blob: 2988950d532aa81a3764ac0423d162de3760b012 [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rsDevice.h"
#include "rsContext.h"
#include "rsThreadIO.h"
#include <ui/FramebufferNativeWindow.h>
#include <ui/PixelFormat.h>
#include <ui/EGLUtils.h>
#include <ui/egl/android_natives.h>
#include <sys/types.h>
#include <sys/resource.h>
#include <sched.h>
#include <cutils/properties.h>
#include <GLES/gl.h>
#include <GLES/glext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <cutils/sched_policy.h>
#include <sys/syscall.h>
#include <string.h>
using namespace android;
using namespace android::renderscript;
pthread_key_t Context::gThreadTLSKey = 0;
uint32_t Context::gThreadTLSKeyCount = 0;
uint32_t Context::gGLContextCount = 0;
pthread_mutex_t Context::gInitMutex = PTHREAD_MUTEX_INITIALIZER;
static void checkEglError(const char* op, EGLBoolean returnVal = EGL_TRUE) {
if (returnVal != EGL_TRUE) {
fprintf(stderr, "%s() returned %d\n", op, returnVal);
}
for (EGLint error = eglGetError(); error != EGL_SUCCESS; error
= eglGetError()) {
fprintf(stderr, "after %s() eglError %s (0x%x)\n", op, EGLUtils::strerror(error),
error);
}
}
void printEGLConfiguration(EGLDisplay dpy, EGLConfig config) {
#define X(VAL) {VAL, #VAL}
struct {EGLint attribute; const char* name;} names[] = {
X(EGL_BUFFER_SIZE),
X(EGL_ALPHA_SIZE),
X(EGL_BLUE_SIZE),
X(EGL_GREEN_SIZE),
X(EGL_RED_SIZE),
X(EGL_DEPTH_SIZE),
X(EGL_STENCIL_SIZE),
X(EGL_CONFIG_CAVEAT),
X(EGL_CONFIG_ID),
X(EGL_LEVEL),
X(EGL_MAX_PBUFFER_HEIGHT),
X(EGL_MAX_PBUFFER_PIXELS),
X(EGL_MAX_PBUFFER_WIDTH),
X(EGL_NATIVE_RENDERABLE),
X(EGL_NATIVE_VISUAL_ID),
X(EGL_NATIVE_VISUAL_TYPE),
X(EGL_SAMPLES),
X(EGL_SAMPLE_BUFFERS),
X(EGL_SURFACE_TYPE),
X(EGL_TRANSPARENT_TYPE),
X(EGL_TRANSPARENT_RED_VALUE),
X(EGL_TRANSPARENT_GREEN_VALUE),
X(EGL_TRANSPARENT_BLUE_VALUE),
X(EGL_BIND_TO_TEXTURE_RGB),
X(EGL_BIND_TO_TEXTURE_RGBA),
X(EGL_MIN_SWAP_INTERVAL),
X(EGL_MAX_SWAP_INTERVAL),
X(EGL_LUMINANCE_SIZE),
X(EGL_ALPHA_MASK_SIZE),
X(EGL_COLOR_BUFFER_TYPE),
X(EGL_RENDERABLE_TYPE),
X(EGL_CONFORMANT),
};
#undef X
for (size_t j = 0; j < sizeof(names) / sizeof(names[0]); j++) {
EGLint value = -1;
EGLint returnVal = eglGetConfigAttrib(dpy, config, names[j].attribute, &value);
EGLint error = eglGetError();
if (returnVal && error == EGL_SUCCESS) {
LOGV(" %s: %d (0x%x)", names[j].name, value, value);
}
}
}
bool Context::initGLThread() {
pthread_mutex_lock(&gInitMutex);
LOGV("initGLThread start %p", this);
mEGL.mNumConfigs = -1;
EGLint configAttribs[128];
EGLint *configAttribsPtr = configAttribs;
EGLint context_attribs2[] = { EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE };
memset(configAttribs, 0, sizeof(configAttribs));
configAttribsPtr[0] = EGL_SURFACE_TYPE;
configAttribsPtr[1] = EGL_WINDOW_BIT;
configAttribsPtr += 2;
configAttribsPtr[0] = EGL_RENDERABLE_TYPE;
configAttribsPtr[1] = EGL_OPENGL_ES2_BIT;
configAttribsPtr += 2;
if (mUserSurfaceConfig.depthMin > 0) {
configAttribsPtr[0] = EGL_DEPTH_SIZE;
configAttribsPtr[1] = mUserSurfaceConfig.depthMin;
configAttribsPtr += 2;
}
if (mDev->mForceSW) {
configAttribsPtr[0] = EGL_CONFIG_CAVEAT;
configAttribsPtr[1] = EGL_SLOW_CONFIG;
configAttribsPtr += 2;
}
configAttribsPtr[0] = EGL_NONE;
rsAssert(configAttribsPtr < (configAttribs + (sizeof(configAttribs) / sizeof(EGLint))));
LOGV("%p initEGL start", this);
mEGL.mDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
checkEglError("eglGetDisplay");
eglInitialize(mEGL.mDisplay, &mEGL.mMajorVersion, &mEGL.mMinorVersion);
checkEglError("eglInitialize");
#if 1
PixelFormat pf = PIXEL_FORMAT_RGBA_8888;
if (mUserSurfaceConfig.alphaMin == 0) {
pf = PIXEL_FORMAT_RGBX_8888;
}
status_t err = EGLUtils::selectConfigForPixelFormat(mEGL.mDisplay, configAttribs, pf, &mEGL.mConfig);
if (err) {
LOGE("%p, couldn't find an EGLConfig matching the screen format\n", this);
}
if (props.mLogVisual) {
printEGLConfiguration(mEGL.mDisplay, mEGL.mConfig);
}
#else
eglChooseConfig(mEGL.mDisplay, configAttribs, &mEGL.mConfig, 1, &mEGL.mNumConfigs);
#endif
mEGL.mContext = eglCreateContext(mEGL.mDisplay, mEGL.mConfig, EGL_NO_CONTEXT, context_attribs2);
checkEglError("eglCreateContext");
if (mEGL.mContext == EGL_NO_CONTEXT) {
pthread_mutex_unlock(&gInitMutex);
LOGE("%p, eglCreateContext returned EGL_NO_CONTEXT", this);
return false;
}
gGLContextCount++;
EGLint pbuffer_attribs[] = { EGL_WIDTH, 1, EGL_HEIGHT, 1, EGL_NONE };
mEGL.mSurfaceDefault = eglCreatePbufferSurface(mEGL.mDisplay, mEGL.mConfig, pbuffer_attribs);
checkEglError("eglCreatePbufferSurface");
if (mEGL.mSurfaceDefault == EGL_NO_SURFACE) {
LOGE("eglCreatePbufferSurface returned EGL_NO_SURFACE");
pthread_mutex_unlock(&gInitMutex);
deinitEGL();
return false;
}
EGLBoolean ret = eglMakeCurrent(mEGL.mDisplay, mEGL.mSurfaceDefault, mEGL.mSurfaceDefault, mEGL.mContext);
if (ret == EGL_FALSE) {
LOGE("eglMakeCurrent returned EGL_FALSE");
checkEglError("eglMakeCurrent", ret);
pthread_mutex_unlock(&gInitMutex);
deinitEGL();
return false;
}
mGL.mVersion = glGetString(GL_VERSION);
mGL.mVendor = glGetString(GL_VENDOR);
mGL.mRenderer = glGetString(GL_RENDERER);
mGL.mExtensions = glGetString(GL_EXTENSIONS);
//LOGV("EGL Version %i %i", mEGL.mMajorVersion, mEGL.mMinorVersion);
LOGV("GL Version %s", mGL.mVersion);
//LOGV("GL Vendor %s", mGL.mVendor);
LOGV("GL Renderer %s", mGL.mRenderer);
//LOGV("GL Extensions %s", mGL.mExtensions);
const char *verptr = NULL;
if (strlen((const char *)mGL.mVersion) > 9) {
if (!memcmp(mGL.mVersion, "OpenGL ES-CM", 12)) {
verptr = (const char *)mGL.mVersion + 12;
}
if (!memcmp(mGL.mVersion, "OpenGL ES ", 10)) {
verptr = (const char *)mGL.mVersion + 9;
}
}
if (!verptr) {
LOGE("Error, OpenGL ES Lite not supported");
pthread_mutex_unlock(&gInitMutex);
deinitEGL();
return false;
} else {
sscanf(verptr, " %i.%i", &mGL.mMajorVersion, &mGL.mMinorVersion);
}
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &mGL.mMaxVertexAttribs);
glGetIntegerv(GL_MAX_VERTEX_UNIFORM_VECTORS, &mGL.mMaxVertexUniformVectors);
glGetIntegerv(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, &mGL.mMaxVertexTextureUnits);
glGetIntegerv(GL_MAX_VARYING_VECTORS, &mGL.mMaxVaryingVectors);
glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &mGL.mMaxTextureImageUnits);
glGetIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS, &mGL.mMaxFragmentTextureImageUnits);
glGetIntegerv(GL_MAX_FRAGMENT_UNIFORM_VECTORS, &mGL.mMaxFragmentUniformVectors);
mGL.OES_texture_npot = NULL != strstr((const char *)mGL.mExtensions, "GL_OES_texture_npot");
mGL.GL_NV_texture_npot_2D_mipmap = NULL != strstr((const char *)mGL.mExtensions, "GL_NV_texture_npot_2D_mipmap");
mGL.EXT_texture_max_aniso = 1.0f;
bool hasAniso = NULL != strstr((const char *)mGL.mExtensions, "GL_EXT_texture_filter_anisotropic");
if (hasAniso) {
glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &mGL.EXT_texture_max_aniso);
}
LOGV("initGLThread end %p", this);
pthread_mutex_unlock(&gInitMutex);
return true;
}
void Context::deinitEGL() {
LOGV("%p, deinitEGL", this);
if (mEGL.mContext != EGL_NO_CONTEXT) {
eglMakeCurrent(mEGL.mDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, mEGL.mContext);
eglDestroyContext(mEGL.mDisplay, mEGL.mContext);
checkEglError("eglDestroyContext");
}
gGLContextCount--;
if (!gGLContextCount) {
eglTerminate(mEGL.mDisplay);
}
}
Context::PushState::PushState(Context *con) {
mRsc = con;
mFragment.set(con->getProgramFragment());
mVertex.set(con->getProgramVertex());
mStore.set(con->getProgramStore());
mRaster.set(con->getProgramRaster());
mFont.set(con->getFont());
}
Context::PushState::~PushState() {
mRsc->setProgramFragment(mFragment.get());
mRsc->setProgramVertex(mVertex.get());
mRsc->setProgramStore(mStore.get());
mRsc->setProgramRaster(mRaster.get());
mRsc->setFont(mFont.get());
}
uint32_t Context::runScript(Script *s) {
PushState(this);
uint32_t ret = s->run(this);
return ret;
}
void Context::checkError(const char *msg, bool isFatal) const {
GLenum err = glGetError();
if (err != GL_NO_ERROR) {
char buf[1024];
snprintf(buf, sizeof(buf), "GL Error = 0x%08x, from: %s", err, msg);
if (isFatal) {
setError(RS_ERROR_FATAL_DRIVER, buf);
} else {
switch (err) {
case GL_OUT_OF_MEMORY:
setError(RS_ERROR_OUT_OF_MEMORY, buf);
break;
default:
setError(RS_ERROR_DRIVER, buf);
break;
}
}
LOGE("%p, %s", this, buf);
}
}
uint32_t Context::runRootScript() {
glViewport(0, 0, mWidth, mHeight);
timerSet(RS_TIMER_SCRIPT);
mStateFragmentStore.mLast.clear();
uint32_t ret = runScript(mRootScript.get());
checkError("runRootScript");
return ret;
}
uint64_t Context::getTime() const {
struct timespec t;
clock_gettime(CLOCK_MONOTONIC, &t);
return t.tv_nsec + ((uint64_t)t.tv_sec * 1000 * 1000 * 1000);
}
void Context::timerReset() {
for (int ct=0; ct < _RS_TIMER_TOTAL; ct++) {
mTimers[ct] = 0;
}
}
void Context::timerInit() {
mTimeLast = getTime();
mTimeFrame = mTimeLast;
mTimeLastFrame = mTimeLast;
mTimerActive = RS_TIMER_INTERNAL;
mAverageFPSFrameCount = 0;
mAverageFPSStartTime = mTimeLast;
mAverageFPS = 0;
timerReset();
}
void Context::timerFrame() {
mTimeLastFrame = mTimeFrame;
mTimeFrame = getTime();
// Update average fps
const uint64_t averageFramerateInterval = 1000 * 1000000;
mAverageFPSFrameCount ++;
uint64_t inverval = mTimeFrame - mAverageFPSStartTime;
if (inverval >= averageFramerateInterval) {
inverval = inverval / 1000000;
mAverageFPS = (mAverageFPSFrameCount * 1000) / inverval;
mAverageFPSFrameCount = 0;
mAverageFPSStartTime = mTimeFrame;
}
}
void Context::timerSet(Timers tm) {
uint64_t last = mTimeLast;
mTimeLast = getTime();
mTimers[mTimerActive] += mTimeLast - last;
mTimerActive = tm;
}
void Context::timerPrint() {
double total = 0;
for (int ct = 0; ct < _RS_TIMER_TOTAL; ct++) {
total += mTimers[ct];
}
uint64_t frame = mTimeFrame - mTimeLastFrame;
mTimeMSLastFrame = frame / 1000000;
mTimeMSLastScript = mTimers[RS_TIMER_SCRIPT] / 1000000;
mTimeMSLastSwap = mTimers[RS_TIMER_CLEAR_SWAP] / 1000000;
if (props.mLogTimes) {
LOGV("RS: Frame (%i), Script %2.1f%% (%i), Swap %2.1f%% (%i), Idle %2.1f%% (%lli), Internal %2.1f%% (%lli), Avg fps: %u",
mTimeMSLastFrame,
100.0 * mTimers[RS_TIMER_SCRIPT] / total, mTimeMSLastScript,
100.0 * mTimers[RS_TIMER_CLEAR_SWAP] / total, mTimeMSLastSwap,
100.0 * mTimers[RS_TIMER_IDLE] / total, mTimers[RS_TIMER_IDLE] / 1000000,
100.0 * mTimers[RS_TIMER_INTERNAL] / total, mTimers[RS_TIMER_INTERNAL] / 1000000,
mAverageFPS);
}
}
bool Context::setupCheck() {
if (!mShaderCache.lookup(this, mVertex.get(), mFragment.get())) {
LOGE("Context::setupCheck() 1 fail");
return false;
}
mFragmentStore->setupGL2(this, &mStateFragmentStore);
mFragment->setupGL2(this, &mStateFragment, &mShaderCache);
mRaster->setupGL2(this, &mStateRaster);
mVertex->setupGL2(this, &mStateVertex, &mShaderCache);
return true;
}
void Context::setupProgramStore() {
mFragmentStore->setupGL2(this, &mStateFragmentStore);
}
static bool getProp(const char *str) {
char buf[PROPERTY_VALUE_MAX];
property_get(str, buf, "0");
return 0 != strcmp(buf, "0");
}
void Context::displayDebugStats() {
char buffer[128];
sprintf(buffer, "Avg fps %u, Frame %i ms, Script %i ms", mAverageFPS, mTimeMSLastFrame, mTimeMSLastScript);
float oldR, oldG, oldB, oldA;
mStateFont.getFontColor(&oldR, &oldG, &oldB, &oldA);
uint32_t bufferLen = strlen(buffer);
float shadowCol = 0.1f;
mStateFont.setFontColor(shadowCol, shadowCol, shadowCol, 1.0f);
mStateFont.renderText(buffer, bufferLen, 5, getHeight() - 6);
mStateFont.setFontColor(1.0f, 0.7f, 0.0f, 1.0f);
mStateFont.renderText(buffer, bufferLen, 4, getHeight() - 7);
mStateFont.setFontColor(oldR, oldG, oldB, oldA);
}
void * Context::threadProc(void *vrsc) {
Context *rsc = static_cast<Context *>(vrsc);
rsc->mNativeThreadId = gettid();
setpriority(PRIO_PROCESS, rsc->mNativeThreadId, ANDROID_PRIORITY_DISPLAY);
rsc->mThreadPriority = ANDROID_PRIORITY_DISPLAY;
rsc->props.mLogTimes = getProp("debug.rs.profile");
rsc->props.mLogScripts = getProp("debug.rs.script");
rsc->props.mLogObjects = getProp("debug.rs.object");
rsc->props.mLogShaders = getProp("debug.rs.shader");
rsc->props.mLogShadersAttr = getProp("debug.rs.shader.attributes");
rsc->props.mLogShadersUniforms = getProp("debug.rs.shader.uniforms");
rsc->props.mLogVisual = getProp("debug.rs.visual");
rsc->mTlsStruct = new ScriptTLSStruct;
if (!rsc->mTlsStruct) {
LOGE("Error allocating tls storage");
rsc->setError(RS_ERROR_OUT_OF_MEMORY, "Failed allocation for TLS");
return NULL;
}
rsc->mTlsStruct->mContext = rsc;
rsc->mTlsStruct->mScript = NULL;
int status = pthread_setspecific(rsc->gThreadTLSKey, rsc->mTlsStruct);
if (status) {
LOGE("pthread_setspecific %i", status);
}
if (!rsc->initGLThread()) {
rsc->setError(RS_ERROR_OUT_OF_MEMORY, "Failed initializing GL");
return NULL;
}
rsc->mScriptC.init(rsc);
if (rsc->mIsGraphicsContext) {
rsc->mStateRaster.init(rsc);
rsc->setProgramRaster(NULL);
rsc->mStateVertex.init(rsc);
rsc->setProgramVertex(NULL);
rsc->mStateFragment.init(rsc);
rsc->setProgramFragment(NULL);
rsc->mStateFragmentStore.init(rsc);
rsc->setProgramStore(NULL);
rsc->mStateFont.init(rsc);
rsc->setFont(NULL);
rsc->mStateVertexArray.init(rsc);
}
rsc->mRunning = true;
bool mDraw = true;
while (!rsc->mExit) {
mDraw |= rsc->mIO.playCoreCommands(rsc, !mDraw);
mDraw &= (rsc->mRootScript.get() != NULL);
mDraw &= (rsc->mWndSurface != NULL);
uint32_t targetTime = 0;
if (mDraw && rsc->mIsGraphicsContext) {
targetTime = rsc->runRootScript();
if (rsc->props.mLogVisual) {
rsc->displayDebugStats();
}
mDraw = targetTime && !rsc->mPaused;
rsc->timerSet(RS_TIMER_CLEAR_SWAP);
eglSwapBuffers(rsc->mEGL.mDisplay, rsc->mEGL.mSurface);
rsc->timerFrame();
rsc->timerSet(RS_TIMER_INTERNAL);
rsc->timerPrint();
rsc->timerReset();
}
if (targetTime > 1) {
int32_t t = (targetTime - (int32_t)(rsc->mTimeMSLastScript + rsc->mTimeMSLastSwap)) * 1000;
if (t > 0) {
usleep(t);
}
}
}
LOGV("%p, RS Thread exiting", rsc);
if (rsc->mIsGraphicsContext) {
rsc->mRaster.clear();
rsc->mFragment.clear();
rsc->mVertex.clear();
rsc->mFragmentStore.clear();
rsc->mFont.clear();
rsc->mRootScript.clear();
rsc->mStateRaster.deinit(rsc);
rsc->mStateVertex.deinit(rsc);
rsc->mStateFragment.deinit(rsc);
rsc->mStateFragmentStore.deinit(rsc);
rsc->mStateFont.deinit(rsc);
}
ObjectBase::zeroAllUserRef(rsc);
if (rsc->mIsGraphicsContext) {
pthread_mutex_lock(&gInitMutex);
rsc->deinitEGL();
pthread_mutex_unlock(&gInitMutex);
}
delete rsc->mTlsStruct;
LOGV("%p, RS Thread exited", rsc);
return NULL;
}
void * Context::helperThreadProc(void *vrsc) {
Context *rsc = static_cast<Context *>(vrsc);
uint32_t idx = (uint32_t)android_atomic_inc(&rsc->mWorkers.mLaunchCount);
LOGV("RS helperThread starting %p idx=%i", rsc, idx);
rsc->mWorkers.mLaunchSignals[idx].init();
rsc->mWorkers.mNativeThreadId[idx] = gettid();
#if 0
typedef struct {uint64_t bits[1024 / 64]; } cpu_set_t;
cpu_set_t cpuset;
memset(&cpuset, 0, sizeof(cpuset));
cpuset.bits[idx / 64] |= 1ULL << (idx % 64);
int ret = syscall(241, rsc->mWorkers.mNativeThreadId[idx],
sizeof(cpuset), &cpuset);
LOGE("SETAFFINITY ret = %i %s", ret, EGLUtils::strerror(ret));
#endif
setpriority(PRIO_PROCESS, rsc->mWorkers.mNativeThreadId[idx], rsc->mThreadPriority);
int status = pthread_setspecific(rsc->gThreadTLSKey, rsc->mTlsStruct);
if (status) {
LOGE("pthread_setspecific %i", status);
}
while (rsc->mRunning) {
rsc->mWorkers.mLaunchSignals[idx].wait();
if (rsc->mWorkers.mLaunchCallback) {
rsc->mWorkers.mLaunchCallback(rsc->mWorkers.mLaunchData, idx);
}
android_atomic_dec(&rsc->mWorkers.mRunningCount);
rsc->mWorkers.mCompleteSignal.set();
}
LOGV("RS helperThread exiting %p idx=%i", rsc, idx);
return NULL;
}
void Context::launchThreads(WorkerCallback_t cbk, void *data) {
mWorkers.mLaunchData = data;
mWorkers.mLaunchCallback = cbk;
mWorkers.mRunningCount = (int)mWorkers.mCount;
for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) {
mWorkers.mLaunchSignals[ct].set();
}
while (mWorkers.mRunningCount) {
mWorkers.mCompleteSignal.wait();
}
}
void Context::setPriority(int32_t p) {
// Note: If we put this in the proper "background" policy
// the wallpapers can become completly unresponsive at times.
// This is probably not what we want for something the user is actively
// looking at.
mThreadPriority = p;
#if 0
SchedPolicy pol = SP_FOREGROUND;
if (p > 0) {
pol = SP_BACKGROUND;
}
if (!set_sched_policy(mNativeThreadId, pol)) {
// success; reset the priority as well
}
#else
setpriority(PRIO_PROCESS, mNativeThreadId, p);
for (uint32_t ct=0; ct < mWorkers.mCount; ct++) {
setpriority(PRIO_PROCESS, mWorkers.mNativeThreadId[ct], p);
}
#endif
}
Context::Context() {
mDev = NULL;
mRunning = false;
mExit = false;
mPaused = false;
mObjHead = NULL;
mError = RS_ERROR_NONE;
}
Context * Context::createContext(Device *dev, const RsSurfaceConfig *sc) {
Context * rsc = new Context();
if (!rsc->initContext(dev, sc)) {
delete rsc;
return NULL;
}
return rsc;
}
bool Context::initContext(Device *dev, const RsSurfaceConfig *sc) {
pthread_mutex_lock(&gInitMutex);
dev->addContext(this);
mDev = dev;
if (sc) {
mUserSurfaceConfig = *sc;
} else {
memset(&mUserSurfaceConfig, 0, sizeof(mUserSurfaceConfig));
}
memset(&mEGL, 0, sizeof(mEGL));
memset(&mGL, 0, sizeof(mGL));
mIsGraphicsContext = sc != NULL;
int status;
pthread_attr_t threadAttr;
if (!gThreadTLSKeyCount) {
status = pthread_key_create(&gThreadTLSKey, NULL);
if (status) {
LOGE("Failed to init thread tls key.");
pthread_mutex_unlock(&gInitMutex);
return false;
}
}
gThreadTLSKeyCount++;
pthread_mutex_unlock(&gInitMutex);
// Global init done at this point.
status = pthread_attr_init(&threadAttr);
if (status) {
LOGE("Failed to init thread attribute.");
return false;
}
mWndSurface = NULL;
timerInit();
timerSet(RS_TIMER_INTERNAL);
int cpu = sysconf(_SC_NPROCESSORS_ONLN);
LOGV("RS Launching thread(s), reported CPU count %i", cpu);
if (cpu < 2) cpu = 0;
mWorkers.mCount = (uint32_t)cpu;
mWorkers.mThreadId = (pthread_t *) calloc(mWorkers.mCount, sizeof(pthread_t));
mWorkers.mNativeThreadId = (pid_t *) calloc(mWorkers.mCount, sizeof(pid_t));
mWorkers.mLaunchSignals = new Signal[mWorkers.mCount];
mWorkers.mLaunchCallback = NULL;
status = pthread_create(&mThreadId, &threadAttr, threadProc, this);
if (status) {
LOGE("Failed to start rs context thread.");
return false;
}
while (!mRunning && (mError == RS_ERROR_NONE)) {
usleep(100);
}
if (mError != RS_ERROR_NONE) {
return false;
}
mWorkers.mCompleteSignal.init();
mWorkers.mRunningCount = 0;
mWorkers.mLaunchCount = 0;
for (uint32_t ct=0; ct < mWorkers.mCount; ct++) {
status = pthread_create(&mWorkers.mThreadId[ct], &threadAttr, helperThreadProc, this);
if (status) {
mWorkers.mCount = ct;
LOGE("Created fewer than expected number of RS threads.");
break;
}
}
pthread_attr_destroy(&threadAttr);
return true;
}
Context::~Context() {
LOGV("Context::~Context");
mExit = true;
mPaused = false;
void *res;
mIO.shutdown();
int status = pthread_join(mThreadId, &res);
// Global structure cleanup.
pthread_mutex_lock(&gInitMutex);
if (mDev) {
mDev->removeContext(this);
--gThreadTLSKeyCount;
if (!gThreadTLSKeyCount) {
pthread_key_delete(gThreadTLSKey);
}
mDev = NULL;
}
pthread_mutex_unlock(&gInitMutex);
}
void Context::setSurface(uint32_t w, uint32_t h, ANativeWindow *sur) {
rsAssert(mIsGraphicsContext);
EGLBoolean ret;
if (mEGL.mSurface != NULL) {
ret = eglMakeCurrent(mEGL.mDisplay, mEGL.mSurfaceDefault, mEGL.mSurfaceDefault, mEGL.mContext);
checkEglError("eglMakeCurrent", ret);
ret = eglDestroySurface(mEGL.mDisplay, mEGL.mSurface);
checkEglError("eglDestroySurface", ret);
mEGL.mSurface = NULL;
mWidth = 1;
mHeight = 1;
}
mWndSurface = sur;
if (mWndSurface != NULL) {
mWidth = w;
mHeight = h;
mEGL.mSurface = eglCreateWindowSurface(mEGL.mDisplay, mEGL.mConfig, mWndSurface, NULL);
checkEglError("eglCreateWindowSurface");
if (mEGL.mSurface == EGL_NO_SURFACE) {
LOGE("eglCreateWindowSurface returned EGL_NO_SURFACE");
}
ret = eglMakeCurrent(mEGL.mDisplay, mEGL.mSurface, mEGL.mSurface, mEGL.mContext);
checkEglError("eglMakeCurrent", ret);
mStateVertex.updateSize(this);
}
}
void Context::pause() {
rsAssert(mIsGraphicsContext);
mPaused = true;
}
void Context::resume() {
rsAssert(mIsGraphicsContext);
mPaused = false;
}
void Context::setRootScript(Script *s) {
rsAssert(mIsGraphicsContext);
mRootScript.set(s);
}
void Context::setProgramStore(ProgramStore *pfs) {
rsAssert(mIsGraphicsContext);
if (pfs == NULL) {
mFragmentStore.set(mStateFragmentStore.mDefault);
} else {
mFragmentStore.set(pfs);
}
}
void Context::setProgramFragment(ProgramFragment *pf) {
rsAssert(mIsGraphicsContext);
if (pf == NULL) {
mFragment.set(mStateFragment.mDefault);
} else {
mFragment.set(pf);
}
}
void Context::setProgramRaster(ProgramRaster *pr) {
rsAssert(mIsGraphicsContext);
if (pr == NULL) {
mRaster.set(mStateRaster.mDefault);
} else {
mRaster.set(pr);
}
}
void Context::setProgramVertex(ProgramVertex *pv) {
rsAssert(mIsGraphicsContext);
if (pv == NULL) {
mVertex.set(mStateVertex.mDefault);
} else {
mVertex.set(pv);
}
}
void Context::setFont(Font *f) {
rsAssert(mIsGraphicsContext);
if (f == NULL) {
mFont.set(mStateFont.mDefault);
} else {
mFont.set(f);
}
}
void Context::assignName(ObjectBase *obj, const char *name, uint32_t len) {
rsAssert(!obj->getName());
obj->setName(name, len);
mNames.add(obj);
}
void Context::removeName(ObjectBase *obj) {
for (size_t ct=0; ct < mNames.size(); ct++) {
if (obj == mNames[ct]) {
mNames.removeAt(ct);
return;
}
}
}
RsMessageToClientType Context::peekMessageToClient(size_t *receiveLen, uint32_t *subID, bool wait) {
*receiveLen = 0;
if (!wait && mIO.mToClient.isEmpty()) {
return RS_MESSAGE_TO_CLIENT_NONE;
}
uint32_t bytesData = 0;
uint32_t commandID = 0;
const uint32_t *d = (const uint32_t *)mIO.mToClient.get(&commandID, &bytesData);
*receiveLen = bytesData - sizeof(uint32_t);
if (bytesData) {
*subID = d[0];
}
return (RsMessageToClientType)commandID;
}
RsMessageToClientType Context::getMessageToClient(void *data, size_t *receiveLen, uint32_t *subID, size_t bufferLen, bool wait) {
//LOGE("getMessageToClient %i %i", bufferLen, wait);
*receiveLen = 0;
if (!wait && mIO.mToClient.isEmpty()) {
return RS_MESSAGE_TO_CLIENT_NONE;
}
//LOGE("getMessageToClient 2 con=%p", this);
uint32_t bytesData = 0;
uint32_t commandID = 0;
const uint32_t *d = (const uint32_t *)mIO.mToClient.get(&commandID, &bytesData);
//LOGE("getMessageToClient 3 %i %i", commandID, bytesData);
*receiveLen = bytesData - sizeof(uint32_t);
*subID = d[0];
//LOGE("getMessageToClient %i %i", commandID, *subID);
if (bufferLen >= bytesData) {
memcpy(data, d+1, *receiveLen);
mIO.mToClient.next();
return (RsMessageToClientType)commandID;
}
return RS_MESSAGE_TO_CLIENT_RESIZE;
}
bool Context::sendMessageToClient(const void *data, RsMessageToClientType cmdID,
uint32_t subID, size_t len, bool waitForSpace) const {
//LOGE("sendMessageToClient %i %i %i %i", cmdID, subID, len, waitForSpace);
if (cmdID == 0) {
LOGE("Attempting to send invalid command 0 to client.");
return false;
}
if (!waitForSpace) {
if (!mIO.mToClient.makeSpaceNonBlocking(len + 12)) {
// Not enough room, and not waiting.
return false;
}
}
//LOGE("sendMessageToClient 2");
uint32_t *p = (uint32_t *)mIO.mToClient.reserve(len + sizeof(subID));
p[0] = subID;
if (len > 0) {
memcpy(p+1, data, len);
}
mIO.mToClient.commit(cmdID, len + sizeof(subID));
//LOGE("sendMessageToClient 3");
return true;
}
void Context::initToClient() {
while (!mRunning) {
usleep(100);
}
}
void Context::deinitToClient() {
mIO.mToClient.shutdown();
}
void Context::setError(RsError e, const char *msg) const {
mError = e;
sendMessageToClient(msg, RS_MESSAGE_TO_CLIENT_ERROR, e, strlen(msg) + 1, true);
}
void Context::dumpDebug() const {
LOGE("RS Context debug %p", this);
LOGE("RS Context debug");
LOGE(" EGL ver %i %i", mEGL.mMajorVersion, mEGL.mMinorVersion);
LOGE(" EGL context %p surface %p, Display=%p", mEGL.mContext, mEGL.mSurface, mEGL.mDisplay);
LOGE(" GL vendor: %s", mGL.mVendor);
LOGE(" GL renderer: %s", mGL.mRenderer);
LOGE(" GL Version: %s", mGL.mVersion);
LOGE(" GL Extensions: %s", mGL.mExtensions);
LOGE(" GL int Versions %i %i", mGL.mMajorVersion, mGL.mMinorVersion);
LOGE(" RS width %i, height %i", mWidth, mHeight);
LOGE(" RS running %i, exit %i, paused %i", mRunning, mExit, mPaused);
LOGE(" RS pThreadID %li, nativeThreadID %i", mThreadId, mNativeThreadId);
LOGV("MAX Textures %i, %i %i", mGL.mMaxVertexTextureUnits, mGL.mMaxFragmentTextureImageUnits, mGL.mMaxTextureImageUnits);
LOGV("MAX Attribs %i", mGL.mMaxVertexAttribs);
LOGV("MAX Uniforms %i, %i", mGL.mMaxVertexUniformVectors, mGL.mMaxFragmentUniformVectors);
LOGV("MAX Varyings %i", mGL.mMaxVaryingVectors);
}
///////////////////////////////////////////////////////////////////////////////////////////
//
namespace android {
namespace renderscript {
void rsi_ContextFinish(Context *rsc) {
}
void rsi_ContextBindRootScript(Context *rsc, RsScript vs) {
Script *s = static_cast<Script *>(vs);
rsc->setRootScript(s);
}
void rsi_ContextBindSampler(Context *rsc, uint32_t slot, RsSampler vs) {
Sampler *s = static_cast<Sampler *>(vs);
if (slot > RS_MAX_SAMPLER_SLOT) {
LOGE("Invalid sampler slot");
return;
}
s->bindToContext(&rsc->mStateSampler, slot);
}
void rsi_ContextBindProgramStore(Context *rsc, RsProgramStore vpfs) {
ProgramStore *pfs = static_cast<ProgramStore *>(vpfs);
rsc->setProgramStore(pfs);
}
void rsi_ContextBindProgramFragment(Context *rsc, RsProgramFragment vpf) {
ProgramFragment *pf = static_cast<ProgramFragment *>(vpf);
rsc->setProgramFragment(pf);
}
void rsi_ContextBindProgramRaster(Context *rsc, RsProgramRaster vpr) {
ProgramRaster *pr = static_cast<ProgramRaster *>(vpr);
rsc->setProgramRaster(pr);
}
void rsi_ContextBindProgramVertex(Context *rsc, RsProgramVertex vpv) {
ProgramVertex *pv = static_cast<ProgramVertex *>(vpv);
rsc->setProgramVertex(pv);
}
void rsi_ContextBindFont(Context *rsc, RsFont vfont) {
Font *font = static_cast<Font *>(vfont);
rsc->setFont(font);
}
void rsi_AssignName(Context *rsc, void * obj, const char *name, uint32_t len) {
ObjectBase *ob = static_cast<ObjectBase *>(obj);
rsc->assignName(ob, name, len);
}
void rsi_ObjDestroy(Context *rsc, void *optr) {
ObjectBase *ob = static_cast<ObjectBase *>(optr);
rsc->removeName(ob);
ob->decUserRef();
}
void rsi_ContextPause(Context *rsc) {
rsc->pause();
}
void rsi_ContextResume(Context *rsc) {
rsc->resume();
}
void rsi_ContextSetSurface(Context *rsc, uint32_t w, uint32_t h, ANativeWindow *sur) {
rsc->setSurface(w, h, sur);
}
void rsi_ContextSetPriority(Context *rsc, int32_t p) {
rsc->setPriority(p);
}
void rsi_ContextDump(Context *rsc, int32_t bits) {
ObjectBase::dumpAll(rsc);
}
void rsi_ContextDestroy(Context *rsc) {
delete rsc;
}
}
}
RsContext rsContextCreate(RsDevice vdev, uint32_t version) {
LOGV("rsContextCreate %p", vdev);
Device * dev = static_cast<Device *>(vdev);
Context *rsc = Context::createContext(dev, NULL);
return rsc;
}
RsContext rsContextCreateGL(RsDevice vdev, uint32_t version, RsSurfaceConfig sc) {
LOGV("rsContextCreateGL %p", vdev);
Device * dev = static_cast<Device *>(vdev);
Context *rsc = Context::createContext(dev, &sc);
LOGV("rsContextCreateGL ret %p ", rsc);
return rsc;
}
RsMessageToClientType rsContextPeekMessage(RsContext vrsc, size_t *receiveLen, uint32_t *subID, bool wait) {
Context * rsc = static_cast<Context *>(vrsc);
return rsc->peekMessageToClient(receiveLen, subID, wait);
}
RsMessageToClientType rsContextGetMessage(RsContext vrsc, void *data, size_t *receiveLen, uint32_t *subID, size_t bufferLen, bool wait) {
Context * rsc = static_cast<Context *>(vrsc);
return rsc->getMessageToClient(data, receiveLen, subID, bufferLen, wait);
}
void rsContextInitToClient(RsContext vrsc) {
Context * rsc = static_cast<Context *>(vrsc);
rsc->initToClient();
}
void rsContextDeinitToClient(RsContext vrsc) {
Context * rsc = static_cast<Context *>(vrsc);
rsc->deinitToClient();
}
// Only to be called at a3d load time, before object is visible to user
// not thread safe
void rsaGetName(RsContext con, void * obj, const char **name) {
ObjectBase *ob = static_cast<ObjectBase *>(obj);
(*name) = ob->getName();
}