| /* |
| * Copyright (C) 2007 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include <stdint.h> |
| #include <sys/types.h> |
| #include <errno.h> |
| #include <math.h> |
| #include <dlfcn.h> |
| |
| #include <EGL/egl.h> |
| #include <GLES/gl.h> |
| |
| #include <cutils/log.h> |
| #include <cutils/properties.h> |
| |
| #include <binder/IPCThreadState.h> |
| #include <binder/IServiceManager.h> |
| #include <binder/MemoryHeapBase.h> |
| #include <binder/PermissionCache.h> |
| |
| #include <ui/DisplayInfo.h> |
| |
| #include <gui/BitTube.h> |
| #include <gui/BufferQueue.h> |
| #include <gui/GuiConfig.h> |
| #include <gui/IDisplayEventConnection.h> |
| #include <gui/Surface.h> |
| #include <gui/GraphicBufferAlloc.h> |
| |
| #include <ui/GraphicBufferAllocator.h> |
| #include <ui/PixelFormat.h> |
| #include <ui/UiConfig.h> |
| |
| #include <utils/misc.h> |
| #include <utils/String8.h> |
| #include <utils/String16.h> |
| #include <utils/StopWatch.h> |
| #include <utils/Trace.h> |
| |
| #include <private/android_filesystem_config.h> |
| #include <private/gui/SyncFeatures.h> |
| |
| #include "clz.h" |
| #include "DdmConnection.h" |
| #include "DisplayDevice.h" |
| #include "Client.h" |
| #include "EventThread.h" |
| #include "GLExtensions.h" |
| #include "Layer.h" |
| #include "LayerDim.h" |
| #include "SurfaceFlinger.h" |
| |
| #include "DisplayHardware/FramebufferSurface.h" |
| #include "DisplayHardware/HWComposer.h" |
| #include "DisplayHardware/VirtualDisplaySurface.h" |
| |
| #define DISPLAY_COUNT 1 |
| |
| EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name); |
| |
| namespace android { |
| // --------------------------------------------------------------------------- |
| |
| const String16 sHardwareTest("android.permission.HARDWARE_TEST"); |
| const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER"); |
| const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER"); |
| const String16 sDump("android.permission.DUMP"); |
| |
| // --------------------------------------------------------------------------- |
| |
| SurfaceFlinger::SurfaceFlinger() |
| : BnSurfaceComposer(), Thread(false), |
| mTransactionFlags(0), |
| mTransactionPending(false), |
| mAnimTransactionPending(false), |
| mLayersRemoved(false), |
| mRepaintEverything(0), |
| mBootTime(systemTime()), |
| mVisibleRegionsDirty(false), |
| mHwWorkListDirty(false), |
| mAnimCompositionPending(false), |
| mDebugRegion(0), |
| mDebugDDMS(0), |
| mDebugDisableHWC(0), |
| mDebugDisableTransformHint(0), |
| mDebugInSwapBuffers(0), |
| mLastSwapBufferTime(0), |
| mDebugInTransaction(0), |
| mLastTransactionTime(0), |
| mBootFinished(false) |
| { |
| ALOGI("SurfaceFlinger is starting"); |
| |
| // debugging stuff... |
| char value[PROPERTY_VALUE_MAX]; |
| |
| property_get("ro.bq.gpu_to_cpu_unsupported", value, "0"); |
| mGpuToCpuSupported = !atoi(value); |
| |
| property_get("debug.sf.showupdates", value, "0"); |
| mDebugRegion = atoi(value); |
| |
| property_get("debug.sf.ddms", value, "0"); |
| mDebugDDMS = atoi(value); |
| if (mDebugDDMS) { |
| if (!startDdmConnection()) { |
| // start failed, and DDMS debugging not enabled |
| mDebugDDMS = 0; |
| } |
| } |
| ALOGI_IF(mDebugRegion, "showupdates enabled"); |
| ALOGI_IF(mDebugDDMS, "DDMS debugging enabled"); |
| } |
| |
| void SurfaceFlinger::onFirstRef() |
| { |
| mEventQueue.init(this); |
| |
| run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY); |
| |
| // Wait for the main thread to be done with its initialization |
| mReadyToRunBarrier.wait(); |
| } |
| |
| |
| SurfaceFlinger::~SurfaceFlinger() |
| { |
| EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY); |
| eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); |
| eglTerminate(display); |
| } |
| |
| void SurfaceFlinger::binderDied(const wp<IBinder>& who) |
| { |
| // the window manager died on us. prepare its eulogy. |
| |
| // restore initial conditions (default device unblank, etc) |
| initializeDisplays(); |
| |
| // restart the boot-animation |
| startBootAnim(); |
| } |
| |
| sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() |
| { |
| sp<ISurfaceComposerClient> bclient; |
| sp<Client> client(new Client(this)); |
| status_t err = client->initCheck(); |
| if (err == NO_ERROR) { |
| bclient = client; |
| } |
| return bclient; |
| } |
| |
| sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName, |
| bool secure) |
| { |
| class DisplayToken : public BBinder { |
| sp<SurfaceFlinger> flinger; |
| virtual ~DisplayToken() { |
| // no more references, this display must be terminated |
| Mutex::Autolock _l(flinger->mStateLock); |
| flinger->mCurrentState.displays.removeItem(this); |
| flinger->setTransactionFlags(eDisplayTransactionNeeded); |
| } |
| public: |
| DisplayToken(const sp<SurfaceFlinger>& flinger) |
| : flinger(flinger) { |
| } |
| }; |
| |
| sp<BBinder> token = new DisplayToken(this); |
| |
| Mutex::Autolock _l(mStateLock); |
| DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL); |
| info.displayName = displayName; |
| info.isSecure = secure; |
| mCurrentState.displays.add(token, info); |
| |
| return token; |
| } |
| |
| void SurfaceFlinger::createBuiltinDisplayLocked(DisplayDevice::DisplayType type) { |
| ALOGW_IF(mBuiltinDisplays[type], |
| "Overwriting display token for display type %d", type); |
| mBuiltinDisplays[type] = new BBinder(); |
| DisplayDeviceState info(type); |
| // All non-virtual displays are currently considered secure. |
| info.isSecure = true; |
| mCurrentState.displays.add(mBuiltinDisplays[type], info); |
| } |
| |
| sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) { |
| if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) { |
| ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id); |
| return NULL; |
| } |
| return mBuiltinDisplays[id]; |
| } |
| |
| sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc() |
| { |
| sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc()); |
| return gba; |
| } |
| |
| void SurfaceFlinger::bootFinished() |
| { |
| const nsecs_t now = systemTime(); |
| const nsecs_t duration = now - mBootTime; |
| ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) ); |
| mBootFinished = true; |
| |
| // wait patiently for the window manager death |
| const String16 name("window"); |
| sp<IBinder> window(defaultServiceManager()->getService(name)); |
| if (window != 0) { |
| window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this)); |
| } |
| |
| // stop boot animation |
| // formerly we would just kill the process, but we now ask it to exit so it |
| // can choose where to stop the animation. |
| property_set("service.bootanim.exit", "1"); |
| } |
| |
| void SurfaceFlinger::deleteTextureAsync(GLuint texture) { |
| class MessageDestroyGLTexture : public MessageBase { |
| GLuint texture; |
| public: |
| MessageDestroyGLTexture(GLuint texture) |
| : texture(texture) { |
| } |
| virtual bool handler() { |
| glDeleteTextures(1, &texture); |
| return true; |
| } |
| }; |
| postMessageAsync(new MessageDestroyGLTexture(texture)); |
| } |
| |
| status_t SurfaceFlinger::selectConfigForAttribute( |
| EGLDisplay dpy, |
| EGLint const* attrs, |
| EGLint attribute, EGLint wanted, |
| EGLConfig* outConfig) |
| { |
| EGLConfig config = NULL; |
| EGLint numConfigs = -1, n=0; |
| eglGetConfigs(dpy, NULL, 0, &numConfigs); |
| EGLConfig* const configs = new EGLConfig[numConfigs]; |
| eglChooseConfig(dpy, attrs, configs, numConfigs, &n); |
| |
| if (n) { |
| if (attribute != EGL_NONE) { |
| for (int i=0 ; i<n ; i++) { |
| EGLint value = 0; |
| eglGetConfigAttrib(dpy, configs[i], attribute, &value); |
| if (wanted == value) { |
| *outConfig = configs[i]; |
| delete [] configs; |
| return NO_ERROR; |
| } |
| } |
| } else { |
| // just pick the first one |
| *outConfig = configs[0]; |
| delete [] configs; |
| return NO_ERROR; |
| } |
| } |
| delete [] configs; |
| return NAME_NOT_FOUND; |
| } |
| |
| class EGLAttributeVector { |
| struct Attribute; |
| class Adder; |
| friend class Adder; |
| KeyedVector<Attribute, EGLint> mList; |
| struct Attribute { |
| Attribute() {}; |
| Attribute(EGLint v) : v(v) { } |
| EGLint v; |
| bool operator < (const Attribute& other) const { |
| // this places EGL_NONE at the end |
| EGLint lhs(v); |
| EGLint rhs(other.v); |
| if (lhs == EGL_NONE) lhs = 0x7FFFFFFF; |
| if (rhs == EGL_NONE) rhs = 0x7FFFFFFF; |
| return lhs < rhs; |
| } |
| }; |
| class Adder { |
| friend class EGLAttributeVector; |
| EGLAttributeVector& v; |
| EGLint attribute; |
| Adder(EGLAttributeVector& v, EGLint attribute) |
| : v(v), attribute(attribute) { |
| } |
| public: |
| void operator = (EGLint value) { |
| if (attribute != EGL_NONE) { |
| v.mList.add(attribute, value); |
| } |
| } |
| operator EGLint () const { return v.mList[attribute]; } |
| }; |
| public: |
| EGLAttributeVector() { |
| mList.add(EGL_NONE, EGL_NONE); |
| } |
| void remove(EGLint attribute) { |
| if (attribute != EGL_NONE) { |
| mList.removeItem(attribute); |
| } |
| } |
| Adder operator [] (EGLint attribute) { |
| return Adder(*this, attribute); |
| } |
| EGLint operator [] (EGLint attribute) const { |
| return mList[attribute]; |
| } |
| // cast-operator to (EGLint const*) |
| operator EGLint const* () const { return &mList.keyAt(0).v; } |
| }; |
| |
| EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) { |
| // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if |
| // it is to be used with WIFI displays |
| EGLConfig config; |
| EGLint dummy; |
| status_t err; |
| |
| EGLAttributeVector attribs; |
| attribs[EGL_SURFACE_TYPE] = EGL_WINDOW_BIT; |
| attribs[EGL_RECORDABLE_ANDROID] = EGL_TRUE; |
| attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE; |
| attribs[EGL_RED_SIZE] = 8; |
| attribs[EGL_GREEN_SIZE] = 8; |
| attribs[EGL_BLUE_SIZE] = 8; |
| |
| err = selectConfigForAttribute(display, attribs, EGL_NONE, EGL_NONE, &config); |
| if (!err) |
| goto success; |
| |
| // maybe we failed because of EGL_FRAMEBUFFER_TARGET_ANDROID |
| ALOGW("no suitable EGLConfig found, trying without EGL_FRAMEBUFFER_TARGET_ANDROID"); |
| attribs.remove(EGL_FRAMEBUFFER_TARGET_ANDROID); |
| err = selectConfigForAttribute(display, attribs, |
| EGL_NATIVE_VISUAL_ID, nativeVisualId, &config); |
| if (!err) |
| goto success; |
| |
| // maybe we failed because of EGL_RECORDABLE_ANDROID |
| ALOGW("no suitable EGLConfig found, trying without EGL_RECORDABLE_ANDROID"); |
| attribs.remove(EGL_RECORDABLE_ANDROID); |
| err = selectConfigForAttribute(display, attribs, |
| EGL_NATIVE_VISUAL_ID, nativeVisualId, &config); |
| if (!err) |
| goto success; |
| |
| // allow less than 24-bit color; the non-gpu-accelerated emulator only |
| // supports 16-bit color |
| ALOGW("no suitable EGLConfig found, trying with 16-bit color allowed"); |
| attribs.remove(EGL_RED_SIZE); |
| attribs.remove(EGL_GREEN_SIZE); |
| attribs.remove(EGL_BLUE_SIZE); |
| err = selectConfigForAttribute(display, attribs, |
| EGL_NATIVE_VISUAL_ID, nativeVisualId, &config); |
| if (!err) |
| goto success; |
| |
| // this EGL is too lame for Android |
| ALOGE("no suitable EGLConfig found, giving up"); |
| |
| return 0; |
| |
| success: |
| if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy)) |
| ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!"); |
| return config; |
| } |
| |
| EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) { |
| // Also create our EGLContext |
| EGLint contextAttributes[] = { |
| #ifdef EGL_IMG_context_priority |
| #ifdef HAS_CONTEXT_PRIORITY |
| #warning "using EGL_IMG_context_priority" |
| EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG, |
| #endif |
| #endif |
| EGL_NONE, EGL_NONE |
| }; |
| EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes); |
| ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed"); |
| return ctxt; |
| } |
| |
| void SurfaceFlinger::initializeGL(EGLDisplay display) { |
| GLExtensions& extensions(GLExtensions::getInstance()); |
| extensions.initWithGLStrings( |
| glGetString(GL_VENDOR), |
| glGetString(GL_RENDERER), |
| glGetString(GL_VERSION), |
| glGetString(GL_EXTENSIONS), |
| eglQueryString(display, EGL_VENDOR), |
| eglQueryString(display, EGL_VERSION), |
| eglQueryString(display, EGL_EXTENSIONS)); |
| |
| glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize); |
| glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims); |
| |
| glPixelStorei(GL_UNPACK_ALIGNMENT, 4); |
| glPixelStorei(GL_PACK_ALIGNMENT, 4); |
| glEnableClientState(GL_VERTEX_ARRAY); |
| glShadeModel(GL_FLAT); |
| glDisable(GL_DITHER); |
| glDisable(GL_CULL_FACE); |
| |
| struct pack565 { |
| inline uint16_t operator() (int r, int g, int b) const { |
| return (r<<11)|(g<<5)|b; |
| } |
| } pack565; |
| |
| const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) }; |
| glGenTextures(1, &mProtectedTexName); |
| glBindTexture(GL_TEXTURE_2D, mProtectedTexName); |
| glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); |
| glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); |
| glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); |
| glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); |
| glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0, |
| GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData); |
| |
| // print some debugging info |
| EGLint r,g,b,a; |
| eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE, &r); |
| eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g); |
| eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE, &b); |
| eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a); |
| ALOGI("EGL informations:"); |
| ALOGI("vendor : %s", extensions.getEglVendor()); |
| ALOGI("version : %s", extensions.getEglVersion()); |
| ALOGI("extensions: %s", extensions.getEglExtension()); |
| ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported"); |
| ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig); |
| ALOGI("OpenGL ES informations:"); |
| ALOGI("vendor : %s", extensions.getVendor()); |
| ALOGI("renderer : %s", extensions.getRenderer()); |
| ALOGI("version : %s", extensions.getVersion()); |
| ALOGI("extensions: %s", extensions.getExtension()); |
| ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize); |
| ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]); |
| } |
| |
| status_t SurfaceFlinger::readyToRun() |
| { |
| ALOGI( "SurfaceFlinger's main thread ready to run. " |
| "Initializing graphics H/W..."); |
| |
| Mutex::Autolock _l(mStateLock); |
| |
| // initialize EGL for the default display |
| mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY); |
| eglInitialize(mEGLDisplay, NULL, NULL); |
| |
| // Initialize the H/W composer object. There may or may not be an |
| // actual hardware composer underneath. |
| mHwc = new HWComposer(this, |
| *static_cast<HWComposer::EventHandler *>(this)); |
| |
| // initialize the config and context |
| EGLint format = mHwc->getVisualID(); |
| mEGLConfig = selectEGLConfig(mEGLDisplay, format); |
| mEGLContext = createGLContext(mEGLDisplay, mEGLConfig); |
| |
| // figure out which format we got |
| eglGetConfigAttrib(mEGLDisplay, mEGLConfig, |
| EGL_NATIVE_VISUAL_ID, &mEGLNativeVisualId); |
| |
| LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT, |
| "couldn't create EGLContext"); |
| |
| // initialize our non-virtual displays |
| for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) { |
| DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i); |
| // set-up the displays that are already connected |
| if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) { |
| // All non-virtual displays are currently considered secure. |
| bool isSecure = true; |
| createBuiltinDisplayLocked(type); |
| wp<IBinder> token = mBuiltinDisplays[i]; |
| |
| sp<DisplayDevice> hw = new DisplayDevice(this, |
| type, allocateHwcDisplayId(type), isSecure, token, |
| new FramebufferSurface(*mHwc, i), |
| mEGLConfig); |
| if (i > DisplayDevice::DISPLAY_PRIMARY) { |
| // FIXME: currently we don't get blank/unblank requests |
| // for displays other than the main display, so we always |
| // assume a connected display is unblanked. |
| ALOGD("marking display %d as acquired/unblanked", i); |
| hw->acquireScreen(); |
| } |
| mDisplays.add(token, hw); |
| } |
| } |
| |
| // we need a GL context current in a few places, when initializing |
| // OpenGL ES (see below), or creating a layer, |
| // or when a texture is (asynchronously) destroyed, and for that |
| // we need a valid surface, so it's convenient to use the main display |
| // for that. |
| sp<const DisplayDevice> hw(getDefaultDisplayDevice()); |
| |
| // initialize OpenGL ES |
| DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext); |
| initializeGL(mEGLDisplay); |
| |
| // start the EventThread |
| mEventThread = new EventThread(this); |
| mEventQueue.setEventThread(mEventThread); |
| |
| // initialize our drawing state |
| mDrawingState = mCurrentState; |
| |
| |
| // We're now ready to accept clients... |
| mReadyToRunBarrier.open(); |
| |
| // set initial conditions (e.g. unblank default device) |
| initializeDisplays(); |
| |
| // start boot animation |
| startBootAnim(); |
| |
| return NO_ERROR; |
| } |
| |
| int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) { |
| return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ? |
| type : mHwc->allocateDisplayId(); |
| } |
| |
| void SurfaceFlinger::startBootAnim() { |
| // start boot animation |
| property_set("service.bootanim.exit", "0"); |
| property_set("ctl.start", "bootanim"); |
| } |
| |
| uint32_t SurfaceFlinger::getMaxTextureSize() const { |
| return mMaxTextureSize; |
| } |
| |
| uint32_t SurfaceFlinger::getMaxViewportDims() const { |
| return mMaxViewportDims[0] < mMaxViewportDims[1] ? |
| mMaxViewportDims[0] : mMaxViewportDims[1]; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| bool SurfaceFlinger::authenticateSurfaceTexture( |
| const sp<IGraphicBufferProducer>& bufferProducer) const { |
| Mutex::Autolock _l(mStateLock); |
| sp<IBinder> surfaceTextureBinder(bufferProducer->asBinder()); |
| return mGraphicBufferProducerList.indexOf(surfaceTextureBinder) >= 0; |
| } |
| |
| status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) { |
| int32_t type = NAME_NOT_FOUND; |
| for (int i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) { |
| if (display == mBuiltinDisplays[i]) { |
| type = i; |
| break; |
| } |
| } |
| |
| if (type < 0) { |
| return type; |
| } |
| |
| const HWComposer& hwc(getHwComposer()); |
| float xdpi = hwc.getDpiX(type); |
| float ydpi = hwc.getDpiY(type); |
| |
| // TODO: Not sure if display density should handled by SF any longer |
| class Density { |
| static int getDensityFromProperty(char const* propName) { |
| char property[PROPERTY_VALUE_MAX]; |
| int density = 0; |
| if (property_get(propName, property, NULL) > 0) { |
| density = atoi(property); |
| } |
| return density; |
| } |
| public: |
| static int getEmuDensity() { |
| return getDensityFromProperty("qemu.sf.lcd_density"); } |
| static int getBuildDensity() { |
| return getDensityFromProperty("ro.sf.lcd_density"); } |
| }; |
| |
| if (type == DisplayDevice::DISPLAY_PRIMARY) { |
| // The density of the device is provided by a build property |
| float density = Density::getBuildDensity() / 160.0f; |
| if (density == 0) { |
| // the build doesn't provide a density -- this is wrong! |
| // use xdpi instead |
| ALOGE("ro.sf.lcd_density must be defined as a build property"); |
| density = xdpi / 160.0f; |
| } |
| if (Density::getEmuDensity()) { |
| // if "qemu.sf.lcd_density" is specified, it overrides everything |
| xdpi = ydpi = density = Density::getEmuDensity(); |
| density /= 160.0f; |
| } |
| info->density = density; |
| |
| // TODO: this needs to go away (currently needed only by webkit) |
| sp<const DisplayDevice> hw(getDefaultDisplayDevice()); |
| info->orientation = hw->getOrientation(); |
| getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo); |
| } else { |
| // TODO: where should this value come from? |
| static const int TV_DENSITY = 213; |
| info->density = TV_DENSITY / 160.0f; |
| info->orientation = 0; |
| } |
| |
| info->w = hwc.getWidth(type); |
| info->h = hwc.getHeight(type); |
| info->xdpi = xdpi; |
| info->ydpi = ydpi; |
| info->fps = float(1e9 / hwc.getRefreshPeriod(type)); |
| |
| // All non-virtual displays are currently considered secure. |
| info->secure = true; |
| |
| return NO_ERROR; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() { |
| return mEventThread->createEventConnection(); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| void SurfaceFlinger::waitForEvent() { |
| mEventQueue.waitMessage(); |
| } |
| |
| void SurfaceFlinger::signalTransaction() { |
| mEventQueue.invalidate(); |
| } |
| |
| void SurfaceFlinger::signalLayerUpdate() { |
| mEventQueue.invalidate(); |
| } |
| |
| void SurfaceFlinger::signalRefresh() { |
| mEventQueue.refresh(); |
| } |
| |
| status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg, |
| nsecs_t reltime, uint32_t flags) { |
| return mEventQueue.postMessage(msg, reltime); |
| } |
| |
| status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg, |
| nsecs_t reltime, uint32_t flags) { |
| status_t res = mEventQueue.postMessage(msg, reltime); |
| if (res == NO_ERROR) { |
| msg->wait(); |
| } |
| return res; |
| } |
| |
| bool SurfaceFlinger::threadLoop() { |
| waitForEvent(); |
| return true; |
| } |
| |
| void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) { |
| if (mEventThread == NULL) { |
| // This is a temporary workaround for b/7145521. A non-null pointer |
| // does not mean EventThread has finished initializing, so this |
| // is not a correct fix. |
| ALOGW("WARNING: EventThread not started, ignoring vsync"); |
| return; |
| } |
| if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) { |
| // we should only receive DisplayDevice::DisplayType from the vsync callback |
| mEventThread->onVSyncReceived(type, timestamp); |
| } |
| } |
| |
| void SurfaceFlinger::onHotplugReceived(int type, bool connected) { |
| if (mEventThread == NULL) { |
| // This is a temporary workaround for b/7145521. A non-null pointer |
| // does not mean EventThread has finished initializing, so this |
| // is not a correct fix. |
| ALOGW("WARNING: EventThread not started, ignoring hotplug"); |
| return; |
| } |
| |
| if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) { |
| Mutex::Autolock _l(mStateLock); |
| if (connected) { |
| createBuiltinDisplayLocked((DisplayDevice::DisplayType)type); |
| } else { |
| mCurrentState.displays.removeItem(mBuiltinDisplays[type]); |
| mBuiltinDisplays[type].clear(); |
| } |
| setTransactionFlags(eDisplayTransactionNeeded); |
| |
| // Defer EventThread notification until SF has updated mDisplays. |
| } |
| } |
| |
| void SurfaceFlinger::eventControl(int disp, int event, int enabled) { |
| getHwComposer().eventControl(disp, event, enabled); |
| } |
| |
| void SurfaceFlinger::onMessageReceived(int32_t what) { |
| ATRACE_CALL(); |
| switch (what) { |
| case MessageQueue::INVALIDATE: |
| handleMessageTransaction(); |
| handleMessageInvalidate(); |
| signalRefresh(); |
| break; |
| case MessageQueue::REFRESH: |
| handleMessageRefresh(); |
| break; |
| } |
| } |
| |
| void SurfaceFlinger::handleMessageTransaction() { |
| uint32_t transactionFlags = peekTransactionFlags(eTransactionMask); |
| if (transactionFlags) { |
| handleTransaction(transactionFlags); |
| } |
| } |
| |
| void SurfaceFlinger::handleMessageInvalidate() { |
| ATRACE_CALL(); |
| handlePageFlip(); |
| } |
| |
| void SurfaceFlinger::handleMessageRefresh() { |
| ATRACE_CALL(); |
| preComposition(); |
| rebuildLayerStacks(); |
| setUpHWComposer(); |
| doDebugFlashRegions(); |
| doComposition(); |
| postComposition(); |
| } |
| |
| void SurfaceFlinger::doDebugFlashRegions() |
| { |
| // is debugging enabled |
| if (CC_LIKELY(!mDebugRegion)) |
| return; |
| |
| const bool repaintEverything = mRepaintEverything; |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| const sp<DisplayDevice>& hw(mDisplays[dpy]); |
| if (hw->canDraw()) { |
| // transform the dirty region into this screen's coordinate space |
| const Region dirtyRegion(hw->getDirtyRegion(repaintEverything)); |
| if (!dirtyRegion.isEmpty()) { |
| // redraw the whole screen |
| doComposeSurfaces(hw, Region(hw->bounds())); |
| |
| // and draw the dirty region |
| glDisable(GL_TEXTURE_EXTERNAL_OES); |
| glDisable(GL_TEXTURE_2D); |
| glDisable(GL_BLEND); |
| glColor4f(1, 0, 1, 1); |
| const int32_t height = hw->getHeight(); |
| Region::const_iterator it = dirtyRegion.begin(); |
| Region::const_iterator const end = dirtyRegion.end(); |
| while (it != end) { |
| const Rect& r = *it++; |
| GLfloat vertices[][2] = { |
| { (GLfloat) r.left, (GLfloat) (height - r.top) }, |
| { (GLfloat) r.left, (GLfloat) (height - r.bottom) }, |
| { (GLfloat) r.right, (GLfloat) (height - r.bottom) }, |
| { (GLfloat) r.right, (GLfloat) (height - r.top) } |
| }; |
| glVertexPointer(2, GL_FLOAT, 0, vertices); |
| glDrawArrays(GL_TRIANGLE_FAN, 0, 4); |
| } |
| hw->compositionComplete(); |
| hw->swapBuffers(getHwComposer()); |
| } |
| } |
| } |
| |
| postFramebuffer(); |
| |
| if (mDebugRegion > 1) { |
| usleep(mDebugRegion * 1000); |
| } |
| |
| HWComposer& hwc(getHwComposer()); |
| if (hwc.initCheck() == NO_ERROR) { |
| status_t err = hwc.prepare(); |
| ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err)); |
| } |
| } |
| |
| void SurfaceFlinger::preComposition() |
| { |
| bool needExtraInvalidate = false; |
| const LayerVector& currentLayers(mDrawingState.layersSortedByZ); |
| const size_t count = currentLayers.size(); |
| for (size_t i=0 ; i<count ; i++) { |
| if (currentLayers[i]->onPreComposition()) { |
| needExtraInvalidate = true; |
| } |
| } |
| if (needExtraInvalidate) { |
| signalLayerUpdate(); |
| } |
| } |
| |
| void SurfaceFlinger::postComposition() |
| { |
| const LayerVector& currentLayers(mDrawingState.layersSortedByZ); |
| const size_t count = currentLayers.size(); |
| for (size_t i=0 ; i<count ; i++) { |
| currentLayers[i]->onPostComposition(); |
| } |
| |
| if (mAnimCompositionPending) { |
| mAnimCompositionPending = false; |
| |
| const HWComposer& hwc = getHwComposer(); |
| sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY); |
| if (presentFence->isValid()) { |
| mAnimFrameTracker.setActualPresentFence(presentFence); |
| } else { |
| // The HWC doesn't support present fences, so use the refresh |
| // timestamp instead. |
| nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY); |
| mAnimFrameTracker.setActualPresentTime(presentTime); |
| } |
| mAnimFrameTracker.advanceFrame(); |
| } |
| } |
| |
| void SurfaceFlinger::rebuildLayerStacks() { |
| // rebuild the visible layer list per screen |
| if (CC_UNLIKELY(mVisibleRegionsDirty)) { |
| ATRACE_CALL(); |
| mVisibleRegionsDirty = false; |
| invalidateHwcGeometry(); |
| |
| const LayerVector& currentLayers(mDrawingState.layersSortedByZ); |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| Region opaqueRegion; |
| Region dirtyRegion; |
| Vector< sp<Layer> > layersSortedByZ; |
| const sp<DisplayDevice>& hw(mDisplays[dpy]); |
| const Transform& tr(hw->getTransform()); |
| const Rect bounds(hw->getBounds()); |
| if (hw->canDraw()) { |
| SurfaceFlinger::computeVisibleRegions(currentLayers, |
| hw->getLayerStack(), dirtyRegion, opaqueRegion); |
| |
| const size_t count = currentLayers.size(); |
| for (size_t i=0 ; i<count ; i++) { |
| const sp<Layer>& layer(currentLayers[i]); |
| const Layer::State& s(layer->drawingState()); |
| if (s.layerStack == hw->getLayerStack()) { |
| Region drawRegion(tr.transform( |
| layer->visibleNonTransparentRegion)); |
| drawRegion.andSelf(bounds); |
| if (!drawRegion.isEmpty()) { |
| layersSortedByZ.add(layer); |
| } |
| } |
| } |
| } |
| hw->setVisibleLayersSortedByZ(layersSortedByZ); |
| hw->undefinedRegion.set(bounds); |
| hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion)); |
| hw->dirtyRegion.orSelf(dirtyRegion); |
| } |
| } |
| } |
| |
| void SurfaceFlinger::setUpHWComposer() { |
| HWComposer& hwc(getHwComposer()); |
| if (hwc.initCheck() == NO_ERROR) { |
| // build the h/w work list |
| if (CC_UNLIKELY(mHwWorkListDirty)) { |
| mHwWorkListDirty = false; |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| sp<const DisplayDevice> hw(mDisplays[dpy]); |
| const int32_t id = hw->getHwcDisplayId(); |
| if (id >= 0) { |
| const Vector< sp<Layer> >& currentLayers( |
| hw->getVisibleLayersSortedByZ()); |
| const size_t count = currentLayers.size(); |
| if (hwc.createWorkList(id, count) == NO_ERROR) { |
| HWComposer::LayerListIterator cur = hwc.begin(id); |
| const HWComposer::LayerListIterator end = hwc.end(id); |
| for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) { |
| const sp<Layer>& layer(currentLayers[i]); |
| layer->setGeometry(hw, *cur); |
| if (mDebugDisableHWC || mDebugRegion) { |
| cur->setSkip(true); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // set the per-frame data |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| sp<const DisplayDevice> hw(mDisplays[dpy]); |
| const int32_t id = hw->getHwcDisplayId(); |
| if (id >= 0) { |
| const Vector< sp<Layer> >& currentLayers( |
| hw->getVisibleLayersSortedByZ()); |
| const size_t count = currentLayers.size(); |
| HWComposer::LayerListIterator cur = hwc.begin(id); |
| const HWComposer::LayerListIterator end = hwc.end(id); |
| for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) { |
| /* |
| * update the per-frame h/w composer data for each layer |
| * and build the transparent region of the FB |
| */ |
| const sp<Layer>& layer(currentLayers[i]); |
| layer->setPerFrameData(hw, *cur); |
| } |
| } |
| } |
| |
| status_t err = hwc.prepare(); |
| ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err)); |
| } |
| } |
| |
| void SurfaceFlinger::doComposition() { |
| ATRACE_CALL(); |
| const bool repaintEverything = android_atomic_and(0, &mRepaintEverything); |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| const sp<DisplayDevice>& hw(mDisplays[dpy]); |
| if (hw->canDraw()) { |
| // transform the dirty region into this screen's coordinate space |
| const Region dirtyRegion(hw->getDirtyRegion(repaintEverything)); |
| |
| // repaint the framebuffer (if needed) |
| doDisplayComposition(hw, dirtyRegion); |
| |
| hw->dirtyRegion.clear(); |
| hw->flip(hw->swapRegion); |
| hw->swapRegion.clear(); |
| } |
| // inform the h/w that we're done compositing |
| hw->compositionComplete(); |
| } |
| postFramebuffer(); |
| } |
| |
| void SurfaceFlinger::postFramebuffer() |
| { |
| ATRACE_CALL(); |
| |
| const nsecs_t now = systemTime(); |
| mDebugInSwapBuffers = now; |
| |
| HWComposer& hwc(getHwComposer()); |
| if (hwc.initCheck() == NO_ERROR) { |
| if (!hwc.supportsFramebufferTarget()) { |
| // EGL spec says: |
| // "surface must be bound to the calling thread's current context, |
| // for the current rendering API." |
| DisplayDevice::makeCurrent(mEGLDisplay, |
| getDefaultDisplayDevice(), mEGLContext); |
| } |
| hwc.commit(); |
| } |
| |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| sp<const DisplayDevice> hw(mDisplays[dpy]); |
| const Vector< sp<Layer> >& currentLayers(hw->getVisibleLayersSortedByZ()); |
| hw->onSwapBuffersCompleted(hwc); |
| const size_t count = currentLayers.size(); |
| int32_t id = hw->getHwcDisplayId(); |
| if (id >=0 && hwc.initCheck() == NO_ERROR) { |
| HWComposer::LayerListIterator cur = hwc.begin(id); |
| const HWComposer::LayerListIterator end = hwc.end(id); |
| for (size_t i = 0; cur != end && i < count; ++i, ++cur) { |
| currentLayers[i]->onLayerDisplayed(hw, &*cur); |
| } |
| } else { |
| for (size_t i = 0; i < count; i++) { |
| currentLayers[i]->onLayerDisplayed(hw, NULL); |
| } |
| } |
| } |
| |
| mLastSwapBufferTime = systemTime() - now; |
| mDebugInSwapBuffers = 0; |
| } |
| |
| void SurfaceFlinger::handleTransaction(uint32_t transactionFlags) |
| { |
| ATRACE_CALL(); |
| |
| Mutex::Autolock _l(mStateLock); |
| const nsecs_t now = systemTime(); |
| mDebugInTransaction = now; |
| |
| // Here we're guaranteed that some transaction flags are set |
| // so we can call handleTransactionLocked() unconditionally. |
| // We call getTransactionFlags(), which will also clear the flags, |
| // with mStateLock held to guarantee that mCurrentState won't change |
| // until the transaction is committed. |
| |
| transactionFlags = getTransactionFlags(eTransactionMask); |
| handleTransactionLocked(transactionFlags); |
| |
| mLastTransactionTime = systemTime() - now; |
| mDebugInTransaction = 0; |
| invalidateHwcGeometry(); |
| // here the transaction has been committed |
| } |
| |
| void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags) |
| { |
| const LayerVector& currentLayers(mCurrentState.layersSortedByZ); |
| const size_t count = currentLayers.size(); |
| |
| /* |
| * Traversal of the children |
| * (perform the transaction for each of them if needed) |
| */ |
| |
| if (transactionFlags & eTraversalNeeded) { |
| for (size_t i=0 ; i<count ; i++) { |
| const sp<Layer>& layer(currentLayers[i]); |
| uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded); |
| if (!trFlags) continue; |
| |
| const uint32_t flags = layer->doTransaction(0); |
| if (flags & Layer::eVisibleRegion) |
| mVisibleRegionsDirty = true; |
| } |
| } |
| |
| /* |
| * Perform display own transactions if needed |
| */ |
| |
| if (transactionFlags & eDisplayTransactionNeeded) { |
| // here we take advantage of Vector's copy-on-write semantics to |
| // improve performance by skipping the transaction entirely when |
| // know that the lists are identical |
| const KeyedVector< wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays); |
| const KeyedVector< wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays); |
| if (!curr.isIdenticalTo(draw)) { |
| mVisibleRegionsDirty = true; |
| const size_t cc = curr.size(); |
| size_t dc = draw.size(); |
| |
| // find the displays that were removed |
| // (ie: in drawing state but not in current state) |
| // also handle displays that changed |
| // (ie: displays that are in both lists) |
| for (size_t i=0 ; i<dc ; i++) { |
| const ssize_t j = curr.indexOfKey(draw.keyAt(i)); |
| if (j < 0) { |
| // in drawing state but not in current state |
| if (!draw[i].isMainDisplay()) { |
| // Call makeCurrent() on the primary display so we can |
| // be sure that nothing associated with this display |
| // is current. |
| const sp<const DisplayDevice> defaultDisplay(getDefaultDisplayDevice()); |
| DisplayDevice::makeCurrent(mEGLDisplay, defaultDisplay, mEGLContext); |
| sp<DisplayDevice> hw(getDisplayDevice(draw.keyAt(i))); |
| if (hw != NULL) |
| hw->disconnect(getHwComposer()); |
| if (draw[i].type < DisplayDevice::NUM_DISPLAY_TYPES) |
| mEventThread->onHotplugReceived(draw[i].type, false); |
| mDisplays.removeItem(draw.keyAt(i)); |
| } else { |
| ALOGW("trying to remove the main display"); |
| } |
| } else { |
| // this display is in both lists. see if something changed. |
| const DisplayDeviceState& state(curr[j]); |
| const wp<IBinder>& display(curr.keyAt(j)); |
| if (state.surface->asBinder() != draw[i].surface->asBinder()) { |
| // changing the surface is like destroying and |
| // recreating the DisplayDevice, so we just remove it |
| // from the drawing state, so that it get re-added |
| // below. |
| sp<DisplayDevice> hw(getDisplayDevice(display)); |
| if (hw != NULL) |
| hw->disconnect(getHwComposer()); |
| mDisplays.removeItem(display); |
| mDrawingState.displays.removeItemsAt(i); |
| dc--; i--; |
| // at this point we must loop to the next item |
| continue; |
| } |
| |
| const sp<DisplayDevice> disp(getDisplayDevice(display)); |
| if (disp != NULL) { |
| if (state.layerStack != draw[i].layerStack) { |
| disp->setLayerStack(state.layerStack); |
| } |
| if ((state.orientation != draw[i].orientation) |
| || (state.viewport != draw[i].viewport) |
| || (state.frame != draw[i].frame)) |
| { |
| disp->setProjection(state.orientation, |
| state.viewport, state.frame); |
| } |
| } |
| } |
| } |
| |
| // find displays that were added |
| // (ie: in current state but not in drawing state) |
| for (size_t i=0 ; i<cc ; i++) { |
| if (draw.indexOfKey(curr.keyAt(i)) < 0) { |
| const DisplayDeviceState& state(curr[i]); |
| |
| sp<DisplaySurface> dispSurface; |
| int32_t hwcDisplayId = -1; |
| if (state.isVirtualDisplay()) { |
| // Virtual displays without a surface are dormant: |
| // they have external state (layer stack, projection, |
| // etc.) but no internal state (i.e. a DisplayDevice). |
| if (state.surface != NULL) { |
| hwcDisplayId = allocateHwcDisplayId(state.type); |
| dispSurface = new VirtualDisplaySurface( |
| *mHwc, hwcDisplayId, state.surface, |
| state.displayName); |
| } |
| } else { |
| ALOGE_IF(state.surface!=NULL, |
| "adding a supported display, but rendering " |
| "surface is provided (%p), ignoring it", |
| state.surface.get()); |
| hwcDisplayId = allocateHwcDisplayId(state.type); |
| // for supported (by hwc) displays we provide our |
| // own rendering surface |
| dispSurface = new FramebufferSurface(*mHwc, state.type); |
| } |
| |
| const wp<IBinder>& display(curr.keyAt(i)); |
| if (dispSurface != NULL) { |
| sp<DisplayDevice> hw = new DisplayDevice(this, |
| state.type, hwcDisplayId, state.isSecure, |
| display, dispSurface, mEGLConfig); |
| hw->setLayerStack(state.layerStack); |
| hw->setProjection(state.orientation, |
| state.viewport, state.frame); |
| hw->setDisplayName(state.displayName); |
| mDisplays.add(display, hw); |
| if (state.isVirtualDisplay()) { |
| if (hwcDisplayId >= 0) { |
| mHwc->setVirtualDisplayProperties(hwcDisplayId, |
| hw->getWidth(), hw->getHeight(), |
| hw->getFormat()); |
| } |
| } else { |
| mEventThread->onHotplugReceived(state.type, true); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| if (transactionFlags & (eTraversalNeeded|eDisplayTransactionNeeded)) { |
| // The transform hint might have changed for some layers |
| // (either because a display has changed, or because a layer |
| // as changed). |
| // |
| // Walk through all the layers in currentLayers, |
| // and update their transform hint. |
| // |
| // If a layer is visible only on a single display, then that |
| // display is used to calculate the hint, otherwise we use the |
| // default display. |
| // |
| // NOTE: we do this here, rather than in rebuildLayerStacks() so that |
| // the hint is set before we acquire a buffer from the surface texture. |
| // |
| // NOTE: layer transactions have taken place already, so we use their |
| // drawing state. However, SurfaceFlinger's own transaction has not |
| // happened yet, so we must use the current state layer list |
| // (soon to become the drawing state list). |
| // |
| sp<const DisplayDevice> disp; |
| uint32_t currentlayerStack = 0; |
| for (size_t i=0; i<count; i++) { |
| // NOTE: we rely on the fact that layers are sorted by |
| // layerStack first (so we don't have to traverse the list |
| // of displays for every layer). |
| const sp<Layer>& layer(currentLayers[i]); |
| uint32_t layerStack = layer->drawingState().layerStack; |
| if (i==0 || currentlayerStack != layerStack) { |
| currentlayerStack = layerStack; |
| // figure out if this layerstack is mirrored |
| // (more than one display) if so, pick the default display, |
| // if not, pick the only display it's on. |
| disp.clear(); |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| sp<const DisplayDevice> hw(mDisplays[dpy]); |
| if (hw->getLayerStack() == currentlayerStack) { |
| if (disp == NULL) { |
| disp = hw; |
| } else { |
| disp = getDefaultDisplayDevice(); |
| break; |
| } |
| } |
| } |
| } |
| if (disp != NULL) { |
| // presumably this means this layer is using a layerStack |
| // that is not visible on any display |
| layer->updateTransformHint(disp); |
| } |
| } |
| } |
| |
| |
| /* |
| * Perform our own transaction if needed |
| */ |
| |
| const LayerVector& previousLayers(mDrawingState.layersSortedByZ); |
| if (currentLayers.size() > previousLayers.size()) { |
| // layers have been added |
| mVisibleRegionsDirty = true; |
| } |
| |
| // some layers might have been removed, so |
| // we need to update the regions they're exposing. |
| if (mLayersRemoved) { |
| mLayersRemoved = false; |
| mVisibleRegionsDirty = true; |
| const size_t count = previousLayers.size(); |
| for (size_t i=0 ; i<count ; i++) { |
| const sp<Layer>& layer(previousLayers[i]); |
| if (currentLayers.indexOf(layer) < 0) { |
| // this layer is not visible anymore |
| // TODO: we could traverse the tree from front to back and |
| // compute the actual visible region |
| // TODO: we could cache the transformed region |
| const Layer::State& s(layer->drawingState()); |
| Region visibleReg = s.transform.transform( |
| Region(Rect(s.active.w, s.active.h))); |
| invalidateLayerStack(s.layerStack, visibleReg); |
| } |
| } |
| } |
| |
| commitTransaction(); |
| } |
| |
| void SurfaceFlinger::commitTransaction() |
| { |
| if (!mLayersPendingRemoval.isEmpty()) { |
| // Notify removed layers now that they can't be drawn from |
| for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) { |
| mLayersPendingRemoval[i]->onRemoved(); |
| } |
| mLayersPendingRemoval.clear(); |
| } |
| |
| // If this transaction is part of a window animation then the next frame |
| // we composite should be considered an animation as well. |
| mAnimCompositionPending = mAnimTransactionPending; |
| |
| mDrawingState = mCurrentState; |
| mTransactionPending = false; |
| mAnimTransactionPending = false; |
| mTransactionCV.broadcast(); |
| } |
| |
| void SurfaceFlinger::computeVisibleRegions( |
| const LayerVector& currentLayers, uint32_t layerStack, |
| Region& outDirtyRegion, Region& outOpaqueRegion) |
| { |
| ATRACE_CALL(); |
| |
| Region aboveOpaqueLayers; |
| Region aboveCoveredLayers; |
| Region dirty; |
| |
| outDirtyRegion.clear(); |
| |
| size_t i = currentLayers.size(); |
| while (i--) { |
| const sp<Layer>& layer = currentLayers[i]; |
| |
| // start with the whole surface at its current location |
| const Layer::State& s(layer->drawingState()); |
| |
| // only consider the layers on the given layer stack |
| if (s.layerStack != layerStack) |
| continue; |
| |
| /* |
| * opaqueRegion: area of a surface that is fully opaque. |
| */ |
| Region opaqueRegion; |
| |
| /* |
| * visibleRegion: area of a surface that is visible on screen |
| * and not fully transparent. This is essentially the layer's |
| * footprint minus the opaque regions above it. |
| * Areas covered by a translucent surface are considered visible. |
| */ |
| Region visibleRegion; |
| |
| /* |
| * coveredRegion: area of a surface that is covered by all |
| * visible regions above it (which includes the translucent areas). |
| */ |
| Region coveredRegion; |
| |
| /* |
| * transparentRegion: area of a surface that is hinted to be completely |
| * transparent. This is only used to tell when the layer has no visible |
| * non-transparent regions and can be removed from the layer list. It |
| * does not affect the visibleRegion of this layer or any layers |
| * beneath it. The hint may not be correct if apps don't respect the |
| * SurfaceView restrictions (which, sadly, some don't). |
| */ |
| Region transparentRegion; |
| |
| |
| // handle hidden surfaces by setting the visible region to empty |
| if (CC_LIKELY(layer->isVisible())) { |
| const bool translucent = !layer->isOpaque(); |
| Rect bounds(s.transform.transform(layer->computeBounds())); |
| visibleRegion.set(bounds); |
| if (!visibleRegion.isEmpty()) { |
| // Remove the transparent area from the visible region |
| if (translucent) { |
| const Transform tr(s.transform); |
| if (tr.transformed()) { |
| if (tr.preserveRects()) { |
| // transform the transparent region |
| transparentRegion = tr.transform(s.activeTransparentRegion); |
| } else { |
| // transformation too complex, can't do the |
| // transparent region optimization. |
| transparentRegion.clear(); |
| } |
| } else { |
| transparentRegion = s.activeTransparentRegion; |
| } |
| } |
| |
| // compute the opaque region |
| const int32_t layerOrientation = s.transform.getOrientation(); |
| if (s.alpha==255 && !translucent && |
| ((layerOrientation & Transform::ROT_INVALID) == false)) { |
| // the opaque region is the layer's footprint |
| opaqueRegion = visibleRegion; |
| } |
| } |
| } |
| |
| // Clip the covered region to the visible region |
| coveredRegion = aboveCoveredLayers.intersect(visibleRegion); |
| |
| // Update aboveCoveredLayers for next (lower) layer |
| aboveCoveredLayers.orSelf(visibleRegion); |
| |
| // subtract the opaque region covered by the layers above us |
| visibleRegion.subtractSelf(aboveOpaqueLayers); |
| |
| // compute this layer's dirty region |
| if (layer->contentDirty) { |
| // we need to invalidate the whole region |
| dirty = visibleRegion; |
| // as well, as the old visible region |
| dirty.orSelf(layer->visibleRegion); |
| layer->contentDirty = false; |
| } else { |
| /* compute the exposed region: |
| * the exposed region consists of two components: |
| * 1) what's VISIBLE now and was COVERED before |
| * 2) what's EXPOSED now less what was EXPOSED before |
| * |
| * note that (1) is conservative, we start with the whole |
| * visible region but only keep what used to be covered by |
| * something -- which mean it may have been exposed. |
| * |
| * (2) handles areas that were not covered by anything but got |
| * exposed because of a resize. |
| */ |
| const Region newExposed = visibleRegion - coveredRegion; |
| const Region oldVisibleRegion = layer->visibleRegion; |
| const Region oldCoveredRegion = layer->coveredRegion; |
| const Region oldExposed = oldVisibleRegion - oldCoveredRegion; |
| dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed); |
| } |
| dirty.subtractSelf(aboveOpaqueLayers); |
| |
| // accumulate to the screen dirty region |
| outDirtyRegion.orSelf(dirty); |
| |
| // Update aboveOpaqueLayers for next (lower) layer |
| aboveOpaqueLayers.orSelf(opaqueRegion); |
| |
| // Store the visible region in screen space |
| layer->setVisibleRegion(visibleRegion); |
| layer->setCoveredRegion(coveredRegion); |
| layer->setVisibleNonTransparentRegion( |
| visibleRegion.subtract(transparentRegion)); |
| } |
| |
| outOpaqueRegion = aboveOpaqueLayers; |
| } |
| |
| void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack, |
| const Region& dirty) { |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| const sp<DisplayDevice>& hw(mDisplays[dpy]); |
| if (hw->getLayerStack() == layerStack) { |
| hw->dirtyRegion.orSelf(dirty); |
| } |
| } |
| } |
| |
| void SurfaceFlinger::handlePageFlip() |
| { |
| Region dirtyRegion; |
| |
| bool visibleRegions = false; |
| const LayerVector& currentLayers(mDrawingState.layersSortedByZ); |
| const size_t count = currentLayers.size(); |
| for (size_t i=0 ; i<count ; i++) { |
| const sp<Layer>& layer(currentLayers[i]); |
| const Region dirty(layer->latchBuffer(visibleRegions)); |
| const Layer::State& s(layer->drawingState()); |
| invalidateLayerStack(s.layerStack, dirty); |
| } |
| |
| mVisibleRegionsDirty |= visibleRegions; |
| } |
| |
| void SurfaceFlinger::invalidateHwcGeometry() |
| { |
| mHwWorkListDirty = true; |
| } |
| |
| |
| void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw, |
| const Region& inDirtyRegion) |
| { |
| Region dirtyRegion(inDirtyRegion); |
| |
| // compute the invalid region |
| hw->swapRegion.orSelf(dirtyRegion); |
| |
| uint32_t flags = hw->getFlags(); |
| if (flags & DisplayDevice::SWAP_RECTANGLE) { |
| // we can redraw only what's dirty, but since SWAP_RECTANGLE only |
| // takes a rectangle, we must make sure to update that whole |
| // rectangle in that case |
| dirtyRegion.set(hw->swapRegion.bounds()); |
| } else { |
| if (flags & DisplayDevice::PARTIAL_UPDATES) { |
| // We need to redraw the rectangle that will be updated |
| // (pushed to the framebuffer). |
| // This is needed because PARTIAL_UPDATES only takes one |
| // rectangle instead of a region (see DisplayDevice::flip()) |
| dirtyRegion.set(hw->swapRegion.bounds()); |
| } else { |
| // we need to redraw everything (the whole screen) |
| dirtyRegion.set(hw->bounds()); |
| hw->swapRegion = dirtyRegion; |
| } |
| } |
| |
| doComposeSurfaces(hw, dirtyRegion); |
| |
| // update the swap region and clear the dirty region |
| hw->swapRegion.orSelf(dirtyRegion); |
| |
| // swap buffers (presentation) |
| hw->swapBuffers(getHwComposer()); |
| } |
| |
| void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty) |
| { |
| const int32_t id = hw->getHwcDisplayId(); |
| HWComposer& hwc(getHwComposer()); |
| HWComposer::LayerListIterator cur = hwc.begin(id); |
| const HWComposer::LayerListIterator end = hwc.end(id); |
| |
| const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end); |
| if (hasGlesComposition) { |
| DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext); |
| |
| // set the frame buffer |
| glMatrixMode(GL_MODELVIEW); |
| glLoadIdentity(); |
| |
| // Never touch the framebuffer if we don't have any framebuffer layers |
| const bool hasHwcComposition = hwc.hasHwcComposition(id); |
| if (hasHwcComposition) { |
| // when using overlays, we assume a fully transparent framebuffer |
| // NOTE: we could reduce how much we need to clear, for instance |
| // remove where there are opaque FB layers. however, on some |
| // GPUs doing a "clean slate" glClear might be more efficient. |
| // We'll revisit later if needed. |
| glClearColor(0, 0, 0, 0); |
| glClear(GL_COLOR_BUFFER_BIT); |
| } else { |
| // we start with the whole screen area |
| const Region bounds(hw->getBounds()); |
| |
| // we remove the scissor part |
| // we're left with the letterbox region |
| // (common case is that letterbox ends-up being empty) |
| const Region letterbox(bounds.subtract(hw->getScissor())); |
| |
| // compute the area to clear |
| Region region(hw->undefinedRegion.merge(letterbox)); |
| |
| // but limit it to the dirty region |
| region.andSelf(dirty); |
| |
| // screen is already cleared here |
| if (!region.isEmpty()) { |
| // can happen with SurfaceView |
| drawWormhole(hw, region); |
| } |
| } |
| |
| if (hw->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) { |
| // just to be on the safe side, we don't set the |
| // scissor on the main display. It should never be needed |
| // anyways (though in theory it could since the API allows it). |
| const Rect& bounds(hw->getBounds()); |
| const Rect& scissor(hw->getScissor()); |
| if (scissor != bounds) { |
| // scissor doesn't match the screen's dimensions, so we |
| // need to clear everything outside of it and enable |
| // the GL scissor so we don't draw anything where we shouldn't |
| const GLint height = hw->getHeight(); |
| glScissor(scissor.left, height - scissor.bottom, |
| scissor.getWidth(), scissor.getHeight()); |
| // enable scissor for this frame |
| glEnable(GL_SCISSOR_TEST); |
| } |
| } |
| } |
| |
| /* |
| * and then, render the layers targeted at the framebuffer |
| */ |
| |
| const Vector< sp<Layer> >& layers(hw->getVisibleLayersSortedByZ()); |
| const size_t count = layers.size(); |
| const Transform& tr = hw->getTransform(); |
| if (cur != end) { |
| // we're using h/w composer |
| for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) { |
| const sp<Layer>& layer(layers[i]); |
| const Region clip(dirty.intersect(tr.transform(layer->visibleRegion))); |
| if (!clip.isEmpty()) { |
| switch (cur->getCompositionType()) { |
| case HWC_OVERLAY: { |
| if ((cur->getHints() & HWC_HINT_CLEAR_FB) |
| && i |
| && layer->isOpaque() |
| && hasGlesComposition) { |
| // never clear the very first layer since we're |
| // guaranteed the FB is already cleared |
| layer->clearWithOpenGL(hw, clip); |
| } |
| break; |
| } |
| case HWC_FRAMEBUFFER: { |
| layer->draw(hw, clip); |
| break; |
| } |
| case HWC_FRAMEBUFFER_TARGET: { |
| // this should not happen as the iterator shouldn't |
| // let us get there. |
| ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%d)", i); |
| break; |
| } |
| } |
| } |
| layer->setAcquireFence(hw, *cur); |
| } |
| } else { |
| // we're not using h/w composer |
| for (size_t i=0 ; i<count ; ++i) { |
| const sp<Layer>& layer(layers[i]); |
| const Region clip(dirty.intersect( |
| tr.transform(layer->visibleRegion))); |
| if (!clip.isEmpty()) { |
| layer->draw(hw, clip); |
| } |
| } |
| } |
| |
| // disable scissor at the end of the frame |
| glDisable(GL_SCISSOR_TEST); |
| } |
| |
| void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw, |
| const Region& region) const |
| { |
| glDisable(GL_TEXTURE_EXTERNAL_OES); |
| glDisable(GL_TEXTURE_2D); |
| glDisable(GL_BLEND); |
| glColor4f(0,0,0,0); |
| |
| const int32_t height = hw->getHeight(); |
| Region::const_iterator it = region.begin(); |
| Region::const_iterator const end = region.end(); |
| while (it != end) { |
| const Rect& r = *it++; |
| GLfloat vertices[][2] = { |
| { (GLfloat) r.left, (GLfloat) (height - r.top) }, |
| { (GLfloat) r.left, (GLfloat) (height - r.bottom) }, |
| { (GLfloat) r.right, (GLfloat) (height - r.bottom) }, |
| { (GLfloat) r.right, (GLfloat) (height - r.top) } |
| }; |
| glVertexPointer(2, GL_FLOAT, 0, vertices); |
| glDrawArrays(GL_TRIANGLE_FAN, 0, 4); |
| } |
| } |
| |
| void SurfaceFlinger::addClientLayer(const sp<Client>& client, |
| const sp<IBinder>& handle, |
| const sp<IGraphicBufferProducer>& gbc, |
| const sp<Layer>& lbc) |
| { |
| // attach this layer to the client |
| client->attachLayer(handle, lbc); |
| |
| // add this layer to the current state list |
| Mutex::Autolock _l(mStateLock); |
| mCurrentState.layersSortedByZ.add(lbc); |
| mGraphicBufferProducerList.add(gbc->asBinder()); |
| } |
| |
| status_t SurfaceFlinger::removeLayer(const sp<Layer>& layer) |
| { |
| Mutex::Autolock _l(mStateLock); |
| ssize_t index = mCurrentState.layersSortedByZ.remove(layer); |
| if (index >= 0) { |
| mLayersPendingRemoval.push(layer); |
| mLayersRemoved = true; |
| setTransactionFlags(eTransactionNeeded); |
| return NO_ERROR; |
| } |
| return status_t(index); |
| } |
| |
| uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags) |
| { |
| return android_atomic_release_load(&mTransactionFlags); |
| } |
| |
| uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) |
| { |
| return android_atomic_and(~flags, &mTransactionFlags) & flags; |
| } |
| |
| uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) |
| { |
| uint32_t old = android_atomic_or(flags, &mTransactionFlags); |
| if ((old & flags)==0) { // wake the server up |
| signalTransaction(); |
| } |
| return old; |
| } |
| |
| void SurfaceFlinger::setTransactionState( |
| const Vector<ComposerState>& state, |
| const Vector<DisplayState>& displays, |
| uint32_t flags) |
| { |
| ATRACE_CALL(); |
| Mutex::Autolock _l(mStateLock); |
| uint32_t transactionFlags = 0; |
| |
| if (flags & eAnimation) { |
| // For window updates that are part of an animation we must wait for |
| // previous animation "frames" to be handled. |
| while (mAnimTransactionPending) { |
| status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5)); |
| if (CC_UNLIKELY(err != NO_ERROR)) { |
| // just in case something goes wrong in SF, return to the |
| // caller after a few seconds. |
| ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out " |
| "waiting for previous animation frame"); |
| mAnimTransactionPending = false; |
| break; |
| } |
| } |
| } |
| |
| size_t count = displays.size(); |
| for (size_t i=0 ; i<count ; i++) { |
| const DisplayState& s(displays[i]); |
| transactionFlags |= setDisplayStateLocked(s); |
| } |
| |
| count = state.size(); |
| for (size_t i=0 ; i<count ; i++) { |
| const ComposerState& s(state[i]); |
| // Here we need to check that the interface we're given is indeed |
| // one of our own. A malicious client could give us a NULL |
| // IInterface, or one of its own or even one of our own but a |
| // different type. All these situations would cause us to crash. |
| // |
| // NOTE: it would be better to use RTTI as we could directly check |
| // that we have a Client*. however, RTTI is disabled in Android. |
| if (s.client != NULL) { |
| sp<IBinder> binder = s.client->asBinder(); |
| if (binder != NULL) { |
| String16 desc(binder->getInterfaceDescriptor()); |
| if (desc == ISurfaceComposerClient::descriptor) { |
| sp<Client> client( static_cast<Client *>(s.client.get()) ); |
| transactionFlags |= setClientStateLocked(client, s.state); |
| } |
| } |
| } |
| } |
| |
| if (transactionFlags) { |
| // this triggers the transaction |
| setTransactionFlags(transactionFlags); |
| |
| // if this is a synchronous transaction, wait for it to take effect |
| // before returning. |
| if (flags & eSynchronous) { |
| mTransactionPending = true; |
| } |
| if (flags & eAnimation) { |
| mAnimTransactionPending = true; |
| } |
| while (mTransactionPending) { |
| status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5)); |
| if (CC_UNLIKELY(err != NO_ERROR)) { |
| // just in case something goes wrong in SF, return to the |
| // called after a few seconds. |
| ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!"); |
| mTransactionPending = false; |
| break; |
| } |
| } |
| } |
| } |
| |
| uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s) |
| { |
| ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token); |
| if (dpyIdx < 0) |
| return 0; |
| |
| uint32_t flags = 0; |
| DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx)); |
| if (disp.isValid()) { |
| const uint32_t what = s.what; |
| if (what & DisplayState::eSurfaceChanged) { |
| if (disp.surface->asBinder() != s.surface->asBinder()) { |
| disp.surface = s.surface; |
| flags |= eDisplayTransactionNeeded; |
| } |
| } |
| if (what & DisplayState::eLayerStackChanged) { |
| if (disp.layerStack != s.layerStack) { |
| disp.layerStack = s.layerStack; |
| flags |= eDisplayTransactionNeeded; |
| } |
| } |
| if (what & DisplayState::eDisplayProjectionChanged) { |
| if (disp.orientation != s.orientation) { |
| disp.orientation = s.orientation; |
| flags |= eDisplayTransactionNeeded; |
| } |
| if (disp.frame != s.frame) { |
| disp.frame = s.frame; |
| flags |= eDisplayTransactionNeeded; |
| } |
| if (disp.viewport != s.viewport) { |
| disp.viewport = s.viewport; |
| flags |= eDisplayTransactionNeeded; |
| } |
| } |
| } |
| return flags; |
| } |
| |
| uint32_t SurfaceFlinger::setClientStateLocked( |
| const sp<Client>& client, |
| const layer_state_t& s) |
| { |
| uint32_t flags = 0; |
| sp<Layer> layer(client->getLayerUser(s.surface)); |
| if (layer != 0) { |
| const uint32_t what = s.what; |
| if (what & layer_state_t::ePositionChanged) { |
| if (layer->setPosition(s.x, s.y)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eLayerChanged) { |
| // NOTE: index needs to be calculated before we update the state |
| ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); |
| if (layer->setLayer(s.z)) { |
| mCurrentState.layersSortedByZ.removeAt(idx); |
| mCurrentState.layersSortedByZ.add(layer); |
| // we need traversal (state changed) |
| // AND transaction (list changed) |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eSizeChanged) { |
| if (layer->setSize(s.w, s.h)) { |
| flags |= eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eAlphaChanged) { |
| if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f))) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eMatrixChanged) { |
| if (layer->setMatrix(s.matrix)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eTransparentRegionChanged) { |
| if (layer->setTransparentRegionHint(s.transparentRegion)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eVisibilityChanged) { |
| if (layer->setFlags(s.flags, s.mask)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eCropChanged) { |
| if (layer->setCrop(s.crop)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eLayerStackChanged) { |
| // NOTE: index needs to be calculated before we update the state |
| ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); |
| if (layer->setLayerStack(s.layerStack)) { |
| mCurrentState.layersSortedByZ.removeAt(idx); |
| mCurrentState.layersSortedByZ.add(layer); |
| // we need traversal (state changed) |
| // AND transaction (list changed) |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } |
| } |
| return flags; |
| } |
| |
| status_t SurfaceFlinger::createLayer( |
| const String8& name, |
| const sp<Client>& client, |
| uint32_t w, uint32_t h, PixelFormat format, uint32_t flags, |
| sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp) |
| { |
| //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string()); |
| if (int32_t(w|h) < 0) { |
| ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)", |
| int(w), int(h)); |
| return BAD_VALUE; |
| } |
| |
| status_t result = NO_ERROR; |
| |
| sp<Layer> layer; |
| |
| switch (flags & ISurfaceComposerClient::eFXSurfaceMask) { |
| case ISurfaceComposerClient::eFXSurfaceNormal: |
| result = createNormalLayer(client, |
| name, w, h, flags, format, |
| handle, gbp, &layer); |
| break; |
| case ISurfaceComposerClient::eFXSurfaceDim: |
| result = createDimLayer(client, |
| name, w, h, flags, |
| handle, gbp, &layer); |
| break; |
| default: |
| result = BAD_VALUE; |
| break; |
| } |
| |
| if (result == NO_ERROR) { |
| addClientLayer(client, *handle, *gbp, layer); |
| setTransactionFlags(eTransactionNeeded); |
| } |
| return result; |
| } |
| |
| status_t SurfaceFlinger::createNormalLayer(const sp<Client>& client, |
| const String8& name, uint32_t w, uint32_t h, uint32_t flags, PixelFormat& format, |
| sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer) |
| { |
| // initialize the surfaces |
| switch (format) { |
| case PIXEL_FORMAT_TRANSPARENT: |
| case PIXEL_FORMAT_TRANSLUCENT: |
| format = PIXEL_FORMAT_RGBA_8888; |
| break; |
| case PIXEL_FORMAT_OPAQUE: |
| #ifdef NO_RGBX_8888 |
| format = PIXEL_FORMAT_RGB_565; |
| #else |
| format = PIXEL_FORMAT_RGBX_8888; |
| #endif |
| break; |
| } |
| |
| #ifdef NO_RGBX_8888 |
| if (format == PIXEL_FORMAT_RGBX_8888) |
| format = PIXEL_FORMAT_RGBA_8888; |
| #endif |
| |
| *outLayer = new Layer(this, client, name, w, h, flags); |
| status_t err = (*outLayer)->setBuffers(w, h, format, flags); |
| if (err == NO_ERROR) { |
| *handle = (*outLayer)->getHandle(); |
| *gbp = (*outLayer)->getBufferQueue(); |
| } |
| |
| ALOGE_IF(err, "createNormalLayer() failed (%s)", strerror(-err)); |
| return err; |
| } |
| |
| status_t SurfaceFlinger::createDimLayer(const sp<Client>& client, |
| const String8& name, uint32_t w, uint32_t h, uint32_t flags, |
| sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer) |
| { |
| *outLayer = new LayerDim(this, client, name, w, h, flags); |
| *handle = (*outLayer)->getHandle(); |
| *gbp = (*outLayer)->getBufferQueue(); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, const sp<IBinder>& handle) |
| { |
| // called by the window manager when it wants to remove a Layer |
| status_t err = NO_ERROR; |
| sp<Layer> l(client->getLayerUser(handle)); |
| if (l != NULL) { |
| err = removeLayer(l); |
| ALOGE_IF(err<0 && err != NAME_NOT_FOUND, |
| "error removing layer=%p (%s)", l.get(), strerror(-err)); |
| } |
| return err; |
| } |
| |
| status_t SurfaceFlinger::onLayerDestroyed(const wp<Layer>& layer) |
| { |
| // called by ~LayerCleaner() when all references to the IBinder (handle) |
| // are gone |
| status_t err = NO_ERROR; |
| sp<Layer> l(layer.promote()); |
| if (l != NULL) { |
| err = removeLayer(l); |
| ALOGE_IF(err<0 && err != NAME_NOT_FOUND, |
| "error removing layer=%p (%s)", l.get(), strerror(-err)); |
| } |
| return err; |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void SurfaceFlinger::onInitializeDisplays() { |
| // reset screen orientation and use primary layer stack |
| Vector<ComposerState> state; |
| Vector<DisplayState> displays; |
| DisplayState d; |
| d.what = DisplayState::eDisplayProjectionChanged | |
| DisplayState::eLayerStackChanged; |
| d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY]; |
| d.layerStack = 0; |
| d.orientation = DisplayState::eOrientationDefault; |
| d.frame.makeInvalid(); |
| d.viewport.makeInvalid(); |
| displays.add(d); |
| setTransactionState(state, displays, 0); |
| onScreenAcquired(getDefaultDisplayDevice()); |
| } |
| |
| void SurfaceFlinger::initializeDisplays() { |
| class MessageScreenInitialized : public MessageBase { |
| SurfaceFlinger* flinger; |
| public: |
| MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { } |
| virtual bool handler() { |
| flinger->onInitializeDisplays(); |
| return true; |
| } |
| }; |
| sp<MessageBase> msg = new MessageScreenInitialized(this); |
| postMessageAsync(msg); // we may be called from main thread, use async message |
| } |
| |
| |
| void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) { |
| ALOGD("Screen acquired, type=%d flinger=%p", hw->getDisplayType(), this); |
| if (hw->isScreenAcquired()) { |
| // this is expected, e.g. when power manager wakes up during boot |
| ALOGD(" screen was previously acquired"); |
| return; |
| } |
| |
| hw->acquireScreen(); |
| int32_t type = hw->getDisplayType(); |
| if (type < DisplayDevice::NUM_DISPLAY_TYPES) { |
| // built-in display, tell the HWC |
| getHwComposer().acquire(type); |
| |
| if (type == DisplayDevice::DISPLAY_PRIMARY) { |
| // FIXME: eventthread only knows about the main display right now |
| mEventThread->onScreenAcquired(); |
| } |
| } |
| mVisibleRegionsDirty = true; |
| repaintEverything(); |
| } |
| |
| void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) { |
| ALOGD("Screen released, type=%d flinger=%p", hw->getDisplayType(), this); |
| if (!hw->isScreenAcquired()) { |
| ALOGD(" screen was previously released"); |
| return; |
| } |
| |
| hw->releaseScreen(); |
| int32_t type = hw->getDisplayType(); |
| if (type < DisplayDevice::NUM_DISPLAY_TYPES) { |
| if (type == DisplayDevice::DISPLAY_PRIMARY) { |
| // FIXME: eventthread only knows about the main display right now |
| mEventThread->onScreenReleased(); |
| } |
| |
| // built-in display, tell the HWC |
| getHwComposer().release(type); |
| } |
| mVisibleRegionsDirty = true; |
| // from this point on, SF will stop drawing on this display |
| } |
| |
| void SurfaceFlinger::unblank(const sp<IBinder>& display) { |
| class MessageScreenAcquired : public MessageBase { |
| SurfaceFlinger& mFlinger; |
| sp<IBinder> mDisplay; |
| public: |
| MessageScreenAcquired(SurfaceFlinger& flinger, |
| const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { } |
| virtual bool handler() { |
| const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay)); |
| if (hw == NULL) { |
| ALOGE("Attempt to unblank null display %p", mDisplay.get()); |
| } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) { |
| ALOGW("Attempt to unblank virtual display"); |
| } else { |
| mFlinger.onScreenAcquired(hw); |
| } |
| return true; |
| } |
| }; |
| sp<MessageBase> msg = new MessageScreenAcquired(*this, display); |
| postMessageSync(msg); |
| } |
| |
| void SurfaceFlinger::blank(const sp<IBinder>& display) { |
| class MessageScreenReleased : public MessageBase { |
| SurfaceFlinger& mFlinger; |
| sp<IBinder> mDisplay; |
| public: |
| MessageScreenReleased(SurfaceFlinger& flinger, |
| const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { } |
| virtual bool handler() { |
| const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay)); |
| if (hw == NULL) { |
| ALOGE("Attempt to blank null display %p", mDisplay.get()); |
| } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) { |
| ALOGW("Attempt to blank virtual display"); |
| } else { |
| mFlinger.onScreenReleased(hw); |
| } |
| return true; |
| } |
| }; |
| sp<MessageBase> msg = new MessageScreenReleased(*this, display); |
| postMessageSync(msg); |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args) |
| { |
| const size_t SIZE = 4096; |
| char buffer[SIZE]; |
| String8 result; |
| |
| if (!PermissionCache::checkCallingPermission(sDump)) { |
| snprintf(buffer, SIZE, "Permission Denial: " |
| "can't dump SurfaceFlinger from pid=%d, uid=%d\n", |
| IPCThreadState::self()->getCallingPid(), |
| IPCThreadState::self()->getCallingUid()); |
| result.append(buffer); |
| } else { |
| // Try to get the main lock, but don't insist if we can't |
| // (this would indicate SF is stuck, but we want to be able to |
| // print something in dumpsys). |
| int retry = 3; |
| while (mStateLock.tryLock()<0 && --retry>=0) { |
| usleep(1000000); |
| } |
| const bool locked(retry >= 0); |
| if (!locked) { |
| snprintf(buffer, SIZE, |
| "SurfaceFlinger appears to be unresponsive, " |
| "dumping anyways (no locks held)\n"); |
| result.append(buffer); |
| } |
| |
| bool dumpAll = true; |
| size_t index = 0; |
| size_t numArgs = args.size(); |
| if (numArgs) { |
| if ((index < numArgs) && |
| (args[index] == String16("--list"))) { |
| index++; |
| listLayersLocked(args, index, result, buffer, SIZE); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--latency"))) { |
| index++; |
| dumpStatsLocked(args, index, result, buffer, SIZE); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--latency-clear"))) { |
| index++; |
| clearStatsLocked(args, index, result, buffer, SIZE); |
| dumpAll = false; |
| } |
| } |
| |
| if (dumpAll) { |
| dumpAllLocked(result, buffer, SIZE); |
| } |
| |
| if (locked) { |
| mStateLock.unlock(); |
| } |
| } |
| write(fd, result.string(), result.size()); |
| return NO_ERROR; |
| } |
| |
| void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index, |
| String8& result, char* buffer, size_t SIZE) const |
| { |
| const LayerVector& currentLayers = mCurrentState.layersSortedByZ; |
| const size_t count = currentLayers.size(); |
| for (size_t i=0 ; i<count ; i++) { |
| const sp<Layer>& layer(currentLayers[i]); |
| snprintf(buffer, SIZE, "%s\n", layer->getName().string()); |
| result.append(buffer); |
| } |
| } |
| |
| void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index, |
| String8& result, char* buffer, size_t SIZE) const |
| { |
| String8 name; |
| if (index < args.size()) { |
| name = String8(args[index]); |
| index++; |
| } |
| |
| const nsecs_t period = |
| getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY); |
| result.appendFormat("%lld\n", period); |
| |
| if (name.isEmpty()) { |
| mAnimFrameTracker.dump(result); |
| } else { |
| const LayerVector& currentLayers = mCurrentState.layersSortedByZ; |
| const size_t count = currentLayers.size(); |
| for (size_t i=0 ; i<count ; i++) { |
| const sp<Layer>& layer(currentLayers[i]); |
| if (name == layer->getName()) { |
| layer->dumpStats(result, buffer, SIZE); |
| } |
| } |
| } |
| } |
| |
| void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index, |
| String8& result, char* buffer, size_t SIZE) |
| { |
| String8 name; |
| if (index < args.size()) { |
| name = String8(args[index]); |
| index++; |
| } |
| |
| const LayerVector& currentLayers = mCurrentState.layersSortedByZ; |
| const size_t count = currentLayers.size(); |
| for (size_t i=0 ; i<count ; i++) { |
| const sp<Layer>& layer(currentLayers[i]); |
| if (name.isEmpty() || (name == layer->getName())) { |
| layer->clearStats(); |
| } |
| } |
| |
| mAnimFrameTracker.clear(); |
| } |
| |
| /*static*/ void SurfaceFlinger::appendSfConfigString(String8& result) |
| { |
| static const char* config = |
| " [sf" |
| #ifdef NO_RGBX_8888 |
| " NO_RGBX_8888" |
| #endif |
| #ifdef HAS_CONTEXT_PRIORITY |
| " HAS_CONTEXT_PRIORITY" |
| #endif |
| #ifdef NEVER_DEFAULT_TO_ASYNC_MODE |
| " NEVER_DEFAULT_TO_ASYNC_MODE" |
| #endif |
| #ifdef TARGET_DISABLE_TRIPLE_BUFFERING |
| " TARGET_DISABLE_TRIPLE_BUFFERING" |
| #endif |
| "]"; |
| result.append(config); |
| } |
| |
| void SurfaceFlinger::dumpAllLocked( |
| String8& result, char* buffer, size_t SIZE) const |
| { |
| // figure out if we're stuck somewhere |
| const nsecs_t now = systemTime(); |
| const nsecs_t inSwapBuffers(mDebugInSwapBuffers); |
| const nsecs_t inTransaction(mDebugInTransaction); |
| nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0; |
| nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0; |
| |
| /* |
| * Dump library configuration. |
| */ |
| result.append("Build configuration:"); |
| appendSfConfigString(result); |
| appendUiConfigString(result); |
| appendGuiConfigString(result); |
| result.append("\n"); |
| |
| result.append("Sync configuration: "); |
| result.append(SyncFeatures::getInstance().toString()); |
| result.append("\n"); |
| |
| /* |
| * Dump the visible layer list |
| */ |
| const LayerVector& currentLayers = mCurrentState.layersSortedByZ; |
| const size_t count = currentLayers.size(); |
| snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count); |
| result.append(buffer); |
| for (size_t i=0 ; i<count ; i++) { |
| const sp<Layer>& layer(currentLayers[i]); |
| layer->dump(result, buffer, SIZE); |
| } |
| |
| /* |
| * Dump Display state |
| */ |
| |
| snprintf(buffer, SIZE, "Displays (%d entries)\n", mDisplays.size()); |
| result.append(buffer); |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| const sp<const DisplayDevice>& hw(mDisplays[dpy]); |
| hw->dump(result, buffer, SIZE); |
| } |
| |
| /* |
| * Dump SurfaceFlinger global state |
| */ |
| |
| snprintf(buffer, SIZE, "SurfaceFlinger global state:\n"); |
| result.append(buffer); |
| |
| HWComposer& hwc(getHwComposer()); |
| sp<const DisplayDevice> hw(getDefaultDisplayDevice()); |
| const GLExtensions& extensions(GLExtensions::getInstance()); |
| |
| snprintf(buffer, SIZE, "EGL implementation : %s\n", |
| eglQueryStringImplementationANDROID(mEGLDisplay, EGL_VERSION)); |
| result.append(buffer); |
| snprintf(buffer, SIZE, "%s\n", |
| eglQueryStringImplementationANDROID(mEGLDisplay, EGL_EXTENSIONS)); |
| result.append(buffer); |
| |
| snprintf(buffer, SIZE, "GLES: %s, %s, %s\n", |
| extensions.getVendor(), |
| extensions.getRenderer(), |
| extensions.getVersion()); |
| result.append(buffer); |
| snprintf(buffer, SIZE, "%s\n", extensions.getExtension()); |
| result.append(buffer); |
| |
| hw->undefinedRegion.dump(result, "undefinedRegion"); |
| snprintf(buffer, SIZE, |
| " orientation=%d, canDraw=%d\n", |
| hw->getOrientation(), hw->canDraw()); |
| result.append(buffer); |
| snprintf(buffer, SIZE, |
| " last eglSwapBuffers() time: %f us\n" |
| " last transaction time : %f us\n" |
| " transaction-flags : %08x\n" |
| " refresh-rate : %f fps\n" |
| " x-dpi : %f\n" |
| " y-dpi : %f\n" |
| " EGL_NATIVE_VISUAL_ID : %d\n" |
| " gpu_to_cpu_unsupported : %d\n" |
| , |
| mLastSwapBufferTime/1000.0, |
| mLastTransactionTime/1000.0, |
| mTransactionFlags, |
| 1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY), |
| hwc.getDpiX(HWC_DISPLAY_PRIMARY), |
| hwc.getDpiY(HWC_DISPLAY_PRIMARY), |
| mEGLNativeVisualId, |
| !mGpuToCpuSupported); |
| result.append(buffer); |
| |
| snprintf(buffer, SIZE, " eglSwapBuffers time: %f us\n", |
| inSwapBuffersDuration/1000.0); |
| result.append(buffer); |
| |
| snprintf(buffer, SIZE, " transaction time: %f us\n", |
| inTransactionDuration/1000.0); |
| result.append(buffer); |
| |
| /* |
| * VSYNC state |
| */ |
| mEventThread->dump(result, buffer, SIZE); |
| |
| /* |
| * Dump HWComposer state |
| */ |
| snprintf(buffer, SIZE, "h/w composer state:\n"); |
| result.append(buffer); |
| snprintf(buffer, SIZE, " h/w composer %s and %s\n", |
| hwc.initCheck()==NO_ERROR ? "present" : "not present", |
| (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled"); |
| result.append(buffer); |
| hwc.dump(result, buffer, SIZE); |
| |
| /* |
| * Dump gralloc state |
| */ |
| const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get()); |
| alloc.dump(result); |
| } |
| |
| const Vector< sp<Layer> >& |
| SurfaceFlinger::getLayerSortedByZForHwcDisplay(int id) { |
| // Note: mStateLock is held here |
| wp<IBinder> dpy; |
| for (size_t i=0 ; i<mDisplays.size() ; i++) { |
| if (mDisplays.valueAt(i)->getHwcDisplayId() == id) { |
| dpy = mDisplays.keyAt(i); |
| break; |
| } |
| } |
| if (dpy == NULL) { |
| ALOGE("getLayerSortedByZForHwcDisplay: invalid hwc display id %d", id); |
| // Just use the primary display so we have something to return |
| dpy = getBuiltInDisplay(DisplayDevice::DISPLAY_PRIMARY); |
| } |
| return getDisplayDevice(dpy)->getVisibleLayersSortedByZ(); |
| } |
| |
| bool SurfaceFlinger::startDdmConnection() |
| { |
| void* libddmconnection_dso = |
| dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW); |
| if (!libddmconnection_dso) { |
| return false; |
| } |
| void (*DdmConnection_start)(const char* name); |
| DdmConnection_start = |
| (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start"); |
| if (!DdmConnection_start) { |
| dlclose(libddmconnection_dso); |
| return false; |
| } |
| (*DdmConnection_start)(getServiceName()); |
| return true; |
| } |
| |
| status_t SurfaceFlinger::onTransact( |
| uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) |
| { |
| switch (code) { |
| case CREATE_CONNECTION: |
| case CREATE_DISPLAY: |
| case SET_TRANSACTION_STATE: |
| case BOOT_FINISHED: |
| case BLANK: |
| case UNBLANK: |
| { |
| // codes that require permission check |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int pid = ipc->getCallingPid(); |
| const int uid = ipc->getCallingUid(); |
| if ((uid != AID_GRAPHICS) && |
| !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) { |
| ALOGE("Permission Denial: " |
| "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid); |
| return PERMISSION_DENIED; |
| } |
| break; |
| } |
| case CAPTURE_SCREEN: |
| { |
| // codes that require permission check |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int pid = ipc->getCallingPid(); |
| const int uid = ipc->getCallingUid(); |
| if ((uid != AID_GRAPHICS) && |
| !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) { |
| ALOGE("Permission Denial: " |
| "can't read framebuffer pid=%d, uid=%d", pid, uid); |
| return PERMISSION_DENIED; |
| } |
| break; |
| } |
| } |
| |
| status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags); |
| if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) { |
| CHECK_INTERFACE(ISurfaceComposer, data, reply); |
| if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) { |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int pid = ipc->getCallingPid(); |
| const int uid = ipc->getCallingUid(); |
| ALOGE("Permission Denial: " |
| "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid); |
| return PERMISSION_DENIED; |
| } |
| int n; |
| switch (code) { |
| case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE |
| case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE |
| return NO_ERROR; |
| case 1002: // SHOW_UPDATES |
| n = data.readInt32(); |
| mDebugRegion = n ? n : (mDebugRegion ? 0 : 1); |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| case 1004:{ // repaint everything |
| repaintEverything(); |
| return NO_ERROR; |
| } |
| case 1005:{ // force transaction |
| setTransactionFlags( |
| eTransactionNeeded| |
| eDisplayTransactionNeeded| |
| eTraversalNeeded); |
| return NO_ERROR; |
| } |
| case 1006:{ // send empty update |
| signalRefresh(); |
| return NO_ERROR; |
| } |
| case 1008: // toggle use of hw composer |
| n = data.readInt32(); |
| mDebugDisableHWC = n ? 1 : 0; |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| case 1009: // toggle use of transform hint |
| n = data.readInt32(); |
| mDebugDisableTransformHint = n ? 1 : 0; |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| case 1010: // interrogate. |
| reply->writeInt32(0); |
| reply->writeInt32(0); |
| reply->writeInt32(mDebugRegion); |
| reply->writeInt32(0); |
| reply->writeInt32(mDebugDisableHWC); |
| return NO_ERROR; |
| case 1013: { |
| Mutex::Autolock _l(mStateLock); |
| sp<const DisplayDevice> hw(getDefaultDisplayDevice()); |
| reply->writeInt32(hw->getPageFlipCount()); |
| } |
| return NO_ERROR; |
| } |
| } |
| return err; |
| } |
| |
| void SurfaceFlinger::repaintEverything() { |
| android_atomic_or(1, &mRepaintEverything); |
| signalTransaction(); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // Capture screen into an IGraphiBufferProducer |
| // --------------------------------------------------------------------------- |
| |
| status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display, |
| const sp<IGraphicBufferProducer>& producer, |
| uint32_t reqWidth, uint32_t reqHeight, |
| uint32_t minLayerZ, uint32_t maxLayerZ, |
| bool isCpuConsumer) { |
| |
| if (CC_UNLIKELY(display == 0)) |
| return BAD_VALUE; |
| |
| if (CC_UNLIKELY(producer == 0)) |
| return BAD_VALUE; |
| |
| class MessageCaptureScreen : public MessageBase { |
| SurfaceFlinger* flinger; |
| sp<IBinder> display; |
| sp<IGraphicBufferProducer> producer; |
| uint32_t reqWidth, reqHeight; |
| uint32_t minLayerZ,maxLayerZ; |
| bool isCpuConsumer; |
| status_t result; |
| public: |
| MessageCaptureScreen(SurfaceFlinger* flinger, |
| const sp<IBinder>& display, |
| const sp<IGraphicBufferProducer>& producer, |
| uint32_t reqWidth, uint32_t reqHeight, |
| uint32_t minLayerZ, uint32_t maxLayerZ, bool isCpuConsumer) |
| : flinger(flinger), display(display), producer(producer), |
| reqWidth(reqWidth), reqHeight(reqHeight), |
| minLayerZ(minLayerZ), maxLayerZ(maxLayerZ), |
| isCpuConsumer(isCpuConsumer), |
| result(PERMISSION_DENIED) |
| { |
| } |
| status_t getResult() const { |
| return result; |
| } |
| virtual bool handler() { |
| Mutex::Autolock _l(flinger->mStateLock); |
| sp<const DisplayDevice> hw(flinger->getDisplayDevice(display)); |
| |
| bool useReadPixels = false; |
| if (isCpuConsumer) { |
| bool formatSupportedBytBitmap = |
| (flinger->mEGLNativeVisualId == HAL_PIXEL_FORMAT_RGBA_8888) || |
| (flinger->mEGLNativeVisualId == HAL_PIXEL_FORMAT_RGBX_8888); |
| if (formatSupportedBytBitmap == false) { |
| // the pixel format we have is not compatible with |
| // Bitmap.java, which is the likely client of this API, |
| // so we just revert to glReadPixels() in that case. |
| useReadPixels = true; |
| } |
| if (flinger->mGpuToCpuSupported == false) { |
| // When we know the GL->CPU path works, we can call |
| // captureScreenImplLocked() directly, instead of using the |
| // glReadPixels() workaround. |
| useReadPixels = true; |
| } |
| } |
| |
| if (!useReadPixels) { |
| result = flinger->captureScreenImplLocked(hw, |
| producer, reqWidth, reqHeight, minLayerZ, maxLayerZ); |
| } else { |
| result = flinger->captureScreenImplCpuConsumerLocked(hw, |
| producer, reqWidth, reqHeight, minLayerZ, maxLayerZ); |
| } |
| return true; |
| } |
| }; |
| |
| sp<MessageBase> msg = new MessageCaptureScreen(this, |
| display, producer, reqWidth, reqHeight, minLayerZ, maxLayerZ, |
| isCpuConsumer); |
| status_t res = postMessageSync(msg); |
| if (res == NO_ERROR) { |
| res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult(); |
| } |
| return res; |
| } |
| |
| status_t SurfaceFlinger::captureScreenImplLocked( |
| const sp<const DisplayDevice>& hw, |
| const sp<IGraphicBufferProducer>& producer, |
| uint32_t reqWidth, uint32_t reqHeight, |
| uint32_t minLayerZ, uint32_t maxLayerZ) |
| { |
| ATRACE_CALL(); |
| |
| // get screen geometry |
| const uint32_t hw_w = hw->getWidth(); |
| const uint32_t hw_h = hw->getHeight(); |
| |
| // if we have secure windows on this display, never allow the screen capture |
| if (hw->getSecureLayerVisible()) { |
| ALOGW("FB is protected: PERMISSION_DENIED"); |
| return PERMISSION_DENIED; |
| } |
| |
| if ((reqWidth > hw_w) || (reqHeight > hw_h)) { |
| ALOGE("size mismatch (%d, %d) > (%d, %d)", |
| reqWidth, reqHeight, hw_w, hw_h); |
| return BAD_VALUE; |
| } |
| |
| reqWidth = (!reqWidth) ? hw_w : reqWidth; |
| reqHeight = (!reqHeight) ? hw_h : reqHeight; |
| const bool filtering = reqWidth != hw_w || reqWidth != hw_h; |
| |
| // Create a surface to render into |
| sp<Surface> surface = new Surface(producer); |
| ANativeWindow* const window = surface.get(); |
| |
| // set the buffer size to what the user requested |
| native_window_set_buffers_user_dimensions(window, reqWidth, reqHeight); |
| |
| // and create the corresponding EGLSurface |
| EGLSurface eglSurface = eglCreateWindowSurface( |
| mEGLDisplay, mEGLConfig, window, NULL); |
| if (eglSurface == EGL_NO_SURFACE) { |
| ALOGE("captureScreenImplLocked: eglCreateWindowSurface() failed 0x%4x", |
| eglGetError()); |
| return BAD_VALUE; |
| } |
| |
| if (!eglMakeCurrent(mEGLDisplay, eglSurface, eglSurface, mEGLContext)) { |
| ALOGE("captureScreenImplLocked: eglMakeCurrent() failed 0x%4x", |
| eglGetError()); |
| eglDestroySurface(mEGLDisplay, eglSurface); |
| return BAD_VALUE; |
| } |
| |
| // make sure to clear all GL error flags |
| while ( glGetError() != GL_NO_ERROR ) ; |
| |
| // set-up our viewport |
| glViewport(0, 0, reqWidth, reqHeight); |
| glMatrixMode(GL_PROJECTION); |
| glLoadIdentity(); |
| glOrthof(0, hw_w, 0, hw_h, 0, 1); |
| glMatrixMode(GL_MODELVIEW); |
| glLoadIdentity(); |
| |
| // redraw the screen entirely... |
| glDisable(GL_TEXTURE_EXTERNAL_OES); |
| glDisable(GL_TEXTURE_2D); |
| glClearColor(0,0,0,1); |
| glClear(GL_COLOR_BUFFER_BIT); |
| |
| const LayerVector& layers( mDrawingState.layersSortedByZ ); |
| const size_t count = layers.size(); |
| for (size_t i=0 ; i<count ; ++i) { |
| const sp<Layer>& layer(layers[i]); |
| const Layer::State& state(layer->drawingState()); |
| if (state.layerStack == hw->getLayerStack()) { |
| if (state.z >= minLayerZ && state.z <= maxLayerZ) { |
| if (layer->isVisible()) { |
| if (filtering) layer->setFiltering(true); |
| layer->draw(hw); |
| if (filtering) layer->setFiltering(false); |
| } |
| } |
| } |
| } |
| |
| // compositionComplete is needed for older driver |
| hw->compositionComplete(); |
| |
| // and finishing things up... |
| if (eglSwapBuffers(mEGLDisplay, eglSurface) != EGL_TRUE) { |
| ALOGE("captureScreenImplLocked: eglSwapBuffers() failed 0x%4x", |
| eglGetError()); |
| eglDestroySurface(mEGLDisplay, eglSurface); |
| return BAD_VALUE; |
| } |
| |
| eglDestroySurface(mEGLDisplay, eglSurface); |
| |
| return NO_ERROR; |
| } |
| |
| |
| status_t SurfaceFlinger::captureScreenImplCpuConsumerLocked( |
| const sp<const DisplayDevice>& hw, |
| const sp<IGraphicBufferProducer>& producer, |
| uint32_t reqWidth, uint32_t reqHeight, |
| uint32_t minLayerZ, uint32_t maxLayerZ) |
| { |
| ATRACE_CALL(); |
| |
| if (!GLExtensions::getInstance().haveFramebufferObject()) { |
| return INVALID_OPERATION; |
| } |
| |
| // create the texture that will receive the screenshot, later we'll |
| // attach a FBO to it so we can call glReadPixels(). |
| GLuint tname; |
| glGenTextures(1, &tname); |
| glBindTexture(GL_TEXTURE_2D, tname); |
| glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); |
| glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); |
| |
| // the GLConsumer will provide the BufferQueue |
| sp<GLConsumer> consumer = new GLConsumer(tname, true, GL_TEXTURE_2D); |
| consumer->getBufferQueue()->setDefaultBufferFormat(HAL_PIXEL_FORMAT_RGBA_8888); |
| |
| // call the new screenshot taking code, passing a BufferQueue to it |
| status_t result = captureScreenImplLocked(hw, |
| consumer->getBufferQueue(), reqWidth, reqHeight, minLayerZ, maxLayerZ); |
| |
| if (result == NO_ERROR) { |
| result = consumer->updateTexImage(); |
| if (result == NO_ERROR) { |
| // create a FBO |
| GLuint name; |
| glGenFramebuffersOES(1, &name); |
| glBindFramebufferOES(GL_FRAMEBUFFER_OES, name); |
| glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES, |
| GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0); |
| |
| reqWidth = consumer->getCurrentBuffer()->getWidth(); |
| reqHeight = consumer->getCurrentBuffer()->getHeight(); |
| |
| { |
| // in this block we render the screenshot into the |
| // CpuConsumer using glReadPixels from our GLConsumer, |
| // Some older drivers don't support the GL->CPU path so |
| // have to wrap it with a CPU->CPU path, which is what |
| // glReadPixels essentially is |
| |
| sp<Surface> sur = new Surface(producer); |
| ANativeWindow* window = sur.get(); |
| ANativeWindowBuffer* buffer; |
| void* vaddr; |
| |
| if (native_window_api_connect(window, |
| NATIVE_WINDOW_API_CPU) == NO_ERROR) { |
| int err = 0; |
| err = native_window_set_buffers_dimensions(window, |
| reqWidth, reqHeight); |
| err |= native_window_set_buffers_format(window, |
| HAL_PIXEL_FORMAT_RGBA_8888); |
| err |= native_window_set_usage(window, |
| GRALLOC_USAGE_SW_READ_OFTEN | |
| GRALLOC_USAGE_SW_WRITE_OFTEN); |
| |
| if (err == NO_ERROR) { |
| if (native_window_dequeue_buffer_and_wait(window, |
| &buffer) == NO_ERROR) { |
| sp<GraphicBuffer> buf = |
| static_cast<GraphicBuffer*>(buffer); |
| if (buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, |
| &vaddr) == NO_ERROR) { |
| if (buffer->stride != int(reqWidth)) { |
| // we're unlucky here, glReadPixels is |
| // not able to deal with a stride not |
| // equal to the width. |
| uint32_t* tmp = new uint32_t[reqWidth*reqHeight]; |
| if (tmp != NULL) { |
| glReadPixels(0, 0, reqWidth, reqHeight, |
| GL_RGBA, GL_UNSIGNED_BYTE, tmp); |
| for (size_t y=0 ; y<reqHeight ; y++) { |
| memcpy((uint32_t*)vaddr + y*buffer->stride, |
| tmp + y*reqWidth, reqWidth*4); |
| } |
| delete [] tmp; |
| } |
| } else { |
| glReadPixels(0, 0, reqWidth, reqHeight, |
| GL_RGBA, GL_UNSIGNED_BYTE, vaddr); |
| } |
| buf->unlock(); |
| } |
| window->queueBuffer(window, buffer, -1); |
| } |
| } |
| native_window_api_disconnect(window, NATIVE_WINDOW_API_CPU); |
| } |
| } |
| |
| // back to main framebuffer |
| glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0); |
| glDeleteFramebuffersOES(1, &name); |
| } |
| } |
| |
| glDeleteTextures(1, &tname); |
| |
| DisplayDevice::makeCurrent(mEGLDisplay, |
| getDefaultDisplayDevice(), mEGLContext); |
| |
| return result; |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| SurfaceFlinger::LayerVector::LayerVector() { |
| } |
| |
| SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs) |
| : SortedVector<sp<Layer> >(rhs) { |
| } |
| |
| int SurfaceFlinger::LayerVector::do_compare(const void* lhs, |
| const void* rhs) const |
| { |
| // sort layers per layer-stack, then by z-order and finally by sequence |
| const sp<Layer>& l(*reinterpret_cast<const sp<Layer>*>(lhs)); |
| const sp<Layer>& r(*reinterpret_cast<const sp<Layer>*>(rhs)); |
| |
| uint32_t ls = l->currentState().layerStack; |
| uint32_t rs = r->currentState().layerStack; |
| if (ls != rs) |
| return ls - rs; |
| |
| uint32_t lz = l->currentState().z; |
| uint32_t rz = r->currentState().z; |
| if (lz != rz) |
| return lz - rz; |
| |
| return l->sequence - r->sequence; |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| SurfaceFlinger::DisplayDeviceState::DisplayDeviceState() |
| : type(DisplayDevice::DISPLAY_ID_INVALID) { |
| } |
| |
| SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type) |
| : type(type), layerStack(DisplayDevice::NO_LAYER_STACK), orientation(0) { |
| viewport.makeInvalid(); |
| frame.makeInvalid(); |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| }; // namespace android |