| /* |
| * Broadcom SPI over PCI-SPI Host Controller, low-level hardware driver |
| * |
| * Copyright (C) 1999-2010, Broadcom Corporation |
| * |
| * Unless you and Broadcom execute a separate written software license |
| * agreement governing use of this software, this software is licensed to you |
| * under the terms of the GNU General Public License version 2 (the "GPL"), |
| * available at http://www.broadcom.com/licenses/GPLv2.php, with the |
| * following added to such license: |
| * |
| * As a special exception, the copyright holders of this software give you |
| * permission to link this software with independent modules, and to copy and |
| * distribute the resulting executable under terms of your choice, provided that |
| * you also meet, for each linked independent module, the terms and conditions of |
| * the license of that module. An independent module is a module which is not |
| * derived from this software. The special exception does not apply to any |
| * modifications of the software. |
| * |
| * Notwithstanding the above, under no circumstances may you combine this |
| * software in any way with any other Broadcom software provided under a license |
| * other than the GPL, without Broadcom's express prior written consent. |
| * |
| * $Id: bcmpcispi.c,v 1.22.2.4.4.5 2008/07/09 21:23:30 Exp $ |
| */ |
| |
| #include <typedefs.h> |
| #include <bcmutils.h> |
| |
| #include <sdio.h> /* SDIO Specs */ |
| #include <bcmsdbus.h> /* bcmsdh to/from specific controller APIs */ |
| #include <sdiovar.h> /* to get msglevel bit values */ |
| |
| #include <pcicfg.h> |
| #include <bcmsdspi.h> |
| #include <bcmspi.h> |
| #include <bcmpcispi.h> /* BRCM PCI-SPI Host Controller Register definitions */ |
| |
| |
| /* ndis_osl.h needs to do a runtime check of the osh to map |
| * R_REG/W_REG to bus specific access similar to linux_osl.h. |
| * Until then... |
| */ |
| /* linux */ |
| |
| #define SPIPCI_RREG R_REG |
| #define SPIPCI_WREG W_REG |
| |
| |
| #define SPIPCI_ANDREG(osh, r, v) SPIPCI_WREG(osh, (r), (SPIPCI_RREG(osh, r) & (v))) |
| #define SPIPCI_ORREG(osh, r, v) SPIPCI_WREG(osh, (r), (SPIPCI_RREG(osh, r) | (v))) |
| |
| |
| int bcmpcispi_dump = 0; /* Set to dump complete trace of all SPI bus transactions */ |
| |
| typedef struct spih_info_ { |
| uint bar0; /* BAR0 of PCI Card */ |
| uint bar1; /* BAR1 of PCI Card */ |
| osl_t *osh; /* osh handle */ |
| spih_pciregs_t *pciregs; /* PCI Core Registers */ |
| spih_regs_t *regs; /* SPI Controller Registers */ |
| uint8 rev; /* PCI Card Revision ID */ |
| } spih_info_t; |
| |
| |
| /* Attach to PCI-SPI Host Controller Hardware */ |
| bool |
| spi_hw_attach(sdioh_info_t *sd) |
| { |
| osl_t *osh; |
| spih_info_t *si; |
| |
| sd_trace(("%s: enter\n", __FUNCTION__)); |
| |
| osh = sd->osh; |
| |
| if ((si = (spih_info_t *)MALLOC(osh, sizeof(spih_info_t))) == NULL) { |
| sd_err(("%s: out of memory, malloced %d bytes\n", __FUNCTION__, MALLOCED(osh))); |
| return FALSE; |
| } |
| |
| bzero(si, sizeof(spih_info_t)); |
| |
| sd->controller = si; |
| |
| si->osh = sd->osh; |
| si->rev = OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_REV, 4) & 0xFF; |
| |
| if (si->rev < 3) { |
| sd_err(("Host controller %d not supported, please upgrade to rev >= 3\n", si->rev)); |
| MFREE(osh, si, sizeof(spih_info_t)); |
| return (FALSE); |
| } |
| |
| sd_err(("Attaching to Generic PCI SPI Host Controller Rev %d\n", si->rev)); |
| |
| /* FPGA Revision < 3 not supported by driver anymore. */ |
| ASSERT(si->rev >= 3); |
| |
| si->bar0 = sd->bar0; |
| |
| /* Rev < 10 PciSpiHost has 2 BARs: |
| * BAR0 = PCI Core Registers |
| * BAR1 = PciSpiHost Registers (all other cores on backplane) |
| * |
| * Rev 10 and up use a different PCI core which only has a single |
| * BAR0 which contains the PciSpiHost Registers. |
| */ |
| if (si->rev < 10) { |
| si->pciregs = (spih_pciregs_t *)spi_reg_map(osh, |
| (uintptr)si->bar0, |
| sizeof(spih_pciregs_t)); |
| sd_err(("Mapped PCI Core regs to BAR0 at %p\n", si->pciregs)); |
| |
| si->bar1 = OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_BAR1, 4); |
| si->regs = (spih_regs_t *)spi_reg_map(osh, |
| (uintptr)si->bar1, |
| sizeof(spih_regs_t)); |
| sd_err(("Mapped SPI Controller regs to BAR1 at %p\n", si->regs)); |
| } else { |
| si->regs = (spih_regs_t *)spi_reg_map(osh, |
| (uintptr)si->bar0, |
| sizeof(spih_regs_t)); |
| sd_err(("Mapped SPI Controller regs to BAR0 at %p\n", si->regs)); |
| si->pciregs = NULL; |
| } |
| /* Enable SPI Controller, 16.67MHz SPI Clock */ |
| SPIPCI_WREG(osh, &si->regs->spih_ctrl, 0x000000d1); |
| |
| /* Set extended feature register to defaults */ |
| SPIPCI_WREG(osh, &si->regs->spih_ext, 0x00000000); |
| |
| /* Set GPIO CS# High (de-asserted) */ |
| SPIPCI_WREG(osh, &si->regs->spih_gpio_data, SPIH_CS); |
| |
| /* set GPIO[0] to output for CS# */ |
| /* set GPIO[1] to output for power control */ |
| /* set GPIO[2] to input for card detect */ |
| SPIPCI_WREG(osh, &si->regs->spih_gpio_ctrl, (SPIH_CS | SPIH_SLOT_POWER)); |
| |
| /* Clear out the Read FIFO in case there is any stuff left in there from a previous run. */ |
| while ((SPIPCI_RREG(osh, &si->regs->spih_stat) & SPIH_RFEMPTY) == 0) { |
| SPIPCI_RREG(osh, &si->regs->spih_data); |
| } |
| |
| /* Wait for power to stabilize to the SDIO Card (100msec was insufficient) */ |
| OSL_DELAY(250000); |
| |
| /* Check card detect on FPGA Revision >= 4 */ |
| if (si->rev >= 4) { |
| if (SPIPCI_RREG(osh, &si->regs->spih_gpio_data) & SPIH_CARD_DETECT) { |
| sd_err(("%s: no card detected in SD slot\n", __FUNCTION__)); |
| spi_reg_unmap(osh, (uintptr)si->regs, sizeof(spih_regs_t)); |
| if (si->pciregs) { |
| spi_reg_unmap(osh, (uintptr)si->pciregs, sizeof(spih_pciregs_t)); |
| } |
| MFREE(osh, si, sizeof(spih_info_t)); |
| return FALSE; |
| } |
| } |
| |
| /* Interrupts are level sensitive */ |
| SPIPCI_WREG(osh, &si->regs->spih_int_edge, 0x80000000); |
| |
| /* Interrupts are active low. */ |
| SPIPCI_WREG(osh, &si->regs->spih_int_pol, 0x40000004); |
| |
| /* Enable interrupts through PCI Core. */ |
| if (si->pciregs) { |
| SPIPCI_WREG(osh, &si->pciregs->ICR, PCI_INT_PROP_EN); |
| } |
| |
| sd_trace(("%s: exit\n", __FUNCTION__)); |
| return TRUE; |
| } |
| |
| /* Detach and return PCI-SPI Hardware to unconfigured state */ |
| bool |
| spi_hw_detach(sdioh_info_t *sd) |
| { |
| spih_info_t *si = (spih_info_t *)sd->controller; |
| osl_t *osh = si->osh; |
| spih_regs_t *regs = si->regs; |
| spih_pciregs_t *pciregs = si->pciregs; |
| |
| sd_trace(("%s: enter\n", __FUNCTION__)); |
| |
| SPIPCI_WREG(osh, ®s->spih_ctrl, 0x00000010); |
| SPIPCI_WREG(osh, ®s->spih_gpio_ctrl, 0x00000000); /* Disable GPIO for CS# */ |
| SPIPCI_WREG(osh, ®s->spih_int_mask, 0x00000000); /* Clear Intmask */ |
| SPIPCI_WREG(osh, ®s->spih_hex_disp, 0x0000DEAF); |
| SPIPCI_WREG(osh, ®s->spih_int_edge, 0x00000000); |
| SPIPCI_WREG(osh, ®s->spih_int_pol, 0x00000000); |
| SPIPCI_WREG(osh, ®s->spih_hex_disp, 0x0000DEAD); |
| |
| /* Disable interrupts through PCI Core. */ |
| if (si->pciregs) { |
| SPIPCI_WREG(osh, &pciregs->ICR, 0x00000000); |
| spi_reg_unmap(osh, (uintptr)pciregs, sizeof(spih_pciregs_t)); |
| } |
| spi_reg_unmap(osh, (uintptr)regs, sizeof(spih_regs_t)); |
| |
| MFREE(osh, si, sizeof(spih_info_t)); |
| |
| sd->controller = NULL; |
| |
| sd_trace(("%s: exit\n", __FUNCTION__)); |
| return TRUE; |
| } |
| |
| /* Switch between internal (PCI) and external clock oscillator */ |
| static bool |
| sdspi_switch_clock(sdioh_info_t *sd, bool ext_clk) |
| { |
| spih_info_t *si = (spih_info_t *)sd->controller; |
| osl_t *osh = si->osh; |
| spih_regs_t *regs = si->regs; |
| |
| /* Switch to desired clock, and reset the PLL. */ |
| SPIPCI_WREG(osh, ®s->spih_pll_ctrl, ext_clk ? SPIH_EXT_CLK : 0); |
| |
| SPINWAIT(((SPIPCI_RREG(osh, ®s->spih_pll_status) & SPIH_PLL_LOCKED) |
| != SPIH_PLL_LOCKED), 1000); |
| if ((SPIPCI_RREG(osh, ®s->spih_pll_status) & SPIH_PLL_LOCKED) != SPIH_PLL_LOCKED) { |
| sd_err(("%s: timeout waiting for PLL to lock\n", __FUNCTION__)); |
| return (FALSE); |
| } |
| return (TRUE); |
| |
| } |
| |
| /* Configure PCI-SPI Host Controller's SPI Clock rate as a divisor into the |
| * base clock rate. The base clock is either the PCI Clock (33MHz) or the |
| * external clock oscillator at U17 on the PciSpiHost. |
| */ |
| bool |
| spi_start_clock(sdioh_info_t *sd, uint16 div) |
| { |
| spih_info_t *si = (spih_info_t *)sd->controller; |
| osl_t *osh = si->osh; |
| spih_regs_t *regs = si->regs; |
| uint32 t, espr, disp; |
| uint32 disp_xtal_freq; |
| bool ext_clock = FALSE; |
| char disp_string[5]; |
| |
| if (div > 2048) { |
| sd_err(("%s: divisor %d too large; using max of 2048\n", __FUNCTION__, div)); |
| div = 2048; |
| } else if (div & (div - 1)) { /* Not a power of 2? */ |
| /* Round up to a power of 2 */ |
| while ((div + 1) & div) |
| div |= div >> 1; |
| div++; |
| } |
| |
| /* For FPGA Rev >= 5, the use of an external clock oscillator is supported. |
| * If the oscillator is populated, use it to provide the SPI base clock, |
| * otherwise, default to the PCI clock as the SPI base clock. |
| */ |
| if (si->rev >= 5) { |
| uint32 clk_tick; |
| /* Enable the External Clock Oscillator as PLL clock source. */ |
| if (!sdspi_switch_clock(sd, TRUE)) { |
| sd_err(("%s: error switching to external clock\n", __FUNCTION__)); |
| } |
| |
| /* Check to make sure the external clock is running. If not, then it |
| * is not populated on the card, so we will default to the PCI clock. |
| */ |
| clk_tick = SPIPCI_RREG(osh, ®s->spih_clk_count); |
| if (clk_tick == SPIPCI_RREG(osh, ®s->spih_clk_count)) { |
| |
| /* Switch back to the PCI clock as the clock source. */ |
| if (!sdspi_switch_clock(sd, FALSE)) { |
| sd_err(("%s: error switching to external clock\n", __FUNCTION__)); |
| } |
| } else { |
| ext_clock = TRUE; |
| } |
| } |
| |
| /* Hack to allow hot-swapping oscillators: |
| * 1. Force PCI clock as clock source, using sd_divisor of 0. |
| * 2. Swap oscillator |
| * 3. Set desired sd_divisor (will switch to external oscillator as clock source. |
| */ |
| if (div == 0) { |
| ext_clock = FALSE; |
| div = 2; |
| |
| /* Select PCI clock as the clock source. */ |
| if (!sdspi_switch_clock(sd, FALSE)) { |
| sd_err(("%s: error switching to external clock\n", __FUNCTION__)); |
| } |
| |
| sd_err(("%s: Ok to hot-swap oscillators.\n", __FUNCTION__)); |
| } |
| |
| /* If using the external oscillator, read the clock frequency from the controller |
| * The value read is in units of 10000Hz, and it's not a nice round number because |
| * it is calculated by the FPGA. So to make up for that, we round it off. |
| */ |
| if (ext_clock == TRUE) { |
| uint32 xtal_freq; |
| |
| OSL_DELAY(1000); |
| xtal_freq = SPIPCI_RREG(osh, ®s->spih_xtal_freq) * 10000; |
| |
| sd_info(("%s: Oscillator is %dHz\n", __FUNCTION__, xtal_freq)); |
| |
| |
| disp_xtal_freq = xtal_freq / 10000; |
| |
| /* Round it off to a nice number. */ |
| if ((disp_xtal_freq % 100) > 50) { |
| disp_xtal_freq += 100; |
| } |
| |
| disp_xtal_freq = (disp_xtal_freq / 100) * 100; |
| } else { |
| sd_err(("%s: no external oscillator installed, using PCI clock.\n", __FUNCTION__)); |
| disp_xtal_freq = 3333; |
| } |
| |
| /* Convert the SPI Clock frequency to BCD format. */ |
| sprintf(disp_string, "%04d", disp_xtal_freq / div); |
| |
| disp = (disp_string[0] - '0') << 12; |
| disp |= (disp_string[1] - '0') << 8; |
| disp |= (disp_string[2] - '0') << 4; |
| disp |= (disp_string[3] - '0'); |
| |
| /* Select the correct ESPR register value based on the divisor. */ |
| switch (div) { |
| case 1: espr = 0x0; break; |
| case 2: espr = 0x1; break; |
| case 4: espr = 0x2; break; |
| case 8: espr = 0x5; break; |
| case 16: espr = 0x3; break; |
| case 32: espr = 0x4; break; |
| case 64: espr = 0x6; break; |
| case 128: espr = 0x7; break; |
| case 256: espr = 0x8; break; |
| case 512: espr = 0x9; break; |
| case 1024: espr = 0xa; break; |
| case 2048: espr = 0xb; break; |
| default: espr = 0x0; ASSERT(0); break; |
| } |
| |
| t = SPIPCI_RREG(osh, ®s->spih_ctrl); |
| t &= ~3; |
| t |= espr & 3; |
| SPIPCI_WREG(osh, ®s->spih_ctrl, t); |
| |
| t = SPIPCI_RREG(osh, ®s->spih_ext); |
| t &= ~3; |
| t |= (espr >> 2) & 3; |
| SPIPCI_WREG(osh, ®s->spih_ext, t); |
| |
| SPIPCI_WREG(osh, ®s->spih_hex_disp, disp); |
| |
| /* For Rev 8, writing to the PLL_CTRL register resets |
| * the PLL, and it can re-acquire in 200uS. For |
| * Rev 7 and older, we use a software delay to allow |
| * the PLL to re-acquire, which takes more than 2mS. |
| */ |
| if (si->rev < 8) { |
| /* Wait for clock to settle. */ |
| OSL_DELAY(5000); |
| } |
| |
| sd_info(("%s: SPI_CTRL=0x%08x SPI_EXT=0x%08x\n", |
| __FUNCTION__, |
| SPIPCI_RREG(osh, ®s->spih_ctrl), |
| SPIPCI_RREG(osh, ®s->spih_ext))); |
| |
| return TRUE; |
| } |
| |
| /* Configure PCI-SPI Host Controller High-Speed Clocking mode setting */ |
| bool |
| spi_controller_highspeed_mode(sdioh_info_t *sd, bool hsmode) |
| { |
| spih_info_t *si = (spih_info_t *)sd->controller; |
| osl_t *osh = si->osh; |
| spih_regs_t *regs = si->regs; |
| |
| if (si->rev >= 10) { |
| if (hsmode) { |
| SPIPCI_ORREG(osh, ®s->spih_ext, 0x10); |
| } else { |
| SPIPCI_ANDREG(osh, ®s->spih_ext, ~0x10); |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Disable device interrupt */ |
| void |
| spi_devintr_off(sdioh_info_t *sd) |
| { |
| spih_info_t *si = (spih_info_t *)sd->controller; |
| osl_t *osh = si->osh; |
| spih_regs_t *regs = si->regs; |
| |
| sd_trace(("%s: %d\n", __FUNCTION__, sd->use_client_ints)); |
| if (sd->use_client_ints) { |
| sd->intmask &= ~SPIH_DEV_INTR; |
| SPIPCI_WREG(osh, ®s->spih_int_mask, sd->intmask); /* Clear Intmask */ |
| } |
| } |
| |
| /* Enable device interrupt */ |
| void |
| spi_devintr_on(sdioh_info_t *sd) |
| { |
| spih_info_t *si = (spih_info_t *)sd->controller; |
| osl_t *osh = si->osh; |
| spih_regs_t *regs = si->regs; |
| |
| ASSERT(sd->lockcount == 0); |
| sd_trace(("%s: %d\n", __FUNCTION__, sd->use_client_ints)); |
| if (sd->use_client_ints) { |
| if (SPIPCI_RREG(osh, ®s->spih_ctrl) & 0x02) { |
| /* Ack in case one was pending but is no longer... */ |
| SPIPCI_WREG(osh, ®s->spih_int_status, SPIH_DEV_INTR); |
| } |
| sd->intmask |= SPIH_DEV_INTR; |
| /* Set device intr in Intmask */ |
| SPIPCI_WREG(osh, ®s->spih_int_mask, sd->intmask); |
| } |
| } |
| |
| /* Check to see if an interrupt belongs to the PCI-SPI Host or a SPI Device */ |
| bool |
| spi_check_client_intr(sdioh_info_t *sd, int *is_dev_intr) |
| { |
| spih_info_t *si = (spih_info_t *)sd->controller; |
| osl_t *osh = si->osh; |
| spih_regs_t *regs = si->regs; |
| bool ours = FALSE; |
| |
| uint32 raw_int, cur_int; |
| ASSERT(sd); |
| |
| if (is_dev_intr) |
| *is_dev_intr = FALSE; |
| raw_int = SPIPCI_RREG(osh, ®s->spih_int_status); |
| cur_int = raw_int & sd->intmask; |
| if (cur_int & SPIH_DEV_INTR) { |
| if (sd->client_intr_enabled && sd->use_client_ints) { |
| sd->intrcount++; |
| ASSERT(sd->intr_handler); |
| ASSERT(sd->intr_handler_arg); |
| (sd->intr_handler)(sd->intr_handler_arg); |
| if (is_dev_intr) |
| *is_dev_intr = TRUE; |
| } else { |
| sd_trace(("%s: Not ready for intr: enabled %d, handler 0x%p\n", |
| __FUNCTION__, sd->client_intr_enabled, sd->intr_handler)); |
| } |
| SPIPCI_WREG(osh, ®s->spih_int_status, SPIH_DEV_INTR); |
| SPIPCI_RREG(osh, ®s->spih_int_status); |
| ours = TRUE; |
| } else if (cur_int & SPIH_CTLR_INTR) { |
| /* Interrupt is from SPI FIFO... just clear and ack it... */ |
| sd_trace(("%s: SPI CTLR interrupt: raw_int 0x%08x cur_int 0x%08x\n", |
| __FUNCTION__, raw_int, cur_int)); |
| |
| /* Clear the interrupt in the SPI_STAT register */ |
| SPIPCI_WREG(osh, ®s->spih_stat, 0x00000080); |
| |
| /* Ack the interrupt in the interrupt controller */ |
| SPIPCI_WREG(osh, ®s->spih_int_status, SPIH_CTLR_INTR); |
| SPIPCI_RREG(osh, ®s->spih_int_status); |
| |
| ours = TRUE; |
| } else if (cur_int & SPIH_WFIFO_INTR) { |
| sd_trace(("%s: SPI WR FIFO Empty interrupt: raw_int 0x%08x cur_int 0x%08x\n", |
| __FUNCTION__, raw_int, cur_int)); |
| |
| /* Disable the FIFO Empty Interrupt */ |
| sd->intmask &= ~SPIH_WFIFO_INTR; |
| SPIPCI_WREG(osh, ®s->spih_int_mask, sd->intmask); |
| |
| sd->local_intrcount++; |
| sd->got_hcint = TRUE; |
| ours = TRUE; |
| } else { |
| /* Not an error: can share interrupts... */ |
| sd_trace(("%s: Not my interrupt: raw_int 0x%08x cur_int 0x%08x\n", |
| __FUNCTION__, raw_int, cur_int)); |
| ours = FALSE; |
| } |
| |
| return ours; |
| } |
| |
| static void |
| hexdump(char *pfx, unsigned char *msg, int msglen) |
| { |
| int i, col; |
| char buf[80]; |
| |
| ASSERT(strlen(pfx) + 49 <= sizeof(buf)); |
| |
| col = 0; |
| |
| for (i = 0; i < msglen; i++, col++) { |
| if (col % 16 == 0) |
| strcpy(buf, pfx); |
| sprintf(buf + strlen(buf), "%02x", msg[i]); |
| if ((col + 1) % 16 == 0) |
| printf("%s\n", buf); |
| else |
| sprintf(buf + strlen(buf), " "); |
| } |
| |
| if (col % 16 != 0) |
| printf("%s\n", buf); |
| } |
| |
| /* Send/Receive an SPI Packet */ |
| void |
| spi_sendrecv(sdioh_info_t *sd, uint8 *msg_out, uint8 *msg_in, int msglen) |
| { |
| spih_info_t *si = (spih_info_t *)sd->controller; |
| osl_t *osh = si->osh; |
| spih_regs_t *regs = si->regs; |
| uint32 count; |
| uint32 spi_data_out; |
| uint32 spi_data_in; |
| bool yield; |
| |
| sd_trace(("%s: enter\n", __FUNCTION__)); |
| |
| if (bcmpcispi_dump) { |
| printf("SENDRECV(len=%d)\n", msglen); |
| hexdump(" OUT: ", msg_out, msglen); |
| } |
| |
| #ifdef BCMSDYIELD |
| /* Only yield the CPU and wait for interrupt on Rev 8 and newer FPGA images. */ |
| yield = ((msglen > 500) && (si->rev >= 8)); |
| #else |
| yield = FALSE; |
| #endif /* BCMSDYIELD */ |
| |
| ASSERT(msglen % 4 == 0); |
| |
| |
| SPIPCI_ANDREG(osh, ®s->spih_gpio_data, ~SPIH_CS); /* Set GPIO CS# Low (asserted) */ |
| |
| for (count = 0; count < (uint32)msglen/4; count++) { |
| spi_data_out = ((uint32)((uint32 *)msg_out)[count]); |
| SPIPCI_WREG(osh, ®s->spih_data, spi_data_out); |
| } |
| |
| #ifdef BCMSDYIELD |
| if (yield) { |
| /* Ack the interrupt in the interrupt controller */ |
| SPIPCI_WREG(osh, ®s->spih_int_status, SPIH_WFIFO_INTR); |
| SPIPCI_RREG(osh, ®s->spih_int_status); |
| |
| /* Enable the FIFO Empty Interrupt */ |
| sd->intmask |= SPIH_WFIFO_INTR; |
| sd->got_hcint = FALSE; |
| SPIPCI_WREG(osh, ®s->spih_int_mask, sd->intmask); |
| |
| } |
| #endif /* BCMSDYIELD */ |
| |
| /* Wait for write fifo to empty... */ |
| SPIPCI_ANDREG(osh, ®s->spih_gpio_data, ~0x00000020); /* Set GPIO 5 Low */ |
| |
| if (yield) { |
| ASSERT((SPIPCI_RREG(sd->osh, ®s->spih_stat) & SPIH_WFEMPTY) == 0); |
| } |
| |
| spi_waitbits(sd, yield); |
| SPIPCI_ORREG(osh, ®s->spih_gpio_data, 0x00000020); /* Set GPIO 5 High (de-asserted) */ |
| |
| for (count = 0; count < (uint32)msglen/4; count++) { |
| spi_data_in = SPIPCI_RREG(osh, ®s->spih_data); |
| ((uint32 *)msg_in)[count] = spi_data_in; |
| } |
| |
| /* Set GPIO CS# High (de-asserted) */ |
| SPIPCI_ORREG(osh, ®s->spih_gpio_data, SPIH_CS); |
| |
| if (bcmpcispi_dump) { |
| hexdump(" IN : ", msg_in, msglen); |
| } |
| } |
| |
| void |
| spi_spinbits(sdioh_info_t *sd) |
| { |
| spih_info_t *si = (spih_info_t *)sd->controller; |
| osl_t *osh = si->osh; |
| spih_regs_t *regs = si->regs; |
| uint spin_count; /* Spin loop bound check */ |
| |
| spin_count = 0; |
| while ((SPIPCI_RREG(sd->osh, ®s->spih_stat) & SPIH_WFEMPTY) == 0) { |
| if (spin_count > SPI_SPIN_BOUND) { |
| ASSERT(FALSE); /* Spin bound exceeded */ |
| } |
| spin_count++; |
| } |
| spin_count = 0; |
| /* Wait for SPI Transfer state machine to return to IDLE state. |
| * The state bits are only implemented in Rev >= 5 FPGA. These |
| * bits are hardwired to 00 for Rev < 5, so this check doesn't cause |
| * any problems. |
| */ |
| while ((SPIPCI_RREG(osh, ®s->spih_stat) & SPIH_STATE_MASK) != 0) { |
| if (spin_count > SPI_SPIN_BOUND) { |
| ASSERT(FALSE); |
| } |
| spin_count++; |
| } |
| } |