blob: 1776b02bdc9caf359242dba5c37c18f62217ff8b [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rsContext.h"
#include "rsProgramVertex.h"
#include <GLES/gl.h>
#include <GLES/glext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
using namespace android;
using namespace android::renderscript;
ProgramVertex::ProgramVertex(Context *rsc, Element *in, Element *out) :
Program(rsc, in, out)
{
mAllocFile = __FILE__;
mAllocLine = __LINE__;
mTextureMatrixEnable = false;
mLightCount = 0;
}
ProgramVertex::~ProgramVertex()
{
}
static void logMatrix(const char *txt, const float *f)
{
LOGV("Matrix %s, %p", txt, f);
LOGV("%6.2f, %6.2f, %6.2f, %6.2f", f[0], f[4], f[8], f[12]);
LOGV("%6.2f, %6.2f, %6.2f, %6.2f", f[1], f[5], f[9], f[13]);
LOGV("%6.2f, %6.2f, %6.2f, %6.2f", f[2], f[6], f[10], f[14]);
LOGV("%6.2f, %6.2f, %6.2f, %6.2f", f[3], f[7], f[11], f[15]);
}
void ProgramVertex::setupGL(const Context *rsc, ProgramVertexState *state)
{
if ((state->mLast.get() == this) && !mDirty) {
return;
}
state->mLast.set(this);
const float *f = static_cast<const float *>(mConstants->getPtr());
glMatrixMode(GL_TEXTURE);
if (mTextureMatrixEnable) {
glLoadMatrixf(&f[RS_PROGRAM_VERTEX_TEXTURE_OFFSET]);
} else {
glLoadIdentity();
}
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
if (mLightCount) {
int v = 0;
glEnable(GL_LIGHTING);
glLightModelxv(GL_LIGHT_MODEL_TWO_SIDE, &v);
for (uint32_t ct = 0; ct < mLightCount; ct++) {
const Light *l = mLights[ct].get();
glEnable(GL_LIGHT0 + ct);
l->setupGL(ct);
}
for (uint32_t ct = mLightCount; ct < MAX_LIGHTS; ct++) {
glDisable(GL_LIGHT0 + ct);
}
} else {
glDisable(GL_LIGHTING);
}
if (!f) {
LOGE("Must bind constants to vertex program");
}
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(&f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET]);
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(&f[RS_PROGRAM_VERTEX_MODELVIEW_OFFSET]);
mDirty = false;
}
void ProgramVertex::loadShader() {
Program::loadShader(GL_VERTEX_SHADER);
}
void ProgramVertex::createShader()
{
mShader.setTo("");
for (uint32_t ct=0; ct < mAttribCount; ct++) {
mShader.append("attribute vec4 ");
mShader.append(mAttribNames[ct]);
mShader.append(";\n");
}
for (uint32_t ct=0; ct < mUniformCount; ct++) {
mShader.append("uniform mat4 ");
mShader.append(mUniformNames[ct]);
mShader.append(";\n");
}
mShader.append("varying vec4 varColor;\n");
mShader.append("varying vec4 varTex0;\n");
mShader.append("void main() {\n");
mShader.append(" gl_Position = uni_MVP * attrib_Position;\n");
mShader.append(" varColor = attrib_Color;\n");
if (mTextureMatrixEnable) {
mShader.append(" varTex0 = uni_TexMatrix * attrib_T0;\n");
} else {
mShader.append(" varTex0 = attrib_T0;\n");
}
//mShader.append(" pos.x = pos.x / 480.0;\n");
//mShader.append(" pos.y = pos.y / 800.0;\n");
//mShader.append(" gl_Position = pos;\n");
mShader.append("}\n");
}
void ProgramVertex::setupGL2(const Context *rsc, ProgramVertexState *state, ShaderCache *sc)
{
//LOGE("sgl2 vtx1 %x", glGetError());
if ((state->mLast.get() == this) && !mDirty) {
//return;
}
const float *f = static_cast<const float *>(mConstants->getPtr());
Matrix mvp;
mvp.load(&f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET]);
Matrix t;
t.load(&f[RS_PROGRAM_VERTEX_MODELVIEW_OFFSET]);
mvp.multiply(&t);
glUniformMatrix4fv(sc->vtxUniformSlot(0), 1, GL_FALSE, mvp.m);
if (mTextureMatrixEnable) {
glUniformMatrix4fv(sc->vtxUniformSlot(1), 1, GL_FALSE,
&f[RS_PROGRAM_VERTEX_TEXTURE_OFFSET]);
}
state->mLast.set(this);
//LOGE("sgl2 vtx2 %x", glGetError());
}
void ProgramVertex::addLight(const Light *l)
{
if (mLightCount < MAX_LIGHTS) {
mLights[mLightCount].set(l);
mLightCount++;
}
}
void ProgramVertex::setProjectionMatrix(const rsc_Matrix *m) const
{
float *f = static_cast<float *>(mConstants->getPtr());
memcpy(&f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET], m, sizeof(rsc_Matrix));
mDirty = true;
}
void ProgramVertex::setModelviewMatrix(const rsc_Matrix *m) const
{
float *f = static_cast<float *>(mConstants->getPtr());
memcpy(&f[RS_PROGRAM_VERTEX_MODELVIEW_OFFSET], m, sizeof(rsc_Matrix));
mDirty = true;
}
void ProgramVertex::setTextureMatrix(const rsc_Matrix *m) const
{
float *f = static_cast<float *>(mConstants->getPtr());
memcpy(&f[RS_PROGRAM_VERTEX_TEXTURE_OFFSET], m, sizeof(rsc_Matrix));
mDirty = true;
}
void ProgramVertex::transformToScreen(const Context *rsc, float *v4out, const float *v3in) const
{
float *f = static_cast<float *>(mConstants->getPtr());
Matrix mvp;
mvp.loadMultiply((Matrix *)&f[RS_PROGRAM_VERTEX_MODELVIEW_OFFSET],
(Matrix *)&f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET]);
mvp.vectorMultiply(v4out, v3in);
}
void ProgramVertex::init(Context *rsc)
{
mAttribCount = 6;
mAttribNames[VertexArray::POSITION].setTo("attrib_Position");
mAttribNames[VertexArray::COLOR].setTo("attrib_Color");
mAttribNames[VertexArray::NORMAL].setTo("attrib_Normal");
mAttribNames[VertexArray::POINT_SIZE].setTo("attrib_PointSize");
mAttribNames[VertexArray::TEXTURE_0].setTo("attrib_T0");
mAttribNames[VertexArray::TEXTURE_1].setTo("attrib_T1");
mUniformCount = 2;
mUniformNames[0].setTo("uni_MVP");
mUniformNames[1].setTo("uni_TexMatrix");
createShader();
}
///////////////////////////////////////////////////////////////////////
ProgramVertexState::ProgramVertexState()
{
mPV = NULL;
}
ProgramVertexState::~ProgramVertexState()
{
delete mPV;
}
void ProgramVertexState::init(Context *rsc, int32_t w, int32_t h)
{
rsi_ElementBegin(rsc);
rsi_ElementAdd(rsc, RS_KIND_USER, RS_TYPE_FLOAT, false, 32, NULL);
RsElement e = rsi_ElementCreate(rsc);
rsi_TypeBegin(rsc, e);
rsi_TypeAdd(rsc, RS_DIMENSION_X, 48);
mAllocType.set((Type *)rsi_TypeCreate(rsc));
ProgramVertex *pv = new ProgramVertex(rsc, NULL, NULL);
Allocation *alloc = (Allocation *)rsi_AllocationCreateTyped(rsc, mAllocType.get());
mDefaultAlloc.set(alloc);
mDefault.set(pv);
pv->init(rsc);
pv->bindAllocation(alloc);
updateSize(rsc, w, h);
}
void ProgramVertexState::updateSize(Context *rsc, int32_t w, int32_t h)
{
Matrix m;
m.loadOrtho(0,w, h,0, -1,1);
mDefaultAlloc->subData(RS_PROGRAM_VERTEX_PROJECTION_OFFSET, 16, &m.m[0], 16*4);
m.loadIdentity();
mDefaultAlloc->subData(RS_PROGRAM_VERTEX_MODELVIEW_OFFSET, 16, &m.m[0], 16*4);
}
void ProgramVertexState::deinit(Context *rsc)
{
mDefaultAlloc.clear();
mDefault.clear();
mAllocType.clear();
mLast.clear();
delete mPV;
mPV = NULL;
}
namespace android {
namespace renderscript {
void rsi_ProgramVertexBegin(Context *rsc, RsElement in, RsElement out)
{
delete rsc->mStateVertex.mPV;
rsc->mStateVertex.mPV = new ProgramVertex(rsc, (Element *)in, (Element *)out);
}
RsProgramVertex rsi_ProgramVertexCreate(Context *rsc)
{
ProgramVertex *pv = rsc->mStateVertex.mPV;
pv->incUserRef();
pv->init(rsc);
rsc->mStateVertex.mPV = 0;
return pv;
}
void rsi_ProgramVertexBindAllocation(Context *rsc, RsProgramVertex vpgm, RsAllocation constants)
{
ProgramVertex *pv = static_cast<ProgramVertex *>(vpgm);
pv->bindAllocation(static_cast<Allocation *>(constants));
}
void rsi_ProgramVertexSetTextureMatrixEnable(Context *rsc, bool enable)
{
rsc->mStateVertex.mPV->setTextureMatrixEnable(enable);
}
void rsi_ProgramVertexAddLight(Context *rsc, RsLight light)
{
rsc->mStateVertex.mPV->addLight(static_cast<const Light *>(light));
}
}
}