blob: 0398834a87d4ee43bf75ce88357dd9c445a9f610 [file] [log] [blame]
//===- FragmentLinker.cpp -------------------------------------------------===//
//
// The MCLinker Project
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the FragmentLinker class
//
//===----------------------------------------------------------------------===//
#include <mcld/Fragment/FragmentLinker.h>
#include <llvm/Support/Host.h>
#include <llvm/Support/raw_ostream.h>
#include <llvm/Support/Casting.h>
#include <mcld/LinkerConfig.h>
#include <mcld/Module.h>
#include <mcld/MC/MCLDInput.h>
#include <mcld/LD/BranchIslandFactory.h>
#include <mcld/LD/Resolver.h>
#include <mcld/LD/LDContext.h>
#include <mcld/LD/RelocationFactory.h>
#include <mcld/LD/RelocData.h>
#include <mcld/LD/SectionRules.h>
#include <mcld/Support/MemoryRegion.h>
#include <mcld/Support/MemoryArea.h>
#include <mcld/Support/FileHandle.h>
#include <mcld/Support/MsgHandling.h>
#include <mcld/Target/TargetLDBackend.h>
#include <mcld/Fragment/Relocation.h>
using namespace mcld;
//===----------------------------------------------------------------------===//
// FragmentLinker
//===----------------------------------------------------------------------===//
/// Constructor
FragmentLinker::FragmentLinker(const LinkerConfig& pConfig,
Module& pModule,
TargetLDBackend& pBackend)
: m_Config(pConfig),
m_Module(pModule),
m_Backend(pBackend) {
}
/// Destructor
FragmentLinker::~FragmentLinker()
{
}
//===----------------------------------------------------------------------===//
// Symbol Operations
//===----------------------------------------------------------------------===//
/// defineSymbolForcefully - define an output symbol and override it immediately
LDSymbol* FragmentLinker::defineSymbolForcefully(const llvm::StringRef& pName,
bool pIsDyn,
ResolveInfo::Type pType,
ResolveInfo::Desc pDesc,
ResolveInfo::Binding pBinding,
ResolveInfo::SizeType pSize,
LDSymbol::ValueType pValue,
FragmentRef* pFragmentRef,
ResolveInfo::Visibility pVisibility)
{
ResolveInfo* info = m_Module.getNamePool().findInfo(pName);
LDSymbol* output_sym = NULL;
if (NULL == info) {
// the symbol is not in the pool, create a new one.
// create a ResolveInfo
Resolver::Result result;
m_Module.getNamePool().insertSymbol(pName, pIsDyn, pType, pDesc,
pBinding, pSize, pVisibility,
NULL, result);
assert(!result.existent);
// create a output LDSymbol
output_sym = LDSymbol::Create(*result.info);
result.info->setSymPtr(output_sym);
if (shouldForceLocal(*result.info))
m_Module.getSymbolTable().forceLocal(*output_sym);
else
m_Module.getSymbolTable().add(*output_sym);
}
else {
// the symbol is already in the pool, override it
ResolveInfo old_info;
old_info.override(*info);
info->setSource(pIsDyn);
info->setType(pType);
info->setDesc(pDesc);
info->setBinding(pBinding);
info->setVisibility(pVisibility);
info->setIsSymbol(true);
info->setSize(pSize);
output_sym = info->outSymbol();
if (NULL != output_sym)
m_Module.getSymbolTable().arrange(*output_sym, old_info);
else {
// create a output LDSymbol
output_sym = LDSymbol::Create(*info);
info->setSymPtr(output_sym);
m_Module.getSymbolTable().add(*output_sym);
}
}
if (NULL != output_sym) {
output_sym->setFragmentRef(pFragmentRef);
output_sym->setValue(pValue);
}
return output_sym;
}
/// defineSymbolAsRefered - define an output symbol and override it immediately
LDSymbol* FragmentLinker::defineSymbolAsRefered(const llvm::StringRef& pName,
bool pIsDyn,
ResolveInfo::Type pType,
ResolveInfo::Desc pDesc,
ResolveInfo::Binding pBinding,
ResolveInfo::SizeType pSize,
LDSymbol::ValueType pValue,
FragmentRef* pFragmentRef,
ResolveInfo::Visibility pVisibility)
{
ResolveInfo* info = m_Module.getNamePool().findInfo(pName);
if (NULL == info || !(info->isUndef() || info->isDyn())) {
// only undefined symbol and dynamic symbol can make a reference.
return NULL;
}
// the symbol is already in the pool, override it
ResolveInfo old_info;
old_info.override(*info);
info->setSource(pIsDyn);
info->setType(pType);
info->setDesc(pDesc);
info->setBinding(pBinding);
info->setVisibility(pVisibility);
info->setIsSymbol(true);
info->setSize(pSize);
LDSymbol* output_sym = info->outSymbol();
if (NULL != output_sym) {
output_sym->setFragmentRef(pFragmentRef);
output_sym->setValue(pValue);
m_Module.getSymbolTable().arrange(*output_sym, old_info);
}
else {
// create a output LDSymbol
output_sym = LDSymbol::Create(*info);
info->setSymPtr(output_sym);
m_Module.getSymbolTable().add(*output_sym);
}
return output_sym;
}
/// defineAndResolveSymbolForcefully - define an output symbol and resolve it
/// immediately
LDSymbol* FragmentLinker::defineAndResolveSymbolForcefully(const llvm::StringRef& pName,
bool pIsDyn,
ResolveInfo::Type pType,
ResolveInfo::Desc pDesc,
ResolveInfo::Binding pBinding,
ResolveInfo::SizeType pSize,
LDSymbol::ValueType pValue,
FragmentRef* pFragmentRef,
ResolveInfo::Visibility pVisibility)
{
// Result is <info, existent, override>
Resolver::Result result;
ResolveInfo old_info;
m_Module.getNamePool().insertSymbol(pName, pIsDyn, pType, pDesc, pBinding,
pSize, pVisibility,
&old_info, result);
LDSymbol* output_sym = result.info->outSymbol();
bool has_output_sym = (NULL != output_sym);
if (!result.existent || !has_output_sym) {
output_sym = LDSymbol::Create(*result.info);
result.info->setSymPtr(output_sym);
}
if (result.overriden || !has_output_sym) {
output_sym->setFragmentRef(pFragmentRef);
output_sym->setValue(pValue);
}
// After symbol resolution, the visibility is changed to the most restrict.
// arrange the output position
if (shouldForceLocal(*result.info))
m_Module.getSymbolTable().forceLocal(*output_sym);
else if (has_output_sym)
m_Module.getSymbolTable().arrange(*output_sym, old_info);
else
m_Module.getSymbolTable().add(*output_sym);
return output_sym;
}
/// defineAndResolveSymbolAsRefered - define an output symbol and resolve it
/// immediately.
LDSymbol* FragmentLinker::defineAndResolveSymbolAsRefered(const llvm::StringRef& pName,
bool pIsDyn,
ResolveInfo::Type pType,
ResolveInfo::Desc pDesc,
ResolveInfo::Binding pBinding,
ResolveInfo::SizeType pSize,
LDSymbol::ValueType pValue,
FragmentRef* pFragmentRef,
ResolveInfo::Visibility pVisibility)
{
ResolveInfo* info = m_Module.getNamePool().findInfo(pName);
if (NULL == info || !(info->isUndef() || info->isDyn())) {
// only undefined symbol and dynamic symbol can make a reference.
return NULL;
}
return defineAndResolveSymbolForcefully(pName,
pIsDyn,
pType,
pDesc,
pBinding,
pSize,
pValue,
pFragmentRef,
pVisibility);
}
bool FragmentLinker::finalizeSymbols()
{
Module::sym_iterator symbol, symEnd = m_Module.sym_end();
for (symbol = m_Module.sym_begin(); symbol != symEnd; ++symbol) {
if ((*symbol)->resolveInfo()->isAbsolute() ||
(*symbol)->resolveInfo()->type() == ResolveInfo::File) {
// absolute symbols or symbols with function type should have
// zero value
(*symbol)->setValue(0x0);
continue;
}
if ((*symbol)->resolveInfo()->type() == ResolveInfo::ThreadLocal) {
m_Backend.finalizeTLSSymbol(**symbol);
continue;
}
if ((*symbol)->hasFragRef()) {
// set the virtual address of the symbol. If the output file is
// relocatable object file, the section's virtual address becomes zero.
// And the symbol's value become section relative offset.
uint64_t value = (*symbol)->fragRef()->getOutputOffset();
assert(NULL != (*symbol)->fragRef()->frag());
uint64_t addr = (*symbol)->fragRef()->frag()->getParent()->getSection().addr();
(*symbol)->setValue(value + addr);
continue;
}
}
// finialize target-dependent symbols
return m_Backend.finalizeSymbols(*this);
}
bool FragmentLinker::shouldForceLocal(const ResolveInfo& pInfo) const
{
// forced local symbol matches all rules:
// 1. We are not doing incremental linking.
// 2. The symbol is with Hidden or Internal visibility.
// 3. The symbol should be global or weak. Otherwise, local symbol is local.
// 4. The symbol is defined or common
if (LinkerConfig::Object != m_Config.codeGenType() &&
(pInfo.visibility() == ResolveInfo::Hidden ||
pInfo.visibility() == ResolveInfo::Internal) &&
(pInfo.isGlobal() || pInfo.isWeak()) &&
(pInfo.isDefine() || pInfo.isCommon()))
return true;
return false;
}
//===----------------------------------------------------------------------===//
// Relocation Operations
//===----------------------------------------------------------------------===//
bool FragmentLinker::applyRelocations()
{
// when producing relocatables, no need to apply relocation
if (LinkerConfig::Object == m_Config.codeGenType())
return true;
// apply all relocations of all inputs
Module::obj_iterator input, inEnd = m_Module.obj_end();
for (input = m_Module.obj_begin(); input != inEnd; ++input) {
LDContext::sect_iterator rs, rsEnd = (*input)->context()->relocSectEnd();
for (rs = (*input)->context()->relocSectBegin(); rs != rsEnd; ++rs) {
// bypass the reloc section if
// 1. its section kind is changed to Ignore. (The target section is a
// discarded group section.)
// 2. it has no reloc data. (All symbols in the input relocs are in the
// discarded group sections)
if (LDFileFormat::Ignore == (*rs)->kind() || !(*rs)->hasRelocData())
continue;
RelocData::iterator reloc, rEnd = (*rs)->getRelocData()->end();
for (reloc = (*rs)->getRelocData()->begin(); reloc != rEnd; ++reloc) {
Relocation* relocation = llvm::cast<Relocation>(reloc);
relocation->apply(*m_Backend.getRelocator());
} // for all relocations
} // for all relocation section
} // for all inputs
// apply relocations created by relaxation
BranchIslandFactory* br_factory = m_Backend.getBRIslandFactory();
BranchIslandFactory::iterator facIter, facEnd = br_factory->end();
for (facIter = br_factory->begin(); facIter != facEnd; ++facIter) {
BranchIsland& island = *facIter;
BranchIsland::reloc_iterator iter, iterEnd = island.reloc_end();
for (iter = island.reloc_begin(); iter != iterEnd; ++iter)
(*iter)->apply(*m_Backend.getRelocator());
}
return true;
}
void FragmentLinker::syncRelocationResult(MemoryArea& pOutput)
{
if (LinkerConfig::Object != m_Config.codeGenType())
normalSyncRelocationResult(pOutput);
else
partialSyncRelocationResult(pOutput);
return;
}
void FragmentLinker::normalSyncRelocationResult(MemoryArea& pOutput)
{
MemoryRegion* region = pOutput.request(0, pOutput.handler()->size());
uint8_t* data = region->getBuffer();
// sync all relocations of all inputs
Module::obj_iterator input, inEnd = m_Module.obj_end();
for (input = m_Module.obj_begin(); input != inEnd; ++input) {
LDContext::sect_iterator rs, rsEnd = (*input)->context()->relocSectEnd();
for (rs = (*input)->context()->relocSectBegin(); rs != rsEnd; ++rs) {
// bypass the reloc section if
// 1. its section kind is changed to Ignore. (The target section is a
// discarded group section.)
// 2. it has no reloc data. (All symbols in the input relocs are in the
// discarded group sections)
if (LDFileFormat::Ignore == (*rs)->kind() || !(*rs)->hasRelocData())
continue;
RelocData::iterator reloc, rEnd = (*rs)->getRelocData()->end();
for (reloc = (*rs)->getRelocData()->begin(); reloc != rEnd; ++reloc) {
Relocation* relocation = llvm::cast<Relocation>(reloc);
// bypass the relocation with NONE type. This is to avoid overwrite the
// target result by NONE type relocation if there is a place which has
// two relocations to apply to, and one of it is NONE type. The result
// we want is the value of the other relocation result. For example,
// in .exidx, there are usually an R_ARM_NONE and R_ARM_PREL31 apply to
// the same place
if (0x0 == relocation->type())
continue;
writeRelocationResult(*relocation, data);
} // for all relocations
} // for all relocation section
} // for all inputs
// sync relocations created by relaxation
BranchIslandFactory* br_factory = m_Backend.getBRIslandFactory();
BranchIslandFactory::iterator facIter, facEnd = br_factory->end();
for (facIter = br_factory->begin(); facIter != facEnd; ++facIter) {
BranchIsland& island = *facIter;
BranchIsland::reloc_iterator iter, iterEnd = island.reloc_end();
for (iter = island.reloc_begin(); iter != iterEnd; ++iter) {
Relocation* reloc = *iter;
writeRelocationResult(*reloc, data);
}
}
pOutput.clear();
}
void FragmentLinker::partialSyncRelocationResult(MemoryArea& pOutput)
{
MemoryRegion* region = pOutput.request(0, pOutput.handler()->size());
uint8_t* data = region->getBuffer();
// traverse outputs' LDSection to get RelocData
Module::iterator sectIter, sectEnd = m_Module.end();
for (sectIter = m_Module.begin(); sectIter != sectEnd; ++sectIter) {
if (LDFileFormat::Relocation != (*sectIter)->kind())
continue;
RelocData* reloc_data = (*sectIter)->getRelocData();
RelocData::iterator relocIter, relocEnd = reloc_data->end();
for (relocIter = reloc_data->begin(); relocIter != relocEnd; ++relocIter) {
Relocation* reloc = llvm::cast<Relocation>(relocIter);
// bypass the relocation with NONE type. This is to avoid overwrite the
// target result by NONE type relocation if there is a place which has
// two relocations to apply to, and one of it is NONE type. The result
// we want is the value of the other relocation result. For example,
// in .exidx, there are usually an R_ARM_NONE and R_ARM_PREL31 apply to
// the same place
if (0x0 == reloc->type())
continue;
writeRelocationResult(*reloc, data);
}
}
pOutput.clear();
}
void FragmentLinker::writeRelocationResult(Relocation& pReloc, uint8_t* pOutput)
{
// get output file offset
size_t out_offset = pReloc.targetRef().frag()->getParent()->getSection().offset() +
pReloc.targetRef().getOutputOffset();
uint8_t* target_addr = pOutput + out_offset;
// byte swapping if target and host has different endian, and then write back
if(llvm::sys::isLittleEndianHost() != m_Config.targets().isLittleEndian()) {
uint64_t tmp_data = 0;
switch(m_Config.targets().bitclass()) {
case 32u:
tmp_data = mcld::bswap32(pReloc.target());
std::memcpy(target_addr, &tmp_data, 4);
break;
case 64u:
tmp_data = mcld::bswap64(pReloc.target());
std::memcpy(target_addr, &tmp_data, 8);
break;
default:
break;
}
}
else
std::memcpy(target_addr, &pReloc.target(), m_Config.targets().bitclass()/8);
}
/// isOutputPIC - return whether the output is position-independent
bool FragmentLinker::isOutputPIC() const
{
return checkIsOutputPIC();
}
/// isStaticLink - return whether we're doing static link
bool FragmentLinker::isStaticLink() const
{
return checkIsStaticLink();
}
bool FragmentLinker::checkIsOutputPIC() const
{
if (LinkerConfig::DynObj == m_Config.codeGenType() ||
m_Config.options().isPIE())
return true;
return false;
}
bool FragmentLinker::checkIsStaticLink() const
{
if (m_Module.getLibraryList().empty() && !isOutputPIC())
return true;
return false;
}