount = inBuffer.frameCount;
pInBuffer->i16 = pInBuffer->mBuffer;
memcpy(pInBuffer->raw, inBuffer.raw, inBuffer.frameCount * channelCount *
sizeof(int16_t));
mBufferQueue.add(pInBuffer);
ALOGV("OutputTrack::write() %p thread %p adding overflow buffer %d", this,
mThread.unsafe_get(), mBufferQueue.size());
} else {
ALOGW("OutputTrack::write() %p thread %p no more overflow buffers",
mThread.unsafe_get(), this);
}
}
}
// Calling write() with a 0 length buffer, means that no more data will be written:
// If no more buffers are pending, fill output track buffer to make sure it is started
// by output mixer.
if (frames == 0 && mBufferQueue.size() == 0) {
if (mCblk->user < mCblk->frameCount) {
frames = mCblk->frameCount - mCblk->user;
pInBuffer = new Buffer;
pInBuffer->mBuffer = new int16_t[frames * channelCount];
pInBuffer->frameCount = frames;
pInBuffer->i16 = pInBuffer->mBuffer;
memset(pInBuffer->raw, 0, frames * channelCount * sizeof(int16_t));
mBufferQueue.add(pInBuffer);
} else if (mActive) {
stop();
}
}
return outputBufferFull;
}
status_t AudioFlinger::PlaybackThread::OutputTrack::obtainBuffer(
AudioBufferProvider::Buffer* buffer, uint32_t waitTimeMs)
{
int active;
status_t result;
audio_track_cblk_t* cblk = mCblk;
uint32_t framesReq = buffer->frameCount;
ALOGVV("OutputTrack::obtainBuffer user %d, server %d", cblk->user, cblk->server);
buffer->frameCount = 0;
uint32_t framesAvail = cblk->framesAvailableOut();
if (framesAvail == 0) {
Mutex::Autolock _l(cblk->lock);
goto start_loop_here;
while (framesAvail == 0) {
active = mActive;
if (CC_UNLIKELY(!active)) {
ALOGV("Not active and NO_MORE_BUFFERS");
return NO_MORE_BUFFERS;
}
result = cblk->cv.waitRelative(cblk->lock, milliseconds(waitTimeMs));
if (result != NO_ERROR) {
return NO_MORE_BUFFERS;
}
// read the server count again
start_loop_here:
framesAvail = cblk->framesAvailableOut_l();
}
}
// if (framesAvail < framesReq) {
// return NO_MORE_BUFFERS;
// }
if (framesReq > framesAvail) {
framesReq = framesAvail;
}
uint32_t u = cblk->user;
uint32_t bufferEnd = cblk->userBase + cblk->frameCount;
if (framesReq > bufferEnd - u) {
framesReq = bufferEnd - u;
}
buffer->frameCount = framesReq;
buffer->raw = cblk->buffer(mBuffers, mFrameSize, u);
return NO_ERROR;
}
void AudioFlinger::PlaybackThread::OutputTrack::clearBufferQueue()
{
size_t size = mBufferQueue.size();
for (size_t i = 0; i < size; i++) {
Buffer *pBuffer = mBufferQueue.itemAt(i);
delete [] pBuffer->mBuffer;
delete pBuffer;
}
mBufferQueue.clear();
}
// ----------------------------------------------------------------------------
AudioFlinger::Client::Client(const sp<AudioFlinger>& audioFlinger, pid_t pid)
: RefBase(),
mAudioFlinger(audioFlinger),
// FIXME should be a "k" constant not hard-coded, in .h or ro. property, see 4 lines below
mMemoryDealer(new MemoryDealer(1024*1024, "AudioFlinger::Client")),
mPid(pid),
mTimedTrackCount(0)
{
// 1 MB of address space is good for 32 tracks, 8 buffers each, 4 KB/buffer
}
// Client destructor must be called with AudioFlinger::mLock held
AudioFlinger::Client::~Client()
{
mAudioFlinger->removeClient_l(mPid);
}
sp<MemoryDealer> AudioFlinger::Client::heap() const
{
return mMemoryDealer;
}
// Reserve one of the limited slots for a timed audio track associated
// with this client
bool AudioFlinger::Client::reserveTimedTrack()
{
const int kMaxTimedTracksPerClient = 4;
Mutex::Autolock _l(mTimedTrackLock);
if (mTimedTrackCount >= kMaxTimedTracksPerClient) {
ALOGW("can not create timed track - pid %d has exceeded the limit",
mPid);
return false;
}
mTimedTrackCount++;
return true;
}
// Release a slot for a timed audio track
void AudioFlinger::Client::releaseTimedTrack()
{
Mutex::Autolock _l(mTimedTrackLock);
mTimedTrackCount--;
}
// ----------------------------------------------------------------------------
AudioFlinger::NotificationClient::NotificationClient(const sp<AudioFlinger>& audioFlinger,
const sp<IAudioFlingerClient>& client,
pid_t pid)
: mAudioFlinger(audioFlinger), mPid(pid), mAudioFlingerClient(client)
{
}
AudioFlinger::NotificationClient::~NotificationClient()
{
}
void AudioFlinger::NotificationClient::binderDied(const wp<IBinder>& who)
{
sp<NotificationClient> keep(this);
mAudioFlinger->removeNotificationClient(mPid);
}
// ----------------------------------------------------------------------------
AudioFlinger::TrackHandle::TrackHandle(const sp<AudioFlinger::PlaybackThread::Track>& track)
: BnAudioTrack(),
mTrack(track)
{
}
AudioFlinger::TrackHandle::~TrackHandle() {
// just stop the track on deletion, associated resources
// will be freed from the main thread once all pending buffers have
// been played. Unless it's not in the active track list, in which
// case we free everything now...
mTrack->destroy();
}
sp<IMemory> AudioFlinger::TrackHandle::getCblk() const {
return mTrack->getCblk();
}
status_t AudioFlinger::TrackHandle::start() {
return mTrack->start();
}
void AudioFlinger::TrackHandle::stop() {
mTrack->stop();
}
void AudioFlinger::TrackHandle::flush() {
mTrack->flush();
}
void AudioFlinger::TrackHandle::mute(bool e) {
mTrack->mute(e);
}
void AudioFlinger::TrackHandle::pause() {
mTrack->pause();
}
status_t AudioFlinger::TrackHandle::attachAuxEffect(int EffectId)
{
return mTrack->attachAuxEffect(EffectId);
}
status_t AudioFlinger::TrackHandle::allocateTimedBuffer(size_t size,
sp<IMemory>* buffer) {
if (!mTrack->isTimedTrack())
return INVALID_OPERATION;
PlaybackThread::TimedTrack* tt =
reinterpret_cast<PlaybackThread::TimedTrack*>(mTrack.get());
return tt->allocateTimedBuffer(size, buffer);
}
status_t AudioFlinger::TrackHandle::queueTimedBuffer(const sp<IMemory>& buffer,
int64_t pts) {
if (!mTrack->isTimedTrack())
return INVALID_OPERATION;
PlaybackThread::TimedTrack* tt =
reinterpret_cast<PlaybackThread::TimedTrack*>(mTrack.get());
return tt->queueTimedBuffer(buffer, pts);
}
status_t AudioFlinger::TrackHandle::setMediaTimeTransform(
const LinearTransform& xform, int target) {
if (!mTrack->isTimedTrack())
return INVALID_OPERATION;
PlaybackThread::TimedTrack* tt =
reinterpret_cast<PlaybackThread::TimedTrack*>(mTrack.get());
return tt->setMediaTimeTransform(
xform, static_cast<TimedAudioTrack::TargetTimeline>(target));
}
status_t AudioFlinger::TrackHandle::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
return BnAudioTrack::onTransact(code, data, reply, flags);
}
// ----------------------------------------------------------------------------
sp<IAudioRecord> AudioFlinger::openRecord(
pid_t pid,
audio_io_handle_t input,
uint32_t sampleRate,
audio_format_t format,
audio_channel_mask_t channelMask,
size_t frameCount,
IAudioFlinger::track_flags_t flags,
pid_t tid,
int *sessionId,
status_t *status)
{
sp<RecordThread::RecordTrack> recordTrack;
sp<RecordHandle> recordHandle;
sp<Client> client;
status_t lStatus;
RecordThread *thread;
size_t inFrameCount;
int lSessionId;
// check calling permissions
if (!recordingAllowed()) {
lStatus = PERMISSION_DENIED;
goto Exit;
}
// add client to list
{ // scope for mLock
Mutex::Autolock _l(mLock);
thread = checkRecordThread_l(input);
if (thread == NULL) {
lStatus = BAD_VALUE;
goto Exit;
}
client = registerPid_l(pid);
// If no audio session id is provided, create one here
if (sessionId != NULL && *sessionId != AUDIO_SESSION_OUTPUT_MIX) {
lSessionId = *sessionId;
} else {
lSessionId = nextUniqueId();
if (sessionId != NULL) {
*sessionId = lSessionId;
}
}
// create new record track.
// The record track uses one track in mHardwareMixerThread by convention.
recordTrack = thread->createRecordTrack_l(client, sampleRate, format, channelMask,
frameCount, lSessionId, flags, tid, &lStatus);
}
if (lStatus != NO_ERROR) {
// remove local strong reference to Client before deleting the RecordTrack so that the
// Client destructor is called by the TrackBase destructor with mLock held
client.clear();
recordTrack.clear();
goto Exit;
}
// return to handle to client
recordHandle = new RecordHandle(recordTrack);
lStatus = NO_ERROR;
Exit:
if (status) {
*status = lStatus;
}
return recordHandle;
}
// ----------------------------------------------------------------------------
AudioFlinger::RecordHandle::RecordHandle(
const sp<AudioFlinger::RecordThread::RecordTrack>& recordTrack)
: BnAudioRecord(),
mRecordTrack(recordTrack)
{
}
AudioFlinger::RecordHandle::~RecordHandle() {
stop_nonvirtual();
mRecordTrack->destroy();
}
sp<IMemory> AudioFlinger::RecordHandle::getCblk() const {
return mRecordTrack->getCblk();
}
status_t AudioFlinger::RecordHandle::start(int /*AudioSystem::sync_event_t*/ event,
int triggerSession) {
ALOGV("RecordHandle::start()");
return mRecordTrack->start((AudioSystem::sync_event_t)event, triggerSession);
}
void AudioFlinger::RecordHandle::stop() {
stop_nonvirtual();
}
void AudioFlinger::RecordHandle::stop_nonvirtual() {
ALOGV("RecordHandle::stop()");
mRecordTrack->stop();
}
status_t AudioFlinger::RecordHandle::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
return BnAudioRecord::onTransact(code, data, reply, flags);
}
// ----------------------------------------------------------------------------
AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
AudioStreamIn *input,
uint32_t sampleRate,
audio_channel_mask_t channelMask,
audio_io_handle_t id,
audio_devices_t device,
const sp<NBAIO_Sink>& teeSink) :
ThreadBase(audioFlinger, id, AUDIO_DEVICE_NONE, device, RECORD),
mInput(input), mResampler(NULL), mRsmpOutBuffer(NULL), mRsmpInBuffer(NULL),
// mRsmpInIndex and mInputBytes set by readInputParameters()
mReqChannelCount(popcount(channelMask)),
mReqSampleRate(sampleRate),
// mBytesRead is only meaningful while active, and so is cleared in start()
// (but might be better to also clear here for dump?)
mTeeSink(teeSink)
{
snprintf(mName, kNameLength, "AudioIn_%X", id);
readInputParameters();
}
AudioFlinger::RecordThread::~RecordThread()
{
delete[] mRsmpInBuffer;
delete mResampler;
delete[] mRsmpOutBuffer;
}
void AudioFlinger::RecordThread::onFirstRef()
{
run(mName, PRIORITY_URGENT_AUDIO);
}
status_t AudioFlinger::RecordThread::readyToRun()
{
status_t status = initCheck();
ALOGW_IF(status != NO_ERROR,"RecordThread %p could not initialize", this);
return status;
}
bool AudioFlinger::RecordThread::threadLoop()
{
AudioBufferProvider::Buffer buffer;
sp<RecordTrack> activeTrack;
Vector< sp<EffectChain> > effectChains;
nsecs_t lastWarning = 0;
inputStandBy();
acquireWakeLock();
// used to verify we've read at least once before evaluating how many bytes were read
bool readOnce = false;
// start recording
while (!exitPending()) {
processConfigEvents();
{ // scope for mLock
Mutex::Autolock _l(mLock);
checkForNewParameters_l();
if (mActiveTrack == 0 && mConfigEvents.isEmpty()) {
standby();
if (exitPending()) break;
releaseWakeLock_l();
ALOGV("RecordThread: loop stopping");
// go to sleep
mWaitWorkCV.wait(mLock);
ALOGV("RecordThread: loop starting");
acquireWakeLock_l();
continue;
}
if (mActiveTrack != 0) {
if (mActiveTrack->mState == TrackBase::PAUSING) {
standby();
mActiveTrack.clear();
mStartStopCond.broadcast();
} else if (mActiveTrack->mState == TrackBase::RESUMING) {
if (mReqChannelCount != mActiveTrack->channelCount()) {
mActiveTrack.clear();
mStartStopCond.broadcast();
} else if (readOnce) {
// record start succeeds only if first read from audio input
// succeeds
if (mBytesRead >= 0) {
mActiveTrack->mState = TrackBase::ACTIVE;
} else {
mActiveTrack.clear();
}
mStartStopCond.broadcast();
}
mStandby = false;
} else if (mActiveTrack->mState == TrackBase::TERMINATED) {
removeTrack_l(mActiveTrack);
mActiveTrack.clear();
}
}
lockEffectChains_l(effectChains);
}
if (mActiveTrack != 0) {
if (mActiveTrack->mState != TrackBase::ACTIVE &&
mActiveTrack->mState != TrackBase::RESUMING) {
unlockEffectChains(effectChains);
usleep(kRecordThreadSleepUs);
continue;
}
for (size_t i = 0; i < effectChains.size(); i ++) {
effectChains[i]->process_l();
}
buffer.frameCount = mFrameCount;
if (CC_LIKELY(mActiveTrack->getNextBuffer(&buffer) == NO_ERROR)) {
readOnce = true;
size_t framesOut = buffer.frameCount;
if (mResampler == NULL) {
// no resampling
while (framesOut) {
size_t framesIn = mFrameCount - mRsmpInIndex;
if (framesIn) {
int8_t *src = (int8_t *)mRsmpInBuffer + mRsmpInIndex * mFrameSize;
int8_t *dst = buffer.i8 + (buffer.frameCount - framesOut) *
mActiveTrack->mFrameSize;
if (framesIn > framesOut)
framesIn = framesOut;
mRsmpInIndex += framesIn;
framesOut -= framesIn;
if ((int)mChannelCount == mReqChannelCount ||
mFormat != AUDIO_FORMAT_PCM_16_BIT) {
memcpy(dst, src, framesIn * mFrameSize);
} else {
if (mChannelCount == 1) {
upmix_to_stereo_i16_from_mono_i16((int16_t *)dst,
(int16_t *)src, framesIn);
} else {
downmix_to_mono_i16_from_stereo_i16((int16_t *)dst,
(int16_t *)src, framesIn);
}
}
}
if (framesOut && mFrameCount == mRsmpInIndex) {
void *readInto;
if (framesOut == mFrameCount &&
((int)mChannelCount == mReqChannelCount ||
mFormat != AUDIO_FORMAT_PCM_16_BIT)) {
readInto = buffer.raw;
framesOut = 0;
} else {
readInto = mRsmpInBuffer;
mRsmpInIndex = 0;
}
mBytesRead = mInput->stream->read(mInput->stream, readInto, mInputBytes);
if (mBytesRead <= 0) {
if ((mBytesRead < 0) && (mActiveTrack->mState == TrackBase::ACTIVE))
{
ALOGE("Error reading audio input");
// Force input into standby so that it tries to
// recover at next read attempt
inputStandBy();
usleep(kRecordThreadSleepUs);
}
mRsmpInIndex = mFrameCount;
framesOut = 0;
buffer.frameCount = 0;
} else if (mTeeSink != 0) {
(void) mTeeSink->write(readInto,
mBytesRead >> Format_frameBitShift(mTeeSink->format()));
}
}
}
} else {
// resampling
memset(mRsmpOutBuffer, 0, framesOut * 2 * sizeof(int32_t));
// alter output frame count as if we were expecting stereo samples
if (mChannelCount == 1 && mReqChannelCount == 1) {
framesOut >>= 1;
}
mResampler->resample(mRsmpOutBuffer, framesOut,
this /* AudioBufferProvider* */);
// ditherAndClamp() works as long as all buffers returned by
// mActiveTrack->getNextBuffer() are 32 bit aligned which should be always true.
if (mChannelCount == 2 && mReqChannelCount == 1) {
ditherAndClamp(mRsmpOutBuffer, mRsmpOutBuffer, framesOut);
// the resampler always outputs stereo samples:
// do post stereo to mono conversion
downmix_to_mono_i16_from_stereo_i16(buffer.i16, (int16_t *)mRsmpOutBuffer,
framesOut);
} else {
ditherAndClamp((int32_t *)buffer.raw, mRsmpOutBuffer, framesOut);
}
}
if (mFramestoDrop == 0) {
mActiveTrack->releaseBuffer(&buffer);
} else {
if (mFramestoDrop > 0) {
mFramestoDrop -= buffer.frameCount;
if (mFramestoDrop <= 0) {
clearSyncStartEvent();
}
} else {
mFramestoDrop += buffer.frameCount;
if (mFramestoDrop >= 0 || mSyncStartEvent == 0 ||
mSyncStartEvent->isCancelled()) {
ALOGW("Synced record %s, session %d, trigger session %d",
(mFramestoDrop >= 0) ? "timed out" : "cancelled",
mActiveTrack->sessionId(),
(mSyncStartEvent != 0) ? mSyncStartEvent->triggerSession() : 0);
clearSyncStartEvent();
}
}
}
mActiveTrack->clearOverflow();
}
// client isn't retrieving buffers fast enough
else {
if (!mActiveTrack->setOverflow()) {
nsecs_t now = systemTime();
if ((now - lastWarning) > kWarningThrottleNs) {
ALOGW("RecordThread: buffer overflow");
lastWarning = now;
}
}
// Release the processor for a while before asking for a new buffer.
// This will give the application more chance to read from the buffer and
// clear the overflow.
usleep(kRecordThreadSleepUs);
}
}
// enable changes in effect chain
unlockEffectChains(effectChains);
effectChains.clear();
}
standby();
{
Mutex::Autolock _l(mLock);
mActiveTrack.clear();
mStartStopCond.broadcast();
}
releaseWakeLock();
ALOGV("RecordThread %p exiting", this);
return false;
}
void AudioFlinger::RecordThread::standby()
{
if (!mStandby) {
inputStandBy();
mStandby = true;
}
}
void AudioFlinger::RecordThread::inputStandBy()
{
mInput->stream->common.standby(&mInput->stream->common);
}
sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
const sp<AudioFlinger::Client>& client,
uint32_t sampleRate,
audio_format_t format,
audio_channel_mask_t channelMask,
size_t frameCount,
int sessionId,
IAudioFlinger::track_flags_t flags,
pid_t tid,
status_t *status)
{
sp<RecordTrack> track;
status_t lStatus;
lStatus = initCheck();
if (lStatus != NO_ERROR) {
ALOGE("Audio driver not initialized.");
goto Exit;
}
// FIXME use flags and tid similar to createTrack_l()
{ // scope for mLock
Mutex::Autolock _l(mLock);
track = new RecordTrack(this, client, sampleRate,
format, channelMask, frameCount, sessionId);
if (track->getCblk() == 0) {
lStatus = NO_MEMORY;
goto Exit;
}
mTracks.add(track);
// disable AEC and NS if the device is a BT SCO headset supporting those pre processings
bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
mAudioFlinger->btNrecIsOff();
setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
}
lStatus = NO_ERROR;
Exit:
if (status) {
*status = lStatus;
}
return track;
}
status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
AudioSystem::sync_event_t event,
int triggerSession)
{
ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
sp<ThreadBase> strongMe = this;
status_t status = NO_ERROR;
if (event == AudioSystem::SYNC_EVENT_NONE) {
clearSyncStartEvent();
} else if (event != AudioSystem::SYNC_EVENT_SAME) {
mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
triggerSession,
recordTrack->sessionId(),
syncStartEventCallback,
this);
// Sync event can be cancelled by the trigger session if the track is not in a
// compatible state in which case we start record immediately
if (mSyncStartEvent->isCancelled()) {
clearSyncStartEvent();
} else {
// do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
mFramestoDrop = - ((AudioSystem::kSyncRecordStartTimeOutMs * mReqSampleRate) / 1000);
}
}
{
AutoMutex lock(mLock);
if (mActiveTrack != 0) {
if (recordTrack != mActiveTrack.get()) {
status = -EBUSY;
} else if (mActiveTrack->mState == TrackBase::PAUSING) {
mActiveTrack->mState = TrackBase::ACTIVE;
}
return status;
}
recordTrack->mState = TrackBase::IDLE;
mActiveTrack = recordTrack;
mLock.unlock();
status_t status = AudioSystem::startInput(mId);
mLock.lock();
if (status != NO_ERROR) {
mActiveTrack.clear();
clearSyncStartEvent();
return status;
}
mRsmpInIndex = mFrameCount;
mBytesRead = 0;
if (mResampler != NULL) {
mResampler->reset();
}
mActiveTrack->mState = TrackBase::RESUMING;
// signal thread to start
ALOGV("Signal record thread");
mWaitWorkCV.broadcast();
// do not wait for mStartStopCond if exiting
if (exitPending()) {
mActiveTrack.clear();
status = INVALID_OPERATION;
goto startError;
}
mStartStopCond.wait(mLock);
if (mActiveTrack == 0) {
ALOGV("Record failed to start");
status = BAD_VALUE;
goto startError;
}
ALOGV("Record started OK");
return status;
}
startError:
AudioSystem::stopInput(mId);
clearSyncStartEvent();
return status;
}
void AudioFlinger::RecordThread::clearSyncStartEvent()
{
if (mSyncStartEvent != 0) {
mSyncStartEvent->cancel();
}
mSyncStartEvent.clear();
mFramestoDrop = 0;
}
void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
{
sp<SyncEvent> strongEvent = event.promote();
if (strongEvent != 0) {
RecordThread *me = (RecordThread *)strongEvent->cookie();
me->handleSyncStartEvent(strongEvent);
}
}
void AudioFlinger::RecordThread::handleSyncStartEvent(const sp<SyncEvent>& event)
{
if (event == mSyncStartEvent) {
// TODO: use actual buffer filling status instead of 2 buffers when info is available
// from audio HAL
mFramestoDrop = mFrameCount * 2;
}
}
bool AudioFlinger::RecordThread::stop_l(RecordThread::RecordTrack* recordTrack) {
ALOGV("RecordThread::stop");
if (recordTrack != mActiveTrack.get() || recordTrack->mState == TrackBase::PAUSING) {
return false;
}
recordTrack->mState = TrackBase::PAUSING;
// do not wait for mStartStopCond if exiting
if (exitPending()) {
return true;
}
mStartStopCond.wait(mLock);
// if we have been restarted, recordTrack == mActiveTrack.get() here
if (exitPending() || recordTrack != mActiveTrack.get()) {
ALOGV("Record stopped OK");
return true;
}
return false;
}
bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event) const
{
return false;
}
status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event)
{
#if 0 // This branch is currently dead code, but is preserved in case it will be needed in future
if (!isValidSyncEvent(event)) {
return BAD_VALUE;
}
int eventSession = event->triggerSession();
status_t ret = NAME_NOT_FOUND;
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mTracks.size(); i++) {
sp<RecordTrack> track = mTracks[i];
if (eventSession == track->sessionId()) {
(void) track->setSyncEvent(event);
ret = NO_ERROR;
}
}
return ret;
#else
return BAD_VALUE;
#endif
}
void AudioFlinger::RecordThread::RecordTrack::destroy()
{
// see comments at AudioFlinger::PlaybackThread::Track::destroy()
sp<RecordTrack> keep(this);
{
sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
if (mState == ACTIVE || mState == RESUMING) {
AudioSystem::stopInput(thread->id());
}
AudioSystem::releaseInput(thread->id());
Mutex::Autolock _l(thread->mLock);
RecordThread *recordThread = (RecordThread *) thread.get();
recordThread->destroyTrack_l(this);
}
}
}
// destroyTrack_l() must be called with ThreadBase::mLock held
void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
{
track->mState = TrackBase::TERMINATED;
// active tracks are removed by threadLoop()
if (mActiveTrack != track) {
removeTrack_l(track);
}
}
void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
{
mTracks.remove(track);
// need anything related to effects here?
}
void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
{
dumpInternals(fd, args);
dumpTracks(fd, args);
dumpEffectChains(fd, args);
}
void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
snprintf(buffer, SIZE, "\nInput thread %p internals\n", this);
result.append(buffer);
if (mActiveTrack != 0) {
snprintf(buffer, SIZE, "In index: %d\n", mRsmpInIndex);
result.append(buffer);
snprintf(buffer, SIZE, "In size: %d\n", mInputBytes);
result.append(buffer);
snprintf(buffer, SIZE, "Resampling: %d\n", (mResampler != NULL));
result.append(buffer);
snprintf(buffer, SIZE, "Out channel count: %d\n", mReqChannelCount);
result.append(buffer);
snprintf(buffer, SIZE, "Out sample rate: %u\n", mReqSampleRate);
result.append(buffer);
} else {
result.append("No active record client\n");
}
write(fd, result.string(), result.size());
dumpBase(fd, args);
}
void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
snprintf(buffer, SIZE, "Input thread %p tracks\n", this);
result.append(buffer);
RecordTrack::appendDumpHeader(result);
for (size_t i = 0; i < mTracks.size(); ++i) {
sp<RecordTrack> track = mTracks[i];
if (track != 0) {
track->dump(buffer, SIZE);
result.append(buffer);
}
}
if (mActiveTrack != 0) {
snprintf(buffer, SIZE, "\nInput thread %p active tracks\n", this);
result.append(buffer);
RecordTrack::appendDumpHeader(result);
mActiveTrack->dump(buffer, SIZE);
result.append(buffer);
}
write(fd, result.string(), result.size());
}
// AudioBufferProvider interface
status_t AudioFlinger::RecordThread::getNextBuffer(AudioBufferProvider::Buffer* buffer, int64_t pts)
{
size_t framesReq = buffer->frameCount;
size_t framesReady = mFrameCount - mRsmpInIndex;
int channelCount;
if (framesReady == 0) {
mBytesRead = mInput->stream->read(mInput->stream, mRsmpInBuffer, mInputBytes);
if (mBytesRead <= 0) {
if ((mBytesRead < 0) && (mActiveTrack->mState == TrackBase::ACTIVE)) {
ALOGE("RecordThread::getNextBuffer() Error reading audio input");
// Force input into standby so that it tries to
// recover at next read attempt
inputStandBy();
usleep(kRecordThreadSleepUs);
}
buffer->raw = NULL;
buffer->frameCount = 0;
return NOT_ENOUGH_DATA;
}
mRsmpInIndex = 0;
framesReady = mFrameCount;
}
if (framesReq > framesReady) {
framesReq = framesReady;
}
if (mChannelCount == 1 && mReqChannelCount == 2) {
channelCount = 1;
} else {
channelCount = 2;
}
buffer->raw = mRsmpInBuffer + mRsmpInIndex * channelCount;
buffer->frameCount = framesReq;
return NO_ERROR;
}
// AudioBufferProvider interface
void AudioFlinger::RecordThread::releaseBuffer(AudioBufferProvider::Buffer* buffer)
{
mRsmpInIndex += buffer->frameCount;
buffer->frameCount = 0;
}
bool AudioFlinger::RecordThread::checkForNewParameters_l()
{
bool reconfig = false;
while (!mNewParameters.isEmpty()) {
status_t status = NO_ERROR;
String8 keyValuePair = mNewParameters[0];
AudioParameter param = AudioParameter(keyValuePair);
int value;
audio_format_t reqFormat = mFormat;
uint32_t reqSamplingRate = mReqSampleRate;
int reqChannelCount = mReqChannelCount;
if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
reqSamplingRate = value;
reconfig = true;
}
if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
reqFormat = (audio_format_t) value;
reconfig = true;
}
if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
reqChannelCount = popcount(value);
reconfig = true;
}
if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
// do not accept frame count changes if tracks are open as the track buffer
// size depends on frame count and correct behavior would not be guaranteed
// if frame count is changed after track creation
if (mActiveTrack != 0) {
status = INVALID_OPERATION;
} else {
reconfig = true;
}
}
if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
// forward device change to effects that have requested to be
// aware of attached audio device.
for (size_t i = 0; i < mEffectChains.size(); i++) {
mEffectChains[i]->setDevice_l(value);
}
// store input device and output device but do not forward output device to audio HAL.
// Note that status is ignored by the caller for output device
// (see AudioFlinger::setParameters()
if (audio_is_output_devices(value)) {
mOutDevice = value;
status = BAD_VALUE;
} else {
mInDevice = value;
// disable AEC and NS if the device is a BT SCO headset supporting those
// pre processings
if (mTracks.size() > 0) {
bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
mAudioFlinger->btNrecIsOff();
for (size_t i = 0; i < mTracks.size(); i++) {
sp<RecordTrack> track = mTracks[i];
setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
}
}
}
}
if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
mAudioSource != (audio_source_t)value) {
// forward device change to effects that have requested to be
// aware of attached audio device.
for (size_t i = 0; i < mEffectChains.size(); i++) {
mEffectChains[i]->setAudioSource_l((audio_source_t)value);
}
mAudioSource = (audio_source_t)value;
}
if (status == NO_ERROR) {
status = mInput->stream->common.set_parameters(&mInput->stream->common,
keyValuePair.string());
if (status == INVALID_OPERATION) {
inputStandBy();
status = mInput->stream->common.set_parameters(&mInput->stream->common,
keyValuePair.string());
}
if (reconfig) {
if (status == BAD_VALUE &&
reqFormat == mInput->stream->common.get_format(&mInput->stream->common) &&
reqFormat == AUDIO_FORMAT_PCM_16_BIT &&
((int)mInput->stream->common.get_sample_rate(&mInput->stream->common)
<= (2 * reqSamplingRate)) &&
popcount(mInput->stream->common.get_channels(&mInput->stream->common))
<= FCC_2 &&
(reqChannelCount <= FCC_2)) {
status = NO_ERROR;
}
if (status == NO_ERROR) {
readInputParameters();
sendIoConfigEvent_l(AudioSystem::INPUT_CONFIG_CHANGED);
}
}
}
mNewParameters.removeAt(0);
mParamStatus = status;
mParamCond.signal();
// wait for condition with time out in case the thread calling ThreadBase::setParameters()
// already timed out waiting for the status and will never signal the condition.
mWaitWorkCV.waitRelative(mLock, kSetParametersTimeoutNs);
}
return reconfig;
}
String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
{
char *s;
String8 out_s8 = String8();
Mutex::Autolock _l(mLock);
if (initCheck() != NO_ERROR) {
return out_s8;
}
s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
out_s8 = String8(s);
free(s);
return out_s8;
}
void AudioFlinger::RecordThread::audioConfigChanged_l(int event, int param) {
AudioSystem::OutputDescriptor desc;
void *param2 = NULL;
switch (event) {
case AudioSystem::INPUT_OPENED:
case AudioSystem::INPUT_CONFIG_CHANGED:
desc.channels = mChannelMask;
desc.samplingRate = mSampleRate;
desc.format = mFormat;
desc.frameCount = mFrameCount;
desc.latency = 0;
param2 = &desc;
break;
case AudioSystem::INPUT_CLOSED:
default:
break;
}
mAudioFlinger->audioConfigChanged_l(event, mId, param2);
}
void AudioFlinger::RecordThread::readInputParameters()
{
delete mRsmpInBuffer;
// mRsmpInBuffer is always assigned a new[] below
delete mRsmpOutBuffer;
mRsmpOutBuffer = NULL;
delete mResampler;
mResampler = NULL;
mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
mChannelCount = (uint16_t)popcount(mChannelMask);
mFormat = mInput->stream->common.get_format(&mInput->stream->common);
mFrameSize = audio_stream_frame_size(&mInput->stream->common);
mInputBytes = mInput->stream->common.get_buffer_size(&mInput->stream->common);
mFrameCount = mInputBytes / mFrameSize;
mNormalFrameCount = mFrameCount; // not used by record, but used by input effects
mRsmpInBuffer = new int16_t[mFrameCount * mChannelCount];
if (mSampleRate != mReqSampleRate && mChannelCount <= FCC_2 && mReqChannelCount <= FCC_2)
{
int channelCount;
// optimization: if mono to mono, use the resampler in stereo to stereo mode to avoid
// stereo to mono post process as the resampler always outputs stereo.
if (mChannelCount == 1 && mReqChannelCount == 2) {
channelCount = 1;
} else {
channelCount = 2;
}
mResampler = AudioResampler::create(16, channelCount, mReqSampleRate);
mResampler->setSampleRate(mSampleRate);
mResampler->setVolume(AudioMixer::UNITY_GAIN, AudioMixer::UNITY_GAIN);
mRsmpOutBuffer = new int32_t[mFrameCount * 2];
// optmization: if mono to mono, alter input frame count as if we were inputing
// stereo samples
if (mChannelCount == 1 && mReqChannelCount == 1) {
mFrameCount >>= 1;
}
}
mRsmpInIndex = mFrameCount;
}
unsigned int AudioFlinger::RecordThread::getInputFramesLost()
{
Mutex::Autolock _l(mLock);
if (initCheck() != NO_ERROR) {
return 0;
}
return mInput->stream->get_input_frames_lost(mInput->stream);
}
uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
{
Mutex::Autolock _l(mLock);
uint32_t result = 0;
if (getEffectChain_l(sessionId) != 0) {
result = EFFECT_SESSION;
}
for (size_t i = 0; i < mTracks.size(); ++i) {
if (sessionId == mTracks[i]->sessionId()) {
result |= TRACK_SESSION;
break;
}
}
return result;
}
KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
{
KeyedVector<int, bool> ids;
Mutex::Autolock _l(mLock);
for (size_t j = 0; j < mTracks.size(); ++j) {
sp<RecordThread::RecordTrack> track = mTracks[j];
int sessionId = track->sessionId();
if (ids.indexOfKey(sessionId) < 0) {
ids.add(sessionId, true);
}
}
return ids;
}
AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
{
Mutex::Autolock _l(mLock);
AudioStreamIn *input = mInput;
mInput = NULL;
return input;
}
// this method must always be called either with ThreadBase mLock held or inside the thread loop
audio_stream_t* AudioFlinger::RecordThread::stream() const
{
if (mInput == NULL) {
return NULL;
}
return &mInput->stream->common;
}
// ----------------------------------------------------------------------------
audio_module_handle_t AudioFlinger::loadHwModule(const char *name)
{
if (!settingsAllowed()) {
return 0;
}
Mutex::Autolock _l(mLock);
return loadHwModule_l(name);
}
// loadHwModule_l() must be called with AudioFlinger::mLock held
audio_module_handle_t AudioFlinger::loadHwModule_l(const char *name)
{
for (size_t i = 0; i < mAudioHwDevs.size(); i++) {
if (strncmp(mAudioHwDevs.valueAt(i)->moduleName(), name, strlen(name)) == 0) {
ALOGW("loadHwModule() module %s already loaded", name);
return mAudioHwDevs.keyAt(i);
}
}
audio_hw_device_t *dev;
int rc = load_audio_interface(name, &dev);
if (rc) {
ALOGI("loadHwModule() error %d loading module %s ", rc, name);
return 0;
}
mHardwareStatus = AUDIO_HW_INIT;
rc = dev->init_check(dev);
mHardwareStatus = AUDIO_HW_IDLE;
if (rc) {
ALOGI("loadHwModule() init check error %d for module %s ", rc, name);
return 0;
}
// Check and cache this HAL's level of support for master mute and master
// volume. If this is the first HAL opened, and it supports the get
// methods, use the initial values provided by the HAL as the current
// master mute and volume settings.
AudioHwDevice::Flags flags = static_cast<AudioHwDevice::Flags>(0);
{ // scope for auto-lock pattern
AutoMutex lock(mHardwareLock);
if (0 == mAudioHwDevs.size()) {
mHardwareStatus = AUDIO_HW_GET_MASTER_VOLUME;
if (NULL != dev->get_master_volume) {
float mv;
if (OK == dev->get_master_volume(dev, &mv)) {
mMasterVolume = mv;
}
}
mHardwareStatus = AUDIO_HW_GET_MASTER_MUTE;
if (NULL != dev->get_master_mute) {
bool mm;
if (OK == dev->get_master_mute(dev, &mm)) {
mMasterMute = mm;
}
}
}
mHardwareStatus = AUDIO_HW_SET_MASTER_VOLUME;
if ((NULL != dev->set_master_volume) &&
(OK == dev->set_master_volume(dev, mMasterVolume))) {
flags = static_cast<AudioHwDevice::Flags>(flags |
AudioHwDevice::AHWD_CAN_SET_MASTER_VOLUME);
}
mHardwareStatus = AUDIO_HW_SET_MASTER_MUTE;
if ((NULL != dev->set_master_mute) &&
(OK == dev->set_master_mute(dev, mMasterMute))) {
flags = static_cast<AudioHwDevice::Flags>(flags |
AudioHwDevice::AHWD_CAN_SET_MASTER_MUTE);
}
mHardwareStatus = AUDIO_HW_IDLE;
}
audio_module_handle_t handle = nextUniqueId();
mAudioHwDevs.add(handle, new AudioHwDevice(name, dev, flags));
ALOGI("loadHwModule() Loaded %s audio interface from %s (%s) handle %d",
name, dev->common.module->name, dev->common.module->id, handle);
return handle;
}
// ----------------------------------------------------------------------------
uint32_t AudioFlinger::getPrimaryOutputSamplingRate()
{
Mutex::Autolock _l(mLock);
PlaybackThread *thread = primaryPlaybackThread_l();
return thread != NULL ? thread->sampleRate() : 0;
}
size_t AudioFlinger::getPrimaryOutputFrameCount()
{
Mutex::Autolock _l(mLock);
PlaybackThread *thread = primaryPlaybackThread_l();
return thread != NULL ? thread->frameCountHAL() : 0;
}
// ----------------------------------------------------------------------------
audio_io_handle_t AudioFlinger::openOutput(audio_module_handle_t module,
audio_devices_t *pDevices,
uint32_t *pSamplingRate,
audio_format_t *pFormat,
audio_channel_mask_t *pChannelMask,
uint32_t *pLatencyMs,
audio_output_flags_t flags)
{
status_t status;
PlaybackThread *thread = NULL;
struct audio_config config = {
sample_rate: pSamplingRate ? *pSamplingRate : 0,
channel_mask: pChannelMask ? *pChannelMask : 0,
format: pFormat ? *pFormat : AUDIO_FORMAT_DEFAULT,
};
audio_stream_out_t *outStream = NULL;
AudioHwDevice *outHwDev;
ALOGV("openOutput(), module %d Device %x, SamplingRate %d, Format %d, Channels %x, flags %x",
module,
(pDevices != NULL) ? *pDevices : 0,
config.sample_rate,
config.format,
config.channel_mask,
flags);
if (pDevices == NULL || *pDevices == 0) {
return 0;
}
Mutex::Autolock _l(mLock);
outHwDev = findSuitableHwDev_l(module, *pDevices);
if (outHwDev == NULL)
return 0;
audio_hw_device_t *hwDevHal = outHwDev->hwDevice();
audio_io_handle_t id = nextUniqueId();
mHardwareStatus = AUDIO_HW_OUTPUT_OPEN;
status = hwDevHal->open_output_stream(hwDevHal,
id,
*pDevices,
(audio_output_flags_t)flags,
&config,
&outStream);
mHardwareStatus = AUDIO_HW_IDLE;
ALOGV("openOutput() openOutputStream returned output %p, SamplingRate %d, Format %d, "
"Channels %x, status %d",
outStream,
config.sample_rate,
config.format,
config.channel_mask,
status);
if (status == NO_ERROR && outStream != NULL) {
AudioStreamOut *output = new AudioStreamOut(outHwDev, outStream);
if ((flags & AUDIO_OUTPUT_FLAG_DIRECT) ||
(config.format != AUDIO_FORMAT_PCM_16_BIT) ||
(config.channel_mask != AUDIO_CHANNEL_OUT_STEREO)) {
thread = new DirectOutputThread(this, output, id, *pDevices);
ALOGV("openOutput() created direct output: ID %d thread %p", id, thread);
} else {
thread = new MixerThread(this, output, id, *pDevices);
ALOGV("openOutput() created mixer output: ID %d thread %p", id, thread);
}
mPlaybackThreads.add(id, thread);
if (pSamplingRate != NULL) *pSamplingRate = config.sample_rate;
if (pFormat != NULL) *pFormat = config.format;
if (pChannelMask != NULL) *pChannelMask = config.channel_mask;
if (pLatencyMs != NULL) *pLatencyMs = thread->latency();
// notify client processes of the new output creation
thread->audioConfigChanged_l(AudioSystem::OUTPUT_OPENED);
// the first primary output opened designates the primary hw device
if ((mPrimaryHardwareDev == NULL) && (flags & AUDIO_OUTPUT_FLAG_PRIMARY)) {
ALOGI("Using module %d has the primary audio interface", module);
mPrimaryHardwareDev = outHwDev;
AutoMutex lock(mHardwareLock);
mHardwareStatus = AUDIO_HW_SET_MODE;
hwDevHal->set_mode(hwDevHal, mMode);
mHardwareStatus = AUDIO_HW_IDLE;
}
return id;
}
return 0;
}
audio_io_handle_t AudioFlinger::openDuplicateOutput(audio_io_handle_t output1,
audio_io_handle_t output2)
{
Mutex::Autolock _l(mLock);
MixerThread *thread1 = checkMixerThread_l(output1);
MixerThread *thread2 = checkMixerThread_l(output2);
if (thread1 == NULL || thread2 == NULL) {
ALOGW("openDuplicateOutput() wrong output mixer type for output %d or %d", output1,
output2);
return 0;
}
audio_io_handle_t id = nextUniqueId();
DuplicatingThread *thread = new DuplicatingThread(this, thread1, id);
thread->addOutputTrack(thread2);
mPlaybackThreads.add(id, thread);
// notify client processes of the new output creation
thread->audioConfigChanged_l(AudioSystem::OUTPUT_OPENED);
return id;
}
status_t AudioFlinger::closeOutput(audio_io_handle_t output)
{
return closeOutput_nonvirtual(output);
}
status_t AudioFlinger::closeOutput_nonvirtual(audio_io_handle_t output)
{
// keep strong reference on the playback thread so that
// it is not destroyed while exit() is executed
sp<PlaybackThread> thread;
{
Mutex::Autolock _l(mLock);
thread = checkPlaybackThread_l(output);
if (thread == NULL) {
return BAD_VALUE;
}
ALOGV("closeOutput() %d", output);
if (thread->type() == ThreadBase::MIXER) {
for (size_t i = 0; i < mPlaybackThreads.size(); i++) {
if (mPlaybackThreads.valueAt(i)->type() == ThreadBase::DUPLICATING) {
DuplicatingThread *dupThread =
(DuplicatingThread *)mPlaybackThreads.valueAt(i).get();
dupThread->removeOutputTrack((MixerThread *)thread.get());
}
}
}
audioConfigChanged_l(AudioSystem::OUTPUT_CLOSED, output, NULL);
mPlaybackThreads.removeItem(output);
}
thread->exit();
// The thread entity (active unit of execution) is no longer running here,
// but the ThreadBase container still exists.
if (thread->type() != ThreadBase::DUPLICATING) {
AudioStreamOut *out = thread->clearOutput();
ALOG_ASSERT(out != NULL, "out shouldn't be NULL");
// from now on thread->mOutput is NULL
out->hwDev()->close_output_stream(out->hwDev(), out->stream);
delete out;
}
return NO_ERROR;
}
status_t AudioFlinger::suspendOutput(audio_io_handle_t output)
{
Mutex::Autolock _l(mLock);
PlaybackThread *thread = checkPlaybackThread_l(output);
if (thread == NULL) {
return BAD_VALUE;
}
ALOGV("suspendOutput() %d", output);
thread->suspend();
return NO_ERROR;
}
status_t AudioFlinger::restoreOutput(audio_io_handle_t output)
{
Mutex::Autolock _l(mLock);
PlaybackThread *thread = checkPlaybackThread_l(output);
if (thread == NULL) {
return BAD_VALUE;
}
ALOGV("restoreOutput() %d", output);
thread->restore();
return NO_ERROR;
}
audio_io_handle_t AudioFlinger::openInput(audio_module_handle_t module,
audio_devices_t *pDevices,
uint32_t *pSamplingRate,
audio_format_t *pFormat,
audio_channel_mask_t *pChannelMask)
{
status_t status;
RecordThread *thread = NULL;
struct audio_config config = {
sample_rate: pSamplingRate ? *pSamplingRate : 0,
channel_mask: pChannelMask ? *pChannelMask : 0,
format: pFormat ? *pFormat : AUDIO_FORMAT_DEFAULT,
};
uint32_t reqSamplingRate = config.sample_rate;
audio_format_t reqFormat = config.format;
audio_channel_mask_t reqChannels = config.channel_mask;
audio_stream_in_t *inStream = NULL;
AudioHwDevice *inHwDev;
if (pDevices == NULL || *pDevices == 0) {
return 0;
}
Mutex::Autolock _l(mLock);
inHwDev = findSuitableHwDev_l(module, *pDevices);
if (inHwDev == NULL)
return 0;
audio_hw_device_t *inHwHal = inHwDev->hwDevice();
audio_io_handle_t id = nextUniqueId();
status = inHwHal->open_input_stream(inHwHal, id, *pDevices, &config,
&inStream);
ALOGV("openInput() openInputStream returned input %p, SamplingRate %d, Format %d, Channels %x, "
"status %d",
inStream,
config.sample_rate,
config.format,
config.channel_mask,
status);
// If the input could not be opened with the requested parameters and we can handle the
// conversion internally, try to open again with the proposed parameters. The AudioFlinger can
// resample the input and do mono to stereo or stereo to mono conversions on 16 bit PCM inputs.
if (status == BAD_VALUE &&
reqFormat == config.format && config.format == AUDIO_FORMAT_PCM_16_BIT &&
(config.sample_rate <= 2 * reqSamplingRate) &&
(popcount(config.channel_mask) <= FCC_2) && (popcount(reqChannels) <= FCC_2)) {
ALOGV("openInput() reopening with proposed sampling rate and channel mask");
inStream = NULL;
status = inHwHal->open_input_stream(inHwHal, id, *pDevices, &config, &inStream);
}
if (status == NO_ERROR && inStream != NULL) {
// Try to re-use most recently used Pipe to archive a copy of input for dumpsys,
// or (re-)create if current Pipe is idle and does not match the new format
sp<NBAIO_Sink> teeSink;
#ifdef TEE_SINK_INPUT_FRAMES
enum {
TEE_SINK_NO, // don't copy input
TEE_SINK_NEW, // copy input using a new pipe
TEE_SINK_OLD, // copy input using an existing pipe
} kind;
NBAIO_Format format = Format_from_SR_C(inStream->common.get_sample_rate(&inStream->common),
popcount(inStream->common.get_channels(&inStream->common)));
if (format == Format_Invalid) {
kind = TEE_SINK_NO;
} else if (mRecordTeeSink == 0) {
kind = TEE_SINK_NEW;
} else if (mRecordTeeSink->getStrongCount() != 1) {
kind = TEE_SINK_NO;
} else if (format == mRecordTeeSink->format()) {
kind = TEE_SINK_OLD;
} else {
kind = TEE_SINK_NEW;
}
switch (kind) {
case TEE_SINK_NEW: {
Pipe *pipe = new Pipe(TEE_SINK_INPUT_FRAMES, format);
size_t numCounterOffers = 0;
const NBAIO_Format offers[1] = {format};
ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
ALOG_ASSERT(index == 0);
PipeReader *pipeReader = new PipeReader(*pipe);
numCounterOffers = 0;
index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
ALOG_ASSERT(index == 0);
mRecordTeeSink = pipe;
mRecordTeeSource = pipeReader;
teeSink = pipe;
}
break;
case TEE_SINK_OLD:
teeSink = mRecordTeeSink;
break;
case TEE_SINK_NO:
default:
break;
}
#endif
AudioStreamIn *input = new AudioStreamIn(inHwDev, inStream);
// Start record thread
// RecorThread require both input and output device indication to forward to audio
// pre processing modules
audio_devices_t device = (*pDevices) | primaryOutputDevice_l();
thread = new RecordThread(this,
input,
reqSamplingRate,
reqChannels,
id,
device, teeSink);
mRecordThreads.add(id, thread);
ALOGV("openInput() created record thread: ID %d thread %p", id, thread);
if (pSamplingRate != NULL) *pSamplingRate = reqSamplingRate;
if (pFormat != NULL) *pFormat = config.format;
if (pChannelMask != NULL) *pChannelMask = reqChannels;
// notify client processes of the new input creation
thread->audioConfigChanged_l(AudioSystem::INPUT_OPENED);
return id;
}
return 0;
}
status_t AudioFlinger::closeInput(audio_io_handle_t input)
{
return closeInput_nonvirtual(input);
}
status_t AudioFlinger::closeInput_nonvirtual(audio_io_handle_t input)
{
// keep strong reference on the record thread so that
// it is not destroyed while exit() is executed
sp<RecordThread> thread;
{
Mutex::Autolock _l(mLock);
thread = checkRecordThread_l(input);
if (thread == 0) {
return BAD_VALUE;
}
ALOGV("closeInput() %d", input);
audioConfigChanged_l(AudioSystem::INPUT_CLOSED, input, NULL);
mRecordThreads.removeItem(input);
}
thread->exit();
// The thread entity (active unit of execution) is no longer running here,
// but the ThreadBase container still exists.
AudioStreamIn *in = thread->clearInput();
ALOG_ASSERT(in != NULL, "in shouldn't be NULL");
// from now on thread->mInput is NULL
in->hwDev()->close_input_stream(in->hwDev(), in->stream);
delete in;
return NO_ERROR;
}
status_t AudioFlinger::setStreamOutput(audio_stream_type_t stream, audio_io_handle_t output)
{
Mutex::Autolock _l(mLock);
ALOGV("setStreamOutput() stream %d to output %d", stream, output);
for (size_t i = 0; i < mPlaybackThreads.size(); i++) {
PlaybackThread *thread = mPlaybackThreads.valueAt(i).get();
thread->invalidateTracks(stream);
}
return NO_ERROR;
}
int AudioFlinger::newAudioSessionId()
{
return nextUniqueId();
}
void AudioFlinger::acquireAudioSessionId(int audioSession)
{
Mutex::Autolock _l(mLock);
pid_t caller = IPCThreadState::self()->getCallingPid();
ALOGV("acquiring %d from %d", audioSession, caller);
size_t num = mAudioSessionRefs.size();
for (size_t i = 0; i< num; i++) {
AudioSessionRef *ref = mAudioSessionRefs.editItemAt(i);
if (ref->mSessionid == audioSession && ref->mPid == caller) {
ref->mCnt++;
ALOGV(" incremented refcount to %d", ref->mCnt);
return;
}
}
mAudioSessionRefs.push(new AudioSessionRef(audioSession, caller));
ALOGV(" added new entry for %d", audioSession);
}
void AudioFlinger::releaseAudioSessionId(int audioSession)
{
Mutex::Autolock _l(mLock);
pid_t caller = IPCThreadState::self()->getCallingPid();
ALOGV("releasing %d from %d", audioSession, caller);
size_t num = mAudioSessionRefs.size();
for (size_t i = 0; i< num; i++) {
AudioSessionRef *ref = mAudioSessionRefs.itemAt(i);
if (ref->mSessionid == audioSession && ref->mPid == caller) {
ref->mCnt--;
ALOGV(" decremented refcount to %d", ref->mCnt);
if (ref->mCnt == 0) {
mAudioSessionRefs.removeAt(i);
delete ref;
purgeStaleEffects_l();
}
return;
}
}
ALOGW("session id %d not found for pid %d", audioSession, caller);
}
void AudioFlinger::purgeStaleEffects_l() {
ALOGV("purging stale effects");
Vector< sp<EffectChain> > chains;
for (size_t i = 0; i < mPlaybackThreads.size(); i++) {
sp<PlaybackThread> t = mPlaybackThreads.valueAt(i);
for (size_t j = 0; j < t->mEffectChains.size(); j++) {
sp<EffectChain> ec = t->mEffectChains[j];
if (ec->sessionId() > AUDIO_SESSION_OUTPUT_MIX) {
chains.push(ec);
}
}
}
for (size_t i = 0; i < mRecordThreads.size(); i++) {
sp<RecordThread> t = mRecordThreads.valueAt(i);
for (size_t j = 0; j < t->mEffectChains.size(); j++) {
sp<EffectChain> ec = t->mEffectChains[j];
chains.push(ec);
}
}
for (size_t i = 0; i < chains.size(); i++) {
sp<EffectChain> ec = chains[i];
int sessionid = ec->sessionId();
sp<ThreadBase> t = ec->mThread.promote();
if (t == 0) {
continue;
}
size_t numsessionrefs = mAudioSessionRefs.size();
bool found = false;
for (size_t k = 0; k < numsessionrefs; k++) {
AudioSessionRef *ref = mAudioSessionRefs.itemAt(k);
if (ref->mSessionid == sessionid) {
ALOGV(" session %d still exists for %d with %d refs",
sessionid, ref->mPid, ref->mCnt);
found = true;
break;
}
}
if (!found) {
Mutex::Autolock _l (t->mLock);
// remove all effects from the chain
while (ec->mEffects.size()) {
sp<EffectModule> effect = ec->mEffects[0];
effect->unPin();
t->removeEffect_l(effect);
if (effect->purgeHandles()) {
t->checkSuspendOnEffectEnabled_l(effect, false, effect->sessionId());
}
AudioSystem::unregisterEffect(effect->id());
}
}
}
return;
}
// checkPlaybackThread_l() must be called with AudioFlinger::mLock held
AudioFlinger::PlaybackThread *AudioFlinger::checkPlaybackThread_l(audio_io_handle_t output) const
{
return mPlaybackThreads.valueFor(output).get();
}
// checkMixerThread_l() must be called with AudioFlinger::mLock held
AudioFlinger::MixerThread *AudioFlinger::checkMixerThread_l(audio_io_handle_t output) const
{
PlaybackThread *thread = checkPlaybackThread_l(output);
return thread != NULL && thread->type() != ThreadBase::DIRECT ? (MixerThread *) thread : NULL;
}
// checkRecordThread_l() must be called with AudioFlinger::mLock held
AudioFlinger::RecordThread *AudioFlinger::checkRecordThread_l(audio_io_handle_t input) const
{
return mRecordThreads.valueFor(input).get();
}
uint32_t AudioFlinger::nextUniqueId()
{
return android_atomic_inc(&mNextUniqueId);
}
AudioFlinger::PlaybackThread *AudioFlinger::primaryPlaybackThread_l() const
{
for (size_t i = 0; i < mPlaybackThreads.size(); i++) {
PlaybackThread *thread = mPlaybackThreads.valueAt(i).get();
AudioStreamOut *output = thread->getOutput();
if (output != NULL && output->audioHwDev == mPrimaryHardwareDev) {
return thread;
}
}
return NULL;
}
audio_devices_t AudioFlinger::primaryOutputDevice_l() const
{
PlaybackThread *thread = primaryPlaybackThread_l();
if (thread == NULL) {
return 0;
}
return thread->outDevice();
}
sp<AudioFlinger::SyncEvent> AudioFlinger::createSyncEvent(AudioSystem::sync_event_t type,
int triggerSession,
int listenerSession,
sync_event_callback_t callBack,
void *cookie)
{
Mutex::Autolock _l(mLock);
sp<SyncEvent> event = new SyncEvent(type, triggerSession, listenerSession, callBack, cookie);
status_t playStatus = NAME_NOT_FOUND;
status_t recStatus = NAME_NOT_FOUND;
for (size_t i = 0; i < mPlaybackThreads.size(); i++) {
playStatus = mPlaybackThreads.valueAt(i)->setSyncEvent(event);
if (playStatus == NO_ERROR) {
return event;
}
}
for (size_t i = 0; i < mRecordThreads.size(); i++) {
recStatus = mRecordThreads.valueAt(i)->setSyncEvent(event);
if (recStatus == NO_ERROR) {
return event;
}
}
if (playStatus == NAME_NOT_FOUND || recStatus == NAME_NOT_FOUND) {
mPendingSyncEvents.add(event);
} else {
ALOGV("createSyncEvent() invalid event %d", event->type());
event.clear();
}
return event;
}
// ----------------------------------------------------------------------------
// Effect management
// ----------------------------------------------------------------------------
status_t AudioFlinger::queryNumberEffects(uint32_t *numEffects) const
{
Mutex::Autolock _l(mLock);
return EffectQueryNumberEffects(numEffects);
}
status_t AudioFlinger::queryEffect(uint32_t index, effect_descriptor_t *descriptor) const
{
Mutex::Autolock _l(mLock);
return EffectQueryEffect(index, descriptor);
}
status_t AudioFlinger::getEffectDescriptor(const effect_uuid_t *pUuid,
effect_descriptor_t *descriptor) const
{
Mutex::Autolock _l(mLock);
return EffectGetDescriptor(pUuid, descriptor);
}
sp<IEffect> AudioFlinger::createEffect(pid_t pid,
effect_descriptor_t *pDesc,
const sp<IEffectClient>& effectClient,
int32_t priority,
audio_io_handle_t io,
int sessionId,
status_t *status,
int *id,
int *enabled)
{
status_t lStatus = NO_ERROR;
sp<EffectHandle> handle;
effect_descriptor_t desc;
ALOGV("createEffect pid %d, effectClient %p, priority %d, sessionId %d, io %d",
pid, effectClient.get(), priority, sessionId, io);
if (pDesc == NULL) {
lStatus = BAD_VALUE;
goto Exit;
}
// check audio settings permission for global effects
if (sessionId == AUDIO_SESSION_OUTPUT_MIX && !settingsAllowed()) {
lStatus = PERMISSION_DENIED;
goto Exit;
}
// Session AUDIO_SESSION_OUTPUT_STAGE is reserved for output stage effects
// that can only be created by audio policy manager (running in same process)
if (sessionId == AUDIO_SESSION_OUTPUT_STAGE && getpid_cached != pid) {
lStatus = PERMISSION_DENIED;
goto Exit;
}
if (io == 0) {
if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
// output must be specified by AudioPolicyManager when using session
// AUDIO_SESSION_OUTPUT_STAGE
lStatus = BAD_VALUE;
goto Exit;
} else if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
// if the output returned by getOutputForEffect() is removed before we lock the
// mutex below, the call to checkPlaybackThread_l(io) below will detect it
// and we will exit safely
io = AudioSystem::getOutputForEffect(&desc);
}
}
{
Mutex::Autolock _l(mLock);
if (!EffectIsNullUuid(&pDesc->uuid)) {
// if uuid is specified, request effect descriptor
lStatus = EffectGetDescriptor(&pDesc->uuid, &desc);
if (lStatus < 0) {
ALOGW("createEffect() error %d from EffectGetDescriptor", lStatus);
goto Exit;
}
} else {
// if uuid is not specified, look for an available implementation
// of the required type in effect factory
if (EffectIsNullUuid(&pDesc->type)) {
ALOGW("createEffect() no effect type");
lStatus = BAD_VALUE;
goto Exit;
}
uint32_t numEffects = 0;
effect_descriptor_t d;
d.flags = 0; // prevent compiler warning
bool found = false;
lStatus = EffectQueryNumberEffects(&numEffects);
if (lStatus < 0) {
ALOGW("createEffect() error %d from EffectQueryNumberEffects", lStatus);
goto Exit;
}
for (uint32_t i = 0; i < numEffects; i++) {
lStatus = EffectQueryEffect(i, &desc);
if (lStatus < 0) {
ALOGW("createEffect() error %d from EffectQueryEffect", lStatus);
continue;
}
if (memcmp(&desc.type, &pDesc->type, sizeof(effect_uuid_t)) == 0) {
// If matching type found save effect descriptor. If the session is
// 0 and the effect is not auxiliary, continue enumeration in case
// an auxiliary version of this effect type is available
found = true;
d = desc;
if (sessionId != AUDIO_SESSION_OUTPUT_MIX ||
(desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
break;
}
}
}
if (!found) {
lStatus = BAD_VALUE;
ALOGW("createEffect() effect not found");
goto Exit;
}
// For same effect type, chose auxiliary version over insert version if
// connect to output mix (Compliance to OpenSL ES)
if (sessionId == AUDIO_SESSION_OUTPUT_MIX &&
(d.flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_AUXILIARY) {
desc = d;
}
}
// Do not allow auxiliary effects on a session different from 0 (output mix)
if (sessionId != AUDIO_SESSION_OUTPUT_MIX &&
(desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
lStatus = INVALID_OPERATION;
goto Exit;
}
// check recording permission for visualizer
if ((memcmp(&desc.type, SL_IID_VISUALIZATION, sizeof(effect_uuid_t)) == 0) &&
!recordingAllowed()) {
lStatus = PERMISSION_DENIED;
goto Exit;
}
// return effect descriptor
*pDesc = desc;
// If output is not specified try to find a matching audio session ID in one of the
// output threads.
// If output is 0 here, sessionId is neither SESSION_OUTPUT_STAGE nor SESSION_OUTPUT_MIX
// because of code checking output when entering the function.
// Note: io is never 0 when creating an effect on an input
if (io == 0) {
// look for the thread where the specified audio session is present
for (size_t i = 0; i < mPlaybackThreads.size(); i++) {
if (mPlaybackThreads.valueAt(i)->hasAudioSession(sessionId) != 0) {
io = mPlaybackThreads.keyAt(i);
break;
}
}
if (io == 0) {
for (size_t i = 0; i < mRecordThreads.size(); i++) {
if (mRecordThreads.valueAt(i)->hasAudioSession(sessionId) != 0) {
io = mRecordThreads.keyAt(i);
break;
}
}
}
// If no output thread contains the requested session ID, default to
// first output. The effect chain will be moved to the correct output
// thread when a track with the same session ID is created
if (io == 0 && mPlaybackThreads.size()) {
io = mPlaybackThreads.keyAt(0);
}
ALOGV("createEffect() got io %d for effect %s", io, desc.name);
}
ThreadBase *thread = checkRecordThread_l(io);
if (thread == NULL) {
thread = checkPlaybackThread_l(io);
if (thread == NULL) {
ALOGE("createEffect() unknown output thread");
lStatus = BAD_VALUE;
goto Exit;
}
}
sp<Client> client = registerPid_l(pid);
// create effect on selected output thread
handle = thread->createEffect_l(client, effectClient, priority, sessionId,
&desc, enabled, &lStatus);
if (handle != 0 && id != NULL) {
*id = handle->id();
}
}
Exit:
if (status != NULL) {
*status = lStatus;
}
return handle;
}
status_t AudioFlinger::moveEffects(int sessionId, audio_io_handle_t srcOutput,
audio_io_handle_t dstOutput)
{
ALOGV("moveEffects() session %d, srcOutput %d, dstOutput %d",
sessionId, srcOutput, dstOutput);
Mutex::Autolock _l(mLock);
if (srcOutput == dstOutput) {
ALOGW("moveEffects() same dst and src outputs %d", dstOutput);
return NO_ERROR;
}
PlaybackThread *srcThread = checkPlaybackThread_l(srcOutput);
if (srcThread == NULL) {
ALOGW("moveEffects() bad srcOutput %d", srcOutput);
return BAD_VALUE;
}
PlaybackThread *dstThread = checkPlaybackThread_l(dstOutput);
if (dstThread == NULL) {
ALOGW("moveEffects() bad dstOutput %d", dstOutput);
return BAD_VALUE;
}
Mutex::Autolock _dl(dstThread->mLock);
Mutex::Autolock _sl(srcThread->mLock);
moveEffectChain_l(sessionId, srcThread, dstThread, false);
return NO_ERROR;
}
// moveEffectChain_l must be called with both srcThread and dstThread mLocks held
status_t AudioFlinger::moveEffectChain_l(int sessionId,
AudioFlinger::PlaybackThread *srcThread,
AudioFlinger::PlaybackThread *dstThread,
bool reRegister)
{
ALOGV("moveEffectChain_l() session %d from thread %p to thread %p",
sessionId, srcThread, dstThread);
sp<EffectChain> chain = srcThread->getEffectChain_l(sessionId);
if (chain == 0) {
ALOGW("moveEffectChain_l() effect chain for session %d not on source thread %p",
sessionId, srcThread);
return INVALID_OPERATION;
}
// remove chain first. This is useful only if reconfiguring effect chain on same output thread,
// so that a new chain is created with correct parameters when first effect is added. This is
// otherwise unnecessary as removeEffect_l() will remove the chain when last effect is
// removed.
srcThread->removeEffectChain_l(chain);
// transfer all effects one by one so that new effect chain is created on new thread with
// correct buffer sizes and audio parameters and effect engines reconfigured accordingly
audio_io_handle_t dstOutput = dstThread->id();
sp<EffectChain> dstChain;
uint32_t strategy = 0; // prevent compiler warning
sp<EffectModule> effect = chain->getEffectFromId_l(0);
while (effect != 0) {
srcThread->removeEffect_l(effect);
dstThread->addEffect_l(effect);
// removeEffect_l() has stopped the effect if it was active so it must be restarted
if (effect->state() == EffectModule::ACTIVE ||
effect->state() == EffectModule::STOPPING) {
effect->start();
}
// if the move request is not received from audio policy manager, the effect must be
// re-registered with the new strategy and output
if (dstChain == 0) {
dstChain = effect->chain().promote();
if (dstChain == 0) {
ALOGW("moveEffectChain_l() cannot get chain from effect %p", effect.get());
srcThread->addEffect_l(effect);
return NO_INIT;
}
strategy = dstChain->strategy();
}
if (reRegister) {
AudioSystem::unregisterEffect(effect->id());
AudioSystem::registerEffect(&effect->desc(),
dstOutput,
strategy,
sessionId,
effect->id());
}
effect = chain->getEffectFromId_l(0);
}
return NO_ERROR;
}
// PlaybackThread::createEffect_l() must be called with AudioFlinger::mLock held
sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
const sp<AudioFlinger::Client>& client,
const sp<IEffectClient>& effectClient,
int32_t priority,
int sessionId,
effect_descriptor_t *desc,
int *enabled,
status_t *status
)
{
sp<EffectModule> effect;
sp<EffectHandle> handle;
status_t lStatus;
sp<EffectChain> chain;
bool chainCreated = false;
bool effectCreated = false;
bool effectRegistered = false;
lStatus = initCheck();
if (lStatus != NO_ERROR) {
ALOGW("createEffect_l() Audio driver not initialized.");
goto Exit;
}
// Do not allow effects with session ID 0 on direct output or duplicating threads
// TODO: add rule for hw accelerated effects on direct outputs with non PCM format
if (sessionId == AUDIO_SESSION_OUTPUT_MIX && mType != MIXER) {
ALOGW("createEffect_l() Cannot add auxiliary effect %s to session %d",
desc->name, sessionId);
lStatus = BAD_VALUE;
goto Exit;
}
// Only Pre processor effects are allowed on input threads and only on input threads
if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
desc->name, desc->flags, mType);
lStatus = BAD_VALUE;
goto Exit;
}
ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
{ // scope for mLock
Mutex::Autolock _l(mLock);
// check for existing effect chain with the requested audio session
chain = getEffectChain_l(sessionId);
if (chain == 0) {
// create a new chain for this session
ALOGV("createEffect_l() new effect chain for session %d", sessionId);
chain = new EffectChain(this, sessionId);
addEffectChain_l(chain);
chain->setStrategy(getStrategyForSession_l(sessionId));
chainCreated = true;
} else {
effect = chain->getEffectFromDesc_l(desc);
}
ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
if (effect == 0) {
int id = mAudioFlinger->nextUniqueId();
// Check CPU and memory usage
lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
if (lStatus != NO_ERROR) {
goto Exit;
}
effectRegistered = true;
// create a new effect module if none present in the chain
effect = new EffectModule(this, chain, desc, id, sessionId);
lStatus = effect->status();
if (lStatus != NO_ERROR) {
goto Exit;
}
lStatus = chain->addEffect_l(effect);
if (lStatus != NO_ERROR) {
goto Exit;
}
effectCreated = true;
effect->setDevice(mOutDevice);
effect->setDevice(mInDevice);
effect->setMode(mAudioFlinger->getMode());
effect->setAudioSource(mAudioSource);
}
// create effect handle and connect it to effect module
handle = new EffectHandle(effect, client, effectClient, priority);
lStatus = effect->addHandle(handle.get());
if (enabled != NULL) {
*enabled = (int)effect->isEnabled();
}
}
Exit:
if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
Mutex::Autolock _l(mLock);
if (effectCreated) {
chain->removeEffect_l(effect);
}
if (effectRegistered) {
AudioSystem::unregisterEffect(effect->id());
}
if (chainCreated) {
removeEffectChain_l(chain);
}
handle.clear();
}
if (status != NULL) {
*status = lStatus;
}
return handle;
}
sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
{
Mutex::Autolock _l(mLock);
return getEffect_l(sessionId, effectId);
}
sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
{
sp<EffectChain> chain = getEffectChain_l(sessionId);
return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
}
// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
// PlaybackThread::mLock held
status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
{
// check for existing effect chain with the requested audio session
int sessionId = effect->sessionId();
sp<EffectChain> chain = getEffectChain_l(sessionId);
bool chainCreated = false;
if (chain == 0) {
// create a new chain for this session
ALOGV("addEffect_l() new effect chain for session %d", sessionId);
chain = new EffectChain(this, sessionId);
addEffectChain_l(chain);
chain->setStrategy(getStrategyForSession_l(sessionId));
chainCreated = true;
}
ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
if (chain->getEffectFromId_l(effect->id()) != 0) {
ALOGW("addEffect_l() %p effect %s already present in chain %p",
this, effect->desc().name, chain.get());
return BAD_VALUE;
}
status_t status = chain->addEffect_l(effect);
if (status != NO_ERROR) {
if (chainCreated) {
removeEffectChain_l(chain);
}
return status;
}
effect->setDevice(mOutDevice);
effect->setDevice(mInDevice);
effect->setMode(mAudioFlinger->getMode());
effect->setAudioSource(mAudioSource);
return NO_ERROR;
}
void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
ALOGV("removeEffect_l() %p effect %p", this, effect.get());
effect_descriptor_t desc = effect->desc();
if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
detachAuxEffect_l(effect->id());
}
sp<EffectChain> chain = effect->chain().promote();
if (chain != 0) {
// remove effect chain if removing last effect
if (chain->removeEffect_l(effect) == 0) {
removeEffectChain_l(chain);
}
} else {
ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
}
}
void AudioFlinger::ThreadBase::lockEffectChains_l(
Vector< sp<AudioFlinger::EffectChain> >& effectChains)
{
effectChains = mEffectChains;
for (size_t i = 0; i < mEffectChains.size(); i++) {
mEffectChains[i]->lock();
}
}
void AudioFlinger::ThreadBase::unlockEffectChains(
const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
{
for (size_t i = 0; i < effectChains.size(); i++) {
effectChains[i]->unlock();
}
}
sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
{
Mutex::Autolock _l(mLock);
return getEffectChain_l(sessionId);
}
sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
{
size_t size = mEffectChains.size();
for (size_t i = 0; i < size; i++) {
if (mEffectChains[i]->sessionId() == sessionId) {
return mEffectChains[i];
}
}
return 0;
}
void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
{
Mutex::Autolock _l(mLock);
size_t size = mEffectChains.size();
for (size_t i = 0; i < size; i++) {
mEffectChains[i]->setMode_l(mode);
}
}
void AudioFlinger::ThreadBase::disconnectEffect(const sp<EffectModule>& effect,
EffectHandle *handle,
bool unpinIfLast) {
Mutex::Autolock _l(mLock);
ALOGV("disconnectEffect() %p effect %p", this, effect.get());
// delete the effect module if removing last handle on it
if (effect->removeHandle(handle) == 0) {
if (!effect->isPinned() || unpinIfLast) {
removeEffect_l(effect);
AudioSystem::unregisterEffect(effect->id());
}
}
}
status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
{
int session = chain->sessionId();
int16_t *buffer = mMixBuffer;
bool ownsBuffer = false;
ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
if (session > 0) {
// Only one effect chain can be present in direct output thread and it uses
// the mix buffer as input
if (mType != DIRECT) {
size_t numSamples = mNormalFrameCount * mChannelCount;
buffer = new int16_t[numSamples];
memset(buffer, 0, numSamples * sizeof(int16_t));
ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
ownsBuffer = true;
}
// Attach all tracks with same session ID to this chain.
for (size_t i = 0; i < mTracks.size(); ++i) {
sp<Track> track = mTracks[i];
if (session == track->sessionId()) {
ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
buffer);
track->setMainBuffer(buffer);
chain->incTrackCnt();
}
}
// indicate all active tracks in the chain
for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
sp<Track> track = mActiveTracks[i].promote();
if (track == 0) continue;
if (session == track->sessionId()) {
ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
chain->incActiveTrackCnt();
}
}
}
chain->setInBuffer(buffer, ownsBuffer);
chain->setOutBuffer(mMixBuffer);
// Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
// chains list in order to be processed last as it contains output stage effects
// Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
// session AUDIO_SESSION_OUTPUT_STAGE to be processed
// after track specific effects and before output stage
// It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
// that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
// Effect chain for other sessions are inserted at beginning of effect
// chains list to be processed before output mix effects. Relative order between other
// sessions is not important
size_t size = mEffectChains.size();
size_t i = 0;
for (i = 0; i < size; i++) {
if (mEffectChains[i]->sessionId() < session) break;
}
mEffectChains.insertAt(chain, i);
checkSuspendOnAddEffectChain_l(chain);
return NO_ERROR;
}
size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
{
int session = chain->sessionId();
ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
for (size_t i = 0; i < mEffectChains.size(); i++) {
if (chain == mEffectChains[i]) {
mEffectChains.removeAt(i);
// detach all active tracks from the chain
for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
sp<Track> track = mActiveTracks[i].promote();
if (track == 0) continue;
if (session == track->sessionId()) {
ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
chain.get(), session);
chain->decActiveTrackCnt();
}
}
// detach all tracks with same session ID from this chain
for (size_t i = 0; i < mTracks.size(); ++i) {
sp<Track> track = mTracks[i];
if (session == track->sessionId()) {
track->setMainBuffer(mMixBuffer);
chain->decTrackCnt();
}
}
break;
}
}
return mEffectChains.size();
}
status_t AudioFlinger::PlaybackThread::attachAuxEffect(
const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
{
Mutex::Autolock _l(mLock);
return attachAuxEffect_l(track, EffectId);
}
status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
{
status_t status = NO_ERROR;
if (EffectId == 0) {
track->setAuxBuffer(0, NULL);
} else {
// Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
if (effect != 0) {
if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
} else {
status = INVALID_OPERATION;
}
} else {
status = BAD_VALUE;
}
}
return status;
}
void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
{
for (size_t i = 0; i < mTracks.size(); ++i) {
sp<Track> track = mTracks[i];
if (track->auxEffectId() == effectId) {
attachAuxEffect_l(track, 0);
}
}
}
status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
{
// only one chain per input thread
if (mEffectChains.size() != 0) {
return INVALID_OPERATION;
}
ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
chain->setInBuffer(NULL);
chain->setOutBuffer(NULL);
checkSuspendOnAddEffectChain_l(chain);
mEffectChains.add(chain);
return NO_ERROR;
}
size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
{
ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
ALOGW_IF(mEffectChains.size() != 1,
"removeEffectChain_l() %p invalid chain size %d on thread %p",
chain.get(), mEffectChains.size(), this);
if (mEffectChains.size() == 1) {
mEffectChains.removeAt(0);
}
return 0;
}
// ----------------------------------------------------------------------------
// EffectModule implementation
// ----------------------------------------------------------------------------
#undef LOG_TAG
#define LOG_TAG "AudioFlinger::EffectModule"
AudioFlinger::EffectModule::EffectModule(ThreadBase *thread,
const wp<AudioFlinger::EffectChain>& chain,
effect_descriptor_t *desc,
int id,
int sessionId)
: mPinned(sessionId > AUDIO_SESSION_OUTPUT_MIX),
mThread(thread), mChain(chain), mId(id), mSessionId(sessionId),
mDescriptor(*desc),
// mConfig is set by configure() and not used before then
mEffectInterface(NULL),
mStatus(NO_INIT), mState(IDLE),
// mMaxDisableWaitCnt is set by configure() and not used before then
// mDisableWaitCnt is set by process() and updateState() and not used before then
mSuspended(false)
{
ALOGV("Constructor %p", this);
int lStatus;
// create effect engine from effect factory
mStatus = EffectCreate(&desc->uuid, sessionId, thread->id(), &mEffectInterface);
if (mStatus != NO_ERROR) {
return;
}
lStatus = init();
if (lStatus < 0) {
mStatus = lStatus;
goto Error;
}
ALOGV("Constructor success name %s, Interface %p", mDescriptor.name, mEffectInterface);
return;
Error:
EffectRelease(mEffectInterface);
mEffectInterface = NULL;
ALOGV("Constructor Error %d", mStatus);
}
AudioFlinger::EffectModule::~EffectModule()
{
ALOGV("Destructor %p", this);
if (mEffectInterface != NULL) {
if ((mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC ||
(mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
audio_stream_t *stream = thread->stream();
if (stream != NULL) {
stream->remove_audio_effect(stream, mEffectInterface);
}
}
}
// release effect engine
EffectRelease(mEffectInterface);
}
}
status_t AudioFlinger::EffectModule::addHandle(EffectHandle *handle)
{
status_t status;
Mutex::Autolock _l(mLock);
int priority = handle->priority();
size_t size = mHandles.size();
EffectHandle *controlHandle = NULL;
size_t i;
for (i = 0; i < size; i++) {
EffectHandle *h = mHandles[i];
if (h == NULL || h->destroyed_l()) continue;
// first non destroyed handle is considered in control
if (controlHandle == NULL)
controlHandle = h;
if (h->priority() <= priority) break;
}
// if inserted in first place, move effect control from previous owner to this handle
if (i == 0) {
bool enabled = false;
if (controlHandle != NULL) {
enabled = controlHandle->enabled();
controlHandle->setControl(false/*hasControl*/, true /*signal*/, enabled /*enabled*/);
}
handle->setControl(true /*hasControl*/, false /*signal*/, enabled /*enabled*/);
status = NO_ERROR;
} else {
status = ALREADY_EXISTS;
}
ALOGV("addHandle() %p added handle %p in position %d", this, handle, i);
mHandles.insertAt(handle, i);
return status;
}
size_t AudioFlinger::EffectModule::removeHandle(EffectHandle *handle)
{
Mutex::Autolock _l(mLock);
size_t size = mHandles.size();
size_t i;
for (i = 0; i < size; i++) {
if (mHandles[i] == handle) break;
}
if (i == size) {
return size;
}
ALOGV("removeHandle() %p removed handle %p in position %d", this, handle, i);
mHandles.removeAt(i);
// if removed from first place, move effect control from this handle to next in line
if (i == 0) {
EffectHandle *h = controlHandle_l();
if (h != NULL) {
h->setControl(true /*hasControl*/, true /*signal*/ , handle->enabled() /*enabled*/);
}
}
// Prevent calls to process() and other functions on effect interface from now on.
// The effect engine will be released by the destructor when the last strong reference on
// this object is released which can happen after next process is called.
if (mHandles.size() == 0 && !mPinned) {
mState = DESTROYED;
}
return mHandles.size();
}
// must be called with EffectModule::mLock held
AudioFlinger::EffectHandle *AudioFlinger::EffectModule::controlHandle_l()
{
// the first valid handle in the list has control over the module
for (size_t i = 0; i < mHandles.size(); i++) {
EffectHandle *h = mHandles[i];
if (h != NULL && !h->destroyed_l()) {
return h;
}
}
return NULL;
}
size_t AudioFlinger::EffectModule::disconnect(EffectHandle *handle, bool unpinIfLast)
{
ALOGV("disconnect() %p handle %p", this, handle);
// keep a strong reference on this EffectModule to avoid calling the
// destructor before we exit
sp<EffectModule> keep(this);
{
sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
thread->disconnectEffect(keep, handle, unpinIfLast);
}
}
return mHandles.size();
}
void AudioFlinger::EffectModule::updateState() {
Mutex::Autolock _l(mLock);
switch (mState) {
case RESTART:
reset_l();
// FALL THROUGH
case STARTING:
// clear auxiliary effect input buffer for next accumulation
if ((mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
memset(mConfig.inputCfg.buffer.raw,
0,
mConfig.inputCfg.buffer.frameCount*sizeof(int32_t));
}
start_l();
mState = ACTIVE;
break;
case STOPPING:
stop_l();
mDisableWaitCnt = mMaxDisableWaitCnt;
mState = STOPPED;
break;
case STOPPED:
// mDisableWaitCnt is forced to 1 by process() when the engine indicates the end of the
// turn off sequence.
if (--mDisableWaitCnt == 0) {
reset_l();
mState = IDLE;
}
break;
default: //IDLE , ACTIVE, DESTROYED
break;
}
}
void AudioFlinger::EffectModule::process()
{
Mutex::Autolock _l(mLock);
if (mState == DESTROYED || mEffectInterface == NULL ||
mConfig.inputCfg.buffer.raw == NULL ||
mConfig.outputCfg.buffer.raw == NULL) {
return;
}
if (isProcessEnabled()) {
// do 32 bit to 16 bit conversion for auxiliary effect input buffer
if ((mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
ditherAndClamp(mConfig.inputCfg.buffer.s32,
mConfig.inputCfg.buffer.s32,
mConfig.inputCfg.buffer.frameCount/2);
}
// do the actual processing in the effect engine
int ret = (*mEffectInterface)->process(mEffectInterface,
&mConfig.inputCfg.buffer,
&mConfig.outputCfg.buffer);
// force transition to IDLE state when engine is ready
if (mState == STOPPED && ret == -ENODATA) {
mDisableWaitCnt = 1;
}
// clear auxiliary effect input buffer for next accumulation
if ((mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
memset(mConfig.inputCfg.buffer.raw, 0,
mConfig.inputCfg.buffer.frameCount*sizeof(int32_t));
}
} else if ((mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_INSERT &&
mConfig.inputCfg.buffer.raw != mConfig.outputCfg.buffer.raw) {
// If an insert effect is idle and input buffer is different from output buffer,
// accumulate input onto output
sp<EffectChain> chain = mChain.promote();
if (chain != 0 && chain->activeTrackCnt() != 0) {
size_t frameCnt = mConfig.inputCfg.buffer.frameCount * 2; //always stereo here
int16_t *in = mConfig.inputCfg.buffer.s16;
int16_t *out = mConfig.outputCfg.buffer.s16;
for (size_t i = 0; i < frameCnt; i++) {
out[i] = clamp16((int32_t)out[i] + (int32_t)in[i]);
}
}
}
}
void AudioFlinger::EffectModule::reset_l()
{
if (mEffectInterface == NULL) {
return;
}
(*mEffectInterface)->command(mEffectInterface, EFFECT_CMD_RESET, 0, NULL, 0, NULL);
}
status_t AudioFlinger::EffectModule::configure()
{
if (mEffectInterface == NULL) {
return NO_INIT;
}
sp<ThreadBase> thread = mThread.promote();
if (thread == 0) {
return DEAD_OBJECT;
}
// TODO: handle configuration of effects replacing track process
audio_channel_mask_t channelMask = thread->channelMask();
if ((mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
mConfig.inputCfg.channels = AUDIO_CHANNEL_OUT_MONO;
} else {
mConfig.inputCfg.channels = channelMask;
}
mConfig.outputCfg.channels = channelMask;
mConfig.inputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
mConfig.outputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
mConfig.inputCfg.samplingRate = thread->sampleRate();
mConfig.outputCfg.samplingRate = mConfig.inputCfg.samplingRate;
mConfig.inputCfg.bufferProvider.cookie = NULL;
mConfig.inputCfg.bufferProvider.getBuffer = NULL;
mConfig.inputCfg.bufferProvider.releaseBuffer = NULL;
mConfig.outputCfg.bufferProvider.cookie = NULL;
mConfig.outputCfg.bufferProvider.getBuffer = NULL;
mConfig.outputCfg.bufferProvider.releaseBuffer = NULL;
mConfig.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ;
// Insert effect:
// - in session AUDIO_SESSION_OUTPUT_MIX or AUDIO_SESSION_OUTPUT_STAGE,
// always overwrites output buffer: input buffer == output buffer
// - in other sessions:
// last effect in the chain accumulates in output buffer: input buffer != output buffer
// other effect: overwrites output buffer: input buffer == output buffer
// Auxiliary effect:
// accumulates in output buffer: input buffer != output buffer
// Therefore: accumulate <=> input buffer != output buffer
if (mConfig.inputCfg.buffer.raw != mConfig.outputCfg.buffer.raw) {
mConfig.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_ACCUMULATE;
} else {
mConfig.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_WRITE;
}
mConfig.inputCfg.mask = EFFECT_CONFIG_ALL;
mConfig.outputCfg.mask = EFFECT_CONFIG_ALL;
mConfig.inputCfg.buffer.frameCount = thread->frameCount();
mConfig.outputCfg.buffer.frameCount = mConfig.inputCfg.buffer.frameCount;
ALOGV("configure() %p thread %p buffer %p framecount %d",
this, thread.get(), mConfig.inputCfg.buffer.raw, mConfig.inputCfg.buffer.frameCount);
status_t cmdStatus;
uint32_t size = sizeof(int);
status_t status = (*mEffectInterface)->command(mEffectInterface,
EFFECT_CMD_SET_CONFIG,
sizeof(effect_config_t),
&mConfig,
&size,
&cmdStatus);
if (status == 0) {
status = cmdStatus;
}
if (status == 0 &&
(memcmp(&mDescriptor.type, SL_IID_VISUALIZATION, sizeof(effect_uuid_t)) == 0)) {
uint32_t buf32[sizeof(effect_param_t) / sizeof(uint32_t) + 2];
effect_param_t *p = (effect_param_t *)buf32;
p->psize = sizeof(uint32_t);
p->vsize = sizeof(uint32_t);
size = sizeof(int);
*(int32_t *)p->data = VISUALIZER_PARAM_LATENCY;
uint32_t latency = 0;
PlaybackThread *pbt = thread->mAudioFlinger->checkPlaybackThread_l(thread->mId);
if (pbt != NULL) {
latency = pbt->latency_l();
}
*((int32_t *)p->data + 1)= latency;
(*mEffectInterface)->command(mEffectInterface,
EFFECT_CMD_SET_PARAM,
sizeof(effect_param_t) + 8,
&buf32,
&size,
&cmdStatus);
}
mMaxDisableWaitCnt = (MAX_DISABLE_TIME_MS * mConfig.outputCfg.samplingRate) /
(1000 * mConfig.outputCfg.buffer.frameCount);
return status;
}
status_t AudioFlinger::EffectModule::init()
{
Mutex::Autolock _l(mLock);
if (mEffectInterface == NULL) {
return NO_INIT;
}
status_t cmdStatus;
uint32_t size = sizeof(status_t);
status_t status = (*mEffectInterface)->command(mEffectInterface,
EFFECT_CMD_INIT,
0,
NULL,
&size,
&cmdStatus);
if (status == 0) {
status = cmdStatus;
}
return status;
}
status_t AudioFlinger::EffectModule::start()
{
Mutex::Autolock _l(mLock);
return start_l();
}
status_t AudioFlinger::EffectModule::start_l()
{
if (mEffectInterface == NULL) {
return NO_INIT;
}
status_t cmdStatus;
uint32_t size = sizeof(status_t);
status_t status = (*mEffectInterface)->command(mEffectInterface,
EFFECT_CMD_ENABLE,
0,
NULL,
&size,
&cmdStatus);
if (status == 0) {
status = cmdStatus;
}
if (status == 0 &&
((mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC ||
(mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC)) {
sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
audio_stream_t *stream = thread->stream();
if (stream != NULL) {
stream->add_audio_effect(stream, mEffectInterface);
}
}
}
return status;
}
status_t AudioFlinger::EffectModule::stop()
{
Mutex::Autolock _l(mLock);
return stop_l();
}
status_t AudioFlinger::EffectModule::stop_l()
{
if (mEffectInterface == NULL) {
return NO_INIT;
}
status_t cmdStatus;
uint32_t size = sizeof(status_t);
status_t status = (*mEffectInterface)->command(mEffectInterface,
EFFECT_CMD_DISABLE,
0,
NULL,
&size,
&cmdStatus);
if (status == 0) {
status = cmdStatus;
}
if (status == 0 &&
((mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC ||
(mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC)) {
sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
audio_stream_t *stream = thread->stream();
if (stream != NULL) {
stream->remove_audio_effect(stream, mEffectInterface);
}
}
}
return status;
}
status_t AudioFlinger::EffectModule::command(uint32_t cmdCode,
uint32_t cmdSize,
void *pCmdData,
uint32_t *replySize,
void *pReplyData)
{
Mutex::Autolock _l(mLock);
ALOGVV("command(), cmdCode: %d, mEffectInterface: %p", cmdCode, mEffectInterface);
if (mState == DESTROYED || mEffectInterface == NULL) {
return NO_INIT;
}
status_t status = (*mEffectInterface)->command(mEffectInterface,
cmdCode,
cmdSize,
pCmdData,
replySize,
pReplyData);
if (cmdCode != EFFECT_CMD_GET_PARAM && status == NO_ERROR) {
uint32_t size = (replySize == NULL) ? 0 : *replySize;
for (size_t i = 1; i < mHandles.size(); i++) {
EffectHandle *h = mHandles[i];
if (h != NULL && !h->destroyed_l()) {
h->commandExecuted(cmdCode, cmdSize, pCmdData, size, pReplyData);
}
}
}
return status;
}
status_t AudioFlinger::EffectModule::setEnabled(bool enabled)
{
Mutex::Autolock _l(mLock);
return setEnabled_l(enabled);
}
// must be called with EffectModule::mLock held
status_t AudioFlinger::EffectModule::setEnabled_l(bool enabled)
{
ALOGV("setEnabled %p enabled %d", this, enabled);
if (enabled != isEnabled()) {
status_t status = AudioSystem::setEffectEnabled(mId, enabled);
if (enabled && status != NO_ERROR) {
return status;
}
switch (mState) {
// going from disabled to enabled
case IDLE:
mState = STARTING;
break;
case STOPPED:
mState = RESTART;
break;
case STOPPING:
mState = ACTIVE;
break;
// going from enabled to disabled
case RESTART:
mState = STOPPED;
break;
case STARTING:
mState = IDLE;
break;
case ACTIVE:
mState = STOPPING;
break;
case DESTROYED:
return NO_ERROR; // simply ignore as we are being destroyed
}
for (size_t i = 1; i < mHandles.size(); i++) {
EffectHandle *h = mHandles[i];
if (h != NULL && !h->destroyed_l()) {
h->setEnabled(enabled);
}
}
}
return NO_ERROR;
}
bool AudioFlinger::EffectModule::isEnabled() const
{
switch (mState) {
case RESTART:
case STARTING:
case ACTIVE:
return true;
case IDLE:
case STOPPING:
case STOPPED:
case DESTROYED:
default:
return false;
}
}
bool AudioFlinger::EffectModule::isProcessEnabled() const
{
switch (mState) {
case RESTART:
case ACTIVE:
case STOPPING:
case STOPPED:
return true;
case IDLE:
case STARTING:
case DESTROYED:
default:
return false;
}
}
status_t AudioFlinger::EffectModule::setVolume(uint32_t *left, uint32_t *right, bool controller)
{
Mutex::Autolock _l(mLock);
status_t status = NO_ERROR;
// Send volume indication if EFFECT_FLAG_VOLUME_IND is set and read back altered volume
// if controller flag is set (Note that controller == TRUE => EFFECT_FLAG_VOLUME_CTRL set)
if (isProcessEnabled() &&
((mDescriptor.flags & EFFECT_FLAG_VOLUME_MASK) == EFFECT_FLAG_VOLUME_CTRL ||
(mDescriptor.flags & EFFECT_FLAG_VOLUME_MASK) == EFFECT_FLAG_VOLUME_IND)) {
status_t cmdStatus;
uint32_t volume[2];
uint32_t *pVolume = NULL;
uint32_t size = sizeof(volume);
volume[0] = *left;
volume[1] = *right;
if (controller) {
pVolume = volume;
}
status = (*mEffectInterface)->command(mEffectInterface,
EFFECT_CMD_SET_VOLUME,
size,
volume,
&size,
pVolume);
if (controller && status == NO_ERROR && size == sizeof(volume)) {
*left = volume[0];
*right = volume[1];
}
}
return status;
}
status_t AudioFlinger::EffectModule::setDevice(audio_devices_t device)
{
if (device == AUDIO_DEVICE_NONE) {
return NO_ERROR;
}
Mutex::Autolock _l(mLock);
status_t status = NO_ERROR;
if (device && (mDescriptor.flags & EFFECT_FLAG_DEVICE_MASK) == EFFECT_FLAG_DEVICE_IND) {
status_t cmdStatus;
uint32_t size = sizeof(status_t);
uint32_t cmd = audio_is_output_devices(device) ? EFFECT_CMD_SET_DEVICE :
EFFECT_CMD_SET_INPUT_DEVICE;
status = (*mEffectInterface)->command(mEffectInterface,
cmd,
sizeof(uint32_t),
&device,
&size,
&cmdStatus);
}
return status;
}
status_t AudioFlinger::EffectModule::setMode(audio_mode_t mode)
{
Mutex::Autolock _l(mLock);
status_t status = NO_ERROR;
if ((mDescriptor.flags & EFFECT_FLAG_AUDIO_MODE_MASK) == EFFECT_FLAG_AUDIO_MODE_IND) {
status_t cmdStatus;
uint32_t size = sizeof(status_t);
status = (*mEffectInterface)->command(mEffectInterface,
EFFECT_CMD_SET_AUDIO_MODE,
sizeof(audio_mode_t),
&mode,
&size,
&cmdStatus);
if (status == NO_ERROR) {
status = cmdStatus;
}
}
return status;
}
status_t AudioFlinger::EffectModule::setAudioSource(audio_source_t source)
{
Mutex::Autolock _l(mLock);
status_t status = NO_ERROR;
if ((mDescriptor.flags & EFFECT_FLAG_AUDIO_SOURCE_MASK) == EFFECT_FLAG_AUDIO_SOURCE_IND) {
uint32_t size = 0;
status = (*mEffectInterface)->command(mEffectInterface,
EFFECT_CMD_SET_AUDIO_SOURCE,
sizeof(audio_source_t),
&source,
&size,
NULL);
}
return status;
}
void AudioFlinger::EffectModule::setSuspended(bool suspended)
{
Mutex::Autolock _l(mLock);
mSuspended = suspended;
}
bool AudioFlinger::EffectModule::suspended() const
{
Mutex::Autolock _l(mLock);
return mSuspended;
}
bool AudioFlinger::EffectModule::purgeHandles()
{
bool enabled = false;
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mHandles.size(); i++) {
EffectHandle *handle = mHandles[i];
if (handle != NULL && !handle->destroyed_l()) {
handle->effect().clear();
if (handle->hasControl()) {
enabled = handle->enabled();
}
}
}
return enabled;
}
void AudioFlinger::EffectModule::dump(int fd, const Vector<String16>& args)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
snprintf(buffer, SIZE, "\tEffect ID %d:\n", mId);
result.append(buffer);
bool locked = tryLock(mLock);
// failed to lock - AudioFlinger is probably deadlocked
if (!locked) {
result.append("\t\tCould not lock Fx mutex:\n");
}
result.append("\t\tSession Status State Engine:\n");
snprintf(buffer, SIZE, "\t\t%05d %03d %03d 0x%08x\n",
mSessionId, mStatus, mState, (uint32_t)mEffectInterface);
result.append(buffer);
result.append("\t\tDescriptor:\n");
snprintf(buffer, SIZE, "\t\t- UUID: %08X-%04X-%04X-%04X-%02X%02X%02X%02X%02X%02X\n",
mDescriptor.uuid.timeLow, mDescriptor.uuid.timeMid, mDescriptor.uuid.timeHiAndVersion,
mDescriptor.uuid.clockSeq, mDescriptor.uuid.node[0], mDescriptor.uuid.node[1],
mDescriptor.uuid.node[2],
mDescriptor.uuid.node[3],mDescriptor.uuid.node[4],mDescriptor.uuid.node[5]);
result.append(buffer);
snprintf(buffer, SIZE, "\t\t- TYPE: %08X-%04X-%04X-%04X-%02X%02X%02X%02X%02X%02X\n",
mDescriptor.type.timeLow, mDescriptor.type.timeMid,
mDescriptor.type.timeHiAndVersion,
mDescriptor.type.clockSeq, mDescriptor.type.node[0], mDescriptor.type.node[1],
mDescriptor.type.node[2],
mDescriptor.type.node[3],mDescriptor.type.node[4],mDescriptor.type.node[5]);
result.append(buffer);
snprintf(buffer, SIZE, "\t\t- apiVersion: %08X\n\t\t- flags: %08X\n",
mDescriptor.apiVersion,
mDescriptor.flags);
result.append(buffer);
snprintf(buffer, SIZE, "\t\t- name: %s\n",
mDescriptor.name);
result.append(buffer);
snprintf(buffer, SIZE, "\t\t- implementor: %s\n",
mDescriptor.implementor);
result.append(buffer);
result.append("\t\t- Input configuration:\n");
result.append("\t\t\tBuffer Frames Smp rate Channels Format\n");
snprintf(buffer, SIZE, "\t\t\t0x%08x %05d %05d %08x %d\n",
(uint32_t)mConfig.inputCfg.buffer.raw,
mConfig.inputCfg.buffer.frameCount,
mConfig.inputCfg.samplingRate,
mConfig.inputCfg.channels,
mConfig.inputCfg.format);
result.append(buffer);
result.append("\t\t- Output configuration:\n");
result.append("\t\t\tBuffer Frames Smp rate Channels Format\n");
snprintf(buffer, SIZE, "\t\t\t0x%08x %05d %05d %08x %d\n",
(uint32_t)mConfig.outputCfg.buffer.raw,
mConfig.outputCfg.buffer.frameCount,
mConfig.outputCfg.samplingRate,
mConfig.outputCfg.channels,
mConfig.outputCfg.format);
result.append(buffer);
snprintf(buffer, SIZE, "\t\t%d Clients:\n", mHandles.size());
result.append(buffer);
result.append("\t\t\tPid Priority Ctrl Locked client server\n");
for (size_t i = 0; i < mHandles.size(); ++i) {
EffectHandle *handle = mHandles[i];
if (handle != NULL && !handle->destroyed_l()) {
handle->dump(buffer, SIZE);
result.append(buffer);
}
}
result.append("\n");
write(fd, result.string(), result.length());
if (locked) {
mLock.unlock();
}
}
// ----------------------------------------------------------------------------
// EffectHandle implementation
// ----------------------------------------------------------------------------
#undef LOG_TAG
#define LOG_TAG "AudioFlinger::EffectHandle"
AudioFlinger::EffectHandle::EffectHandle(const sp<EffectModule>& effect,
const sp<AudioFlinger::Client>& client,
const sp<IEffectClient>& effectClient,
int32_t priority)
: BnEffect(),
mEffect(effect), mEffectClient(effectClient), mClient(client), mCblk(NULL),
mPriority(priority), mHasControl(false), mEnabled(false), mDestroyed(false)
{
ALOGV("constructor %p", this);
if (client == 0) {
return;
}
int bufOffset = ((sizeof(effect_param_cblk_t) - 1) / sizeof(int) + 1) * sizeof(int);
mCblkMemory = client->heap()->allocate(EFFECT_PARAM_BUFFER_SIZE + bufOffset);
if (mCblkMemory != 0) {
mCblk = static_cast<effect_param_cblk_t *>(mCblkMemory->pointer());
if (mCblk != NULL) {
new(mCblk) effect_param_cblk_t();
mBuffer = (uint8_t *)mCblk + bufOffset;
}
} else {
ALOGE("not enough memory for Effect size=%u", EFFECT_PARAM_BUFFER_SIZE +
sizeof(effect_param_cblk_t));
return;
}
}
AudioFlinger::EffectHandle::~EffectHandle()
{
ALOGV("Destructor %p", this);
if (mEffect == 0) {
mDestroyed = true;
return;
}
mEffect->lock();
mDestroyed = true;
mEffect->unlock();
disconnect(false);
}
status_t AudioFlinger::EffectHandle::enable()
{
ALOGV("enable %p", this);
if (!mHasControl) return INVALID_OPERATION;
if (mEffect == 0) return DEAD_OBJECT;
if (mEnabled) {
return NO_ERROR;
}
mEnabled = true;
sp<ThreadBase> thread = mEffect->thread().promote();
if (thread != 0) {
thread->checkSuspendOnEffectEnabled(mEffect, true, mEffect->sessionId());
}
// checkSuspendOnEffectEnabled() can suspend this same effect when enabled
if (mEffect->suspended()) {
return NO_ERROR;
}
status_t status = mEffect->setEnabled(true);
if (status != NO_ERROR) {
if (thread != 0) {
thread->checkSuspendOnEffectEnabled(mEffect, false, mEffect->sessionId());
}
mEnabled = false;
}
return status;
}
status_t AudioFlinger::EffectHandle::disable()
{
ALOGV("disable %p", this);
if (!mHasControl) return INVALID_OPERATION;
if (mEffect == 0) return DEAD_OBJECT;
if (!mEnabled) {
return NO_ERROR;
}
mEnabled = false;
if (mEffect->suspended()) {
return NO_ERROR;
}
status_t status = mEffect->setEnabled(false);
sp<ThreadBase> thread = mEffect->thread().promote();
if (thread != 0) {
thread->checkSuspendOnEffectEnabled(mEffect, false, mEffect->sessionId());
}
return status;
}
void AudioFlinger::EffectHandle::disconnect()
{
disconnect(true);
}
void AudioFlinger::EffectHandle::disconnect(bool unpinIfLast)
{
ALOGV("disconnect(%s)", unpinIfLast ? "true" : "false");
if (mEffect == 0) {
return;
}
// restore suspended effects if the disconnected handle was enabled and the last one.
if ((mEffect->disconnect(this, unpinIfLast) == 0) && mEnabled) {
sp<ThreadBase> thread = mEffect->thread().promote();
if (thread != 0) {
thread->checkSuspendOnEffectEnabled(mEffect, false, mEffect->sessionId());
}
}
// release sp on module => module destructor can be called now
mEffect.clear();
if (mClient != 0) {
if (mCblk != NULL) {
// unlike ~TrackBase(), mCblk is never a local new, so don't delete
mCblk->~effect_param_cblk_t(); // destroy our shared-structure.
}
mCblkMemory.clear(); // free the shared memory before releasing the heap it belongs to
// Client destructor must run with AudioFlinger mutex locked
Mutex::Autolock _l(mClient->audioFlinger()->mLock);
mClient.clear();
}
}
status_t AudioFlinger::EffectHandle::command(uint32_t cmdCode,
uint32_t cmdSize,
void *pCmdData,
uint32_t *replySize,
void *pReplyData)
{
ALOGVV("command(), cmdCode: %d, mHasControl: %d, mEffect: %p",
cmdCode, mHasControl, (mEffect == 0) ? 0 : mEffect.get());
// only get parameter command is permitted for applications not controlling the effect
if (!mHasControl && cmdCode != EFFECT_CMD_GET_PARAM) {
return INVALID_OPERATION;
}
if (mEffect == 0) return DEAD_OBJECT;
if (mClient == 0) return INVALID_OPERATION;
// handle commands that are not forwarded transparently to effect engine
if (cmdCode == EFFECT_CMD_SET_PARAM_COMMIT) {
// No need to trylock() here as this function is executed in the binder thread serving a
// particular client process: no risk to block the whole media server process or mixer
// threads if we are stuck here
Mutex::Autolock _l(mCblk->lock);
if (mCblk->clientIndex > EFFECT_PARAM_BUFFER_SIZE ||
mCblk->serverIndex > EFFECT_PARAM_BUFFER_SIZE) {
mCblk->serverIndex = 0;
mCblk->clientIndex = 0;
return BAD_VALUE;
}
status_t status = NO_ERROR;
while (mCblk->serverIndex < mCblk->clientIndex) {
int reply;
uint32_t rsize = sizeof(int);
int *p = (int *)(mBuffer + mCblk->serverIndex);
int size = *p++;
if (((uint8_t *)p + size) > mBuffer + mCblk->clientIndex) {
ALOGW("command(): invalid parameter block size");
break;
}
effect_param_t *param = (effect_param_t *)p;
if (param->psize == 0 || param->vsize == 0) {
ALOGW("command(): null parameter or value size");
mCblk->serverIndex += size;
continue;
}
uint32_t psize = sizeof(effect_param_t) +
((param->psize - 1) / sizeof(int) + 1) * sizeof(int) +
param->vsize;
status_t ret = mEffect->command(EFFECT_CMD_SET_PARAM,
psize,
p,
&rsize,
&reply);
// stop at first error encountered
if (ret != NO_ERROR) {
status = ret;
*(int *)pReplyData = reply;
break;
} else if (reply != NO_ERROR) {
*(int *)pReplyData = reply;
break;
}
mCblk->serverIndex += size;
}
mCblk->serverIndex = 0;
mCblk->clientIndex = 0;
return status;
} else if (cmdCode == EFFECT_CMD_ENABLE) {
*(int *)pReplyData = NO_ERROR;
return enable();
} else if (cmdCode == EFFECT_CMD_DISABLE) {
*(int *)pReplyData = NO_ERROR;
return disable();
}
return mEffect->command(cmdCode, cmdSize, pCmdData, replySize, pReplyData);
}
void AudioFlinger::EffectHandle::setControl(bool hasControl, bool signal, bool enabled)
{
ALOGV("setControl %p control %d", this, hasControl);
mHasControl = hasControl;
mEnabled = enabled;
if (signal && mEffectClient != 0) {
mEffectClient->controlStatusChanged(hasControl);
}
}
void AudioFlinger::EffectHandle::commandExecuted(uint32_t cmdCode,
uint32_t cmdSize,
void *pCmdData,
uint32_t replySize,
void *pReplyData)
{
if (mEffectClient != 0) {
mEffectClient->commandExecuted(cmdCode, cmdSize, pCmdData, replySize, pReplyData);
}
}
void AudioFlinger::EffectHandle::setEnabled(bool enabled)
{
if (mEffectClient != 0) {
mEffectClient->enableStatusChanged(enabled);
}
}
status_t AudioFlinger::EffectHandle::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
return BnEffect::onTransact(code, data, reply, flags);
}
void AudioFlinger::EffectHandle::dump(char* buffer, size_t size)
{
bool locked = mCblk != NULL && tryLock(mCblk->lock);
snprintf(buffer, size, "\t\t\t%05d %05d %01u %01u %05u %05u\n",
(mClient == 0) ? getpid_cached : mClient->pid(),
mPriority,
mHasControl,
!locked,
mCblk ? mCblk->clientIndex : 0,
mCblk ? mCblk->serverIndex : 0
);
if (locked) {
mCblk->lock.unlock();
}
}
#undef LOG_TAG
#define LOG_TAG "AudioFlinger::EffectChain"
AudioFlinger::EffectChain::EffectChain(ThreadBase *thread,
int sessionId)
: mThread(thread), mSessionId(sessionId), mActiveTrackCnt(0), mTrackCnt(0), mTailBufferCount(0),
mOwnInBuffer(false), mVolumeCtrlIdx(-1), mLeftVolume(UINT_MAX), mRightVolume(UINT_MAX),
mNewLeftVolume(UINT_MAX), mNewRightVolume(UINT_MAX)
{
mStrategy = AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
if (thread == NULL) {
return;
}
mMaxTailBuffers = ((kProcessTailDurationMs * thread->sampleRate()) / 1000) /
thread->frameCount();
}
AudioFlinger::EffectChain::~EffectChain()
{
if (mOwnInBuffer) {
delete mInBuffer;
}
}
// getEffectFromDesc_l() must be called with ThreadBase::mLock held
sp<AudioFlinger::EffectModule> AudioFlinger::EffectChain::getEffectFromDesc_l(
effect_descriptor_t *descriptor)
{
size_t size = mEffects.size();
for (size_t i = 0; i < size; i++) {
if (memcmp(&mEffects[i]->desc().uuid, &descriptor->uuid, sizeof(effect_uuid_t)) == 0) {
return mEffects[i];
}
}
return 0;
}
// getEffectFromId_l() must be called with ThreadBase::mLock held
sp<AudioFlinger::EffectModule> AudioFlinger::EffectChain::getEffectFromId_l(int id)
{
size_t size = mEffects.size();
for (size_t i = 0; i < size; i++) {
// by convention, return first effect if id provided is 0 (0 is never a valid id)
if (id == 0 || mEffects[i]->id() == id) {
return mEffects[i];
}
}
return 0;
}
// getEffectFromType_l() must be called with ThreadBase::mLock held
sp<AudioFlinger::EffectModule> AudioFlinger::EffectChain::getEffectFromType_l(
const effect_uuid_t *type)
{
size_t size = mEffects.size();
for (size_t i = 0; i < size; i++) {
if (memcmp(&mEffects[i]->desc().type, type, sizeof(effect_uuid_t)) == 0) {
return mEffects[i];
}
}
return 0;
}
void AudioFlinger::EffectChain::clearInputBuffer()
{
Mutex::Autolock _l(mLock);
sp<ThreadBase> thread = mThread.promote();
if (thread == 0) {
ALOGW("clearInputBuffer(): cannot promote mixer thread");
return;
}
clearInputBuffer_l(thread);
}
// Must be called with EffectChain::mLock locked
void AudioFlinger::EffectChain::clearInputBuffer_l(sp<ThreadBase> thread)
{
size_t numSamples = thread->frameCount() * thread->channelCount();
memset(mInBuffer, 0, numSamples * sizeof(int16_t));
}
// Must be called with EffectChain::mLock locked
void AudioFlinger::EffectChain::process_l()
{
sp<ThreadBase> thread = mThread.promote();
if (thread == 0) {
ALOGW("process_l(): cannot promote mixer thread");
return;
}
bool isGlobalSession = (mSessionId == AUDIO_SESSION_OUTPUT_MIX) ||
(mSessionId == AUDIO_SESSION_OUTPUT_STAGE);
// always process effects unless no more tracks are on the session and the effect tail
// has been rendered
bool doProcess = true;
if (!isGlobalSession) {
bool tracksOnSession = (trackCnt() != 0);
if (!tracksOnSession && mTailBufferCount == 0) {
doProcess = false;
}
if (activeTrackCnt() == 0) {
// if no track is active and the effect tail has not been rendered,
// the input buffer must be cleared here as the mixer process will not do it
if (tracksOnSession || mTailBufferCount > 0) {
clearInputBuffer_l(thread);
if (mTailBufferCount > 0) {
mTailBufferCount--;
}
}
}
}
size_t size = mEffects.size();
if (doProcess) {
for (size_t i = 0; i < size; i++) {
mEffects[i]->process();
}
}
for (size_t i = 0; i < size; i++) {
mEffects[i]->updateState();
}
}
// addEffect_l() must be called with PlaybackThread::mLock held
status_t AudioFlinger::EffectChain::addEffect_l(const sp<EffectModule>& effect)
{
effect_descriptor_t desc = effect->desc();
uint32_t insertPref = desc.flags & EFFECT_FLAG_INSERT_MASK;
Mutex::Autolock _l(mLock);
effect->setChain(this);
sp<ThreadBase> thread = mThread.promote();
if (thread == 0) {
return NO_INIT;
}
effect->setThread(thread);
if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
// Auxiliary effects are inserted at the beginning of mEffects vector as
// they are processed first and accumulated in chain input buffer
mEffects.insertAt(effect, 0);
// the input buffer for auxiliary effect contains mono samples in
// 32 bit format. This is to avoid saturation in AudoMixer
// accumulation stage. Saturation is done in EffectModule::process() before
// calling the process in effect engine
size_t numSamples = thread->frameCount();
int32_t *buffer = new int32_t[numSamples];
memset(buffer, 0, numSamples * sizeof(int32_t));
effect->setInBuffer((int16_t *)buffer);
// auxiliary effects output samples to chain input buffer for further processing
// by insert effects
effect->setOutBuffer(mInBuffer);
} else {
// Insert effects are inserted at the end of mEffects vector as they are processed
// after track and auxiliary effects.
// Insert effect order as a function of indicated preference:
// if EFFECT_FLAG_INSERT_EXCLUSIVE, insert in first position or reject if
// another effect is present
// else if EFFECT_FLAG_INSERT_FIRST, insert in first position or after the
// last effect claiming first position
// else if EFFECT_FLAG_INSERT_LAST, insert in last position or before the
// first effect claiming last position
// else if EFFECT_FLAG_INSERT_ANY insert after first or before last
// Reject insertion if an effect with EFFECT_FLAG_INSERT_EXCLUSIVE is
// already present
size_t size = mEffects.size();
size_t idx_insert = size;
ssize_t idx_insert_first = -1;
ssize_t idx_insert_last = -1;
for (size_t i = 0; i < size; i++) {
effect_descriptor_t d = mEffects[i]->desc();
uint32_t iMode = d.flags & EFFECT_FLAG_TYPE_MASK;
uint32_t iPref = d.flags & EFFECT_FLAG_INSERT_MASK;
if (iMode == EFFECT_FLAG_TYPE_INSERT) {
// check invalid effect chaining combinations
if (insertPref == EFFECT_FLAG_INSERT_EXCLUSIVE ||
iPref == EFFECT_FLAG_INSERT_EXCLUSIVE) {
ALOGW("addEffect_l() could not insert effect %s: exclusive conflict with %s",
desc.name, d.name);
return INVALID_OPERATION;
}
// remember position of first insert effect and by default
// select this as insert position for new effect
if (idx_insert == size) {
idx_insert = i;
}
// remember position of last insert effect claiming
// first position
if (iPref == EFFECT_FLAG_INSERT_FIRST) {
idx_insert_first = i;
}
// remember position of first insert effect claiming
// last position
if (iPref == EFFECT_FLAG_INSERT_LAST &&
idx_insert_last == -1) {
idx_insert_last = i;
}
}
}
// modify idx_insert from first position if needed
if (insertPref == EFFECT_FLAG_INSERT_LAST) {
if (idx_insert_last != -1) {
idx_insert = idx_insert_last;
} else {
idx_insert = size;
}
} else {
if (idx_insert_first != -1) {
idx_insert = idx_insert_first + 1;
}
}
// always read samples from chain input buffer
effect->setInBuffer(mInBuffer);
// if last effect in the chain, output samples to chain
// output buffer, otherwise to chain input buffer
if (idx_insert == size) {
if (idx_insert != 0) {
mEffects[idx_insert-1]->setOutBuffer(mInBuffer);
mEffects[idx_insert-1]->configure();
}
effect->setOutBuffer(mOutBuffer);
} else {
effect->setOutBuffer(mInBuffer);
}
mEffects.insertAt(effect, idx_insert);
ALOGV("addEffect_l() effect %p, added in chain %p at rank %d", effect.get(), this,
idx_insert);
}
effect->configure();
return NO_ERROR;
}
// removeEffect_l() must be called with PlaybackThread::mLock held
size_t AudioFlinger::EffectChain::removeEffect_l(const sp<EffectModule>& effect)
{
Mutex::Autolock _l(mLock);
size_t size = mEffects.size();
uint32_t type = effect->desc().flags & EFFECT_FLAG_TYPE_MASK;
for (size_t i = 0; i < size; i++) {
if (effect == mEffects[i]) {
// calling stop here will remove pre-processing effect from the audio HAL.
// This is safe as we hold the EffectChain mutex which guarantees that we are not in
// the middle of a read from audio HAL
if (mEffects[i]->state() == EffectModule::ACTIVE ||
mEffects[i]->state() == EffectModule::STOPPING) {
mEffects[i]->stop();
}
if (type == EFFECT_FLAG_TYPE_AUXILIARY) {
delete[] effect->inBuffer();
} else {
if (i == size - 1 && i != 0) {
mEffects[i - 1]->setOutBuffer(mOutBuffer);
mEffects[i - 1]->configure();
}
}
mEffects.removeAt(i);
ALOGV("removeEffect_l() effect %p, removed from chain %p at rank %d", effect.get(),
this, i);
break;
}
}
return mEffects.size();
}
// setDevice_l() must be called with PlaybackThread::mLock held
void AudioFlinger::EffectChain::setDevice_l(audio_devices_t device)
{
size_t size = mEffects.size();
for (size_t i = 0; i < size; i++) {
mEffects[i]->setDevice(device);
}
}
// setMode_l() must be called with PlaybackThread::mLock held
void AudioFlinger::EffectChain::setMode_l(audio_mode_t mode)
{
size_t size = mEffects.size();
for (size_t i = 0; i < size; i++) {
mEffects[i]->setMode(mode);
}
}
// setAudioSource_l() must be called with PlaybackThread::mLock held
void AudioFlinger::EffectChain::setAudioSource_l(audio_source_t source)
{
size_t size = mEffects.size();
for (size_t i = 0; i < size; i++) {
mEffects[i]->setAudioSource(source);
}
}
// setVolume_l() must be called with PlaybackThread::mLock held
bool AudioFlinger::EffectChain::setVolume_l(uint32_t *left, uint32_t *right)
{
uint32_t newLeft = *left;
uint32_t newRight = *right;
bool hasControl = false;
int ctrlIdx = -1;
size_t size = mEffects.size();
// first update volume controller
for (size_t i = size; i > 0; i--) {
if (mEffects[i - 1]->isProcessEnabled() &&
(mEffects[i - 1]->desc().flags & EFFECT_FLAG_VOLUME_MASK) == EFFECT_FLAG_VOLUME_CTRL) {
ctrlIdx = i - 1;
hasControl = true;
break;
}
}
if (ctrlIdx == mVolumeCtrlIdx && *left == mLeftVolume && *right == mRightVolume) {
if (hasControl) {
*left = mNewLeftVolume;
*right = mNewRightVolume;
}
return hasControl;
}
mVolumeCtrlIdx = ctrlIdx;
mLeftVolume = newLeft;
mRightVolume = newRight;
// second get volume update from volume controller
if (ctrlIdx >= 0) {
mEffects[ctrlIdx]->setVolume(&newLeft, &newRight, true);
mNewLeftVolume = newLeft;
mNewRightVolume = newRight;
}
// then indicate volume to all other effects in chain.
// Pass altered volume to effects before volume controller
// and requested volume to effects after controller
uint32_t lVol = newLeft;
uint32_t rVol = newRight;
for (size_t i = 0; i < size; i++) {
if ((int)i == ctrlIdx) continue;
// this also works for ctrlIdx == -1 when there is no volume controller
if ((int)i > ctrlIdx) {
lVol = *left;
rVol = *right;
}
mEffects[i]->setVolume(&lVol, &rVol, false);
}
*left = newLeft;
*right = newRight;
return hasControl;
}
void AudioFlinger::EffectChain::dump(int fd, const Vector<String16>& args)
{
const size_t SIZE = 256;
char buffer[SIZE];
String8 result;
snprintf(buffer, SIZE, "Effects for session %d:\n", mSessionId);
result.append(buffer);
bool locked = tryLock(mLock);
// failed to lock - AudioFlinger is probably deadlocked
if (!locked) {
result.append("\tCould not lock mutex:\n");
}
result.append("\tNum fx In buffer Out buffer Active tracks:\n");
snprintf(buffer, SIZE, "\t%02d 0x%08x 0x%08x %d\n",
mEffects.size(),
(uint32_t)mInBuffer,
(uint32_t)mOutBuffer,
mActiveTrackCnt);
result.append(buffer);
write(fd, result.string(), result.size());
for (size_t i = 0; i < mEffects.size(); ++i) {
sp<EffectModule> effect = mEffects[i];
if (effect != 0) {
effect->dump(fd, args);
}
}
if (locked) {
mLock.unlock();
}
}
// must be called with ThreadBase::mLock held
void AudioFlinger::EffectChain::setEffectSuspended_l(
const effect_uuid_t *type, bool suspend)
{
sp<SuspendedEffectDesc> desc;
// use effect type UUID timelow as key as there is no real risk of identical
// timeLow fields among effect type UUIDs.
ssize_t index = mSuspendedEffects.indexOfKey(type->timeLow);
if (suspend) {
if (index >= 0) {
desc = mSuspendedEffects.valueAt(index);
} else {
desc = new SuspendedEffectDesc();
desc->mType = *type;
mSuspendedEffects.add(type->timeLow, desc);
ALOGV("setEffectSuspended_l() add entry for %08x", type->timeLow);
}
if (desc->mRefCount++ == 0) {
sp<EffectModule> effect = getEffectIfEnabled(type);
if (effect != 0) {
desc->mEffect = effect;
effect->setSuspended(true);
effect->setEnabled(false);
}
}
} else {
if (index < 0) {
return;
}
desc = mSuspendedEffects.valueAt(index);
if (desc->mRefCount <= 0) {
ALOGW("setEffectSuspended_l() restore refcount should not be 0 %d", desc->mRefCount);
desc->mRefCount = 1;
}
if (--desc->mRefCount == 0) {
ALOGV("setEffectSuspended_l() remove entry for %08x", mSuspendedEffects.keyAt(index));
if (desc->mEffect != 0) {
sp<EffectModule> effect = desc->mEffect.promote();
if (effect != 0) {
effect->setSuspended(false);
effect->lock();
EffectHandle *handle = effect->controlHandle_l();
if (handle != NULL && !handle->destroyed_l()) {
effect->setEnabled_l(handle->enabled());
}
effect->unlock();
}
desc->mEffect.clear();
}
mSuspendedEffects.removeItemsAt(index);
}
}
}
// must be called with ThreadBase::mLock held
void AudioFlinger::EffectChain::setEffectSuspendedAll_l(bool suspend)
{
sp<SuspendedEffectDesc> desc;
ssize_t index = mSuspendedEffects.indexOfKey((int)kKeyForSuspendAll);
if (suspend) {
if (index >= 0) {
desc = mSuspendedEffects.valueAt(index);
} else {
desc = new SuspendedEffectDesc();
mSuspendedEffects.add((int)kKeyForSuspendAll, desc);
ALOGV("setEffectSuspendedAll_l() add entry for 0");
}
if (desc->mRefCount++ == 0) {
Vector< sp<EffectModule> > effects;
getSuspendEligibleEffects(effects);
for (size_t i = 0; i < effects.size(); i++) {
setEffectSuspended_l(&effects[i]->desc().type, true);
}
}
} else {
if (index < 0) {
return;
}
desc = mSuspendedEffects.valueAt(index);
if (desc->mRefCount <= 0) {
ALOGW("setEffectSuspendedAll_l() restore refcount should not be 0 %d", desc->mRefCount);
desc->mRefCount = 1;
}
if (--desc->mRefCount == 0) {
Vector<const effect_uuid_t *> types;
for (size_t i = 0; i < mSuspendedEffects.size(); i++) {
if (mSuspendedEffects.keyAt(i) == (int)kKeyForSuspendAll) {
continue;
}
types.add(&mSuspendedEffects.valueAt(i)->mType);
}
for (size_t i = 0; i < types.size(); i++) {
setEffectSuspended_l(types[i], false);
}
ALOGV("setEffectSuspendedAll_l() remove entry for %08x",
mSuspendedEffects.keyAt(index));
mSuspendedEffects.removeItem((int)kKeyForSuspendAll);
}
}
}
// The volume effect is used for automated tests only
#ifndef OPENSL_ES_H_
static const effect_uuid_t SL_IID_VOLUME_ = { 0x09e8ede0, 0xddde, 0x11db, 0xb4f6,
{ 0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b } };
const effect_uuid_t * const SL_IID_VOLUME = &SL_IID_VOLUME_;
#endif //OPENSL_ES_H_
bool AudioFlinger::EffectChain::isEffectEligibleForSuspend(const effect_descriptor_t& desc)
{
// auxiliary effects and visualizer are never suspended on output mix
if ((mSessionId == AUDIO_SESSION_OUTPUT_MIX) &&
(((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) ||
(memcmp(&desc.type, SL_IID_VISUALIZATION, sizeof(effect_uuid_t)) == 0) ||
(memcmp(&desc.type, SL_IID_VOLUME, sizeof(effect_uuid_t)) == 0))) {
return false;
}
return true;
}
void AudioFlinger::EffectChain::getSuspendEligibleEffects(
Vector< sp<AudioFlinger::EffectModule> > &effects)
{
effects.clear();
for (size_t i = 0; i < mEffects.size(); i++) {
if (isEffectEligibleForSuspend(mEffects[i]->desc())) {
effects.add(mEffects[i]);
}
}
}
sp<AudioFlinger::EffectModule> AudioFlinger::EffectChain::getEffectIfEnabled(
const effect_uuid_t *type)
{
sp<EffectModule> effect = getEffectFromType_l(type);
return effect != 0 && effect->isEnabled() ? effect : 0;
}
void AudioFlinger::EffectChain::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
bool enabled)
{
ssize_t index = mSuspendedEffects.indexOfKey(effect->desc().type.timeLow);
if (enabled) {
if (index < 0) {
// if the effect is not suspend check if all effects are suspended
index = mSuspendedEffects.indexOfKey((int)kKeyForSuspendAll);
if (index < 0) {
return;
}
if (!isEffectEligibleForSuspend(effect->desc())) {
return;
}
setEffectSuspended_l(&effect->desc().type, enabled);
index = mSuspendedEffects.indexOfKey(effect->desc().type.timeLow);
if (index < 0) {
ALOGW("checkSuspendOnEffectEnabled() Fx should be suspended here!");
return;
}
}
ALOGV("checkSuspendOnEffectEnabled() enable suspending fx %08x",
effect->desc().type.timeLow);
sp<SuspendedEffectDesc> desc = mSuspendedEffects.valueAt(index);
// if effect is requested to suspended but was not yet enabled, supend it now.
if (desc->mEffect == 0) {
desc->mEffect = effect;
effect->setEnabled(false);
effect->setSuspended(true);
}
} else {
if (index < 0) {
return;
}
ALOGV("checkSuspendOnEffectEnabled() disable restoring fx %08x",
effect->desc().type.timeLow);
sp<SuspendedEffectDesc> desc = mSuspendedEffects.valueAt(index);
desc->mEffect.clear();
effect->setSuspended(false);
}
}
#undef LOG_TAG
#define LOG_TAG "AudioFlinger"
// ----------------------------------------------------------------------------
status_t AudioFlinger::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
return BnAudioFlinger::onTransact(code, data, reply, flags);
}
}; // namespace android