| /* |
| * Misc utility routines for accessing chip-specific features |
| * of the SiliconBackplane-based Broadcom chips. |
| * |
| * Copyright (C) 1999-2009, Broadcom Corporation |
| * |
| * Unless you and Broadcom execute a separate written software license |
| * agreement governing use of this software, this software is licensed to you |
| * under the terms of the GNU General Public License version 2 (the "GPL"), |
| * available at http://www.broadcom.com/licenses/GPLv2.php, with the |
| * following added to such license: |
| * |
| * As a special exception, the copyright holders of this software give you |
| * permission to link this software with independent modules, and to copy and |
| * distribute the resulting executable under terms of your choice, provided that |
| * you also meet, for each linked independent module, the terms and conditions of |
| * the license of that module. An independent module is a module which is not |
| * derived from this software. The special exception does not apply to any |
| * modifications of the software. |
| * |
| * Notwithstanding the above, under no circumstances may you combine this |
| * software in any way with any other Broadcom software provided under a license |
| * other than the GPL, without Broadcom's express prior written consent. |
| * |
| * $Id: aiutils.c,v 1.6.4.7.4.5 2009/09/25 00:32:01 Exp $ |
| */ |
| |
| #include <typedefs.h> |
| #include <bcmdefs.h> |
| #include <osl.h> |
| #include <bcmutils.h> |
| #include <siutils.h> |
| #include <hndsoc.h> |
| #include <sbchipc.h> |
| #include <pcicfg.h> |
| |
| #include "siutils_priv.h" |
| |
| STATIC uint32 |
| get_asd(si_t *sih, uint32 *eromptr, uint sp, uint ad, uint st, |
| uint32 *addrl, uint32 *addrh, uint32 *sizel, uint32 *sizeh); |
| |
| |
| /* EROM parsing */ |
| |
| static uint32 |
| get_erom_ent(si_t *sih, uint32 *eromptr, uint32 mask, uint32 match) |
| { |
| uint32 ent; |
| uint inv = 0, nom = 0; |
| |
| while (TRUE) { |
| ent = R_REG(si_osh(sih), (uint32 *)(uintptr)(*eromptr)); |
| *eromptr += sizeof(uint32); |
| |
| if (mask == 0) |
| break; |
| |
| if ((ent & ER_VALID) == 0) { |
| inv++; |
| continue; |
| } |
| |
| if (ent == (ER_END | ER_VALID)) |
| break; |
| |
| if ((ent & mask) == match) |
| break; |
| |
| nom++; |
| } |
| |
| SI_MSG(("%s: Returning ent 0x%08x\n", __FUNCTION__, ent)); |
| if (inv + nom) |
| SI_MSG((" after %d invalid and %d non-matching entries\n", inv, nom)); |
| return ent; |
| } |
| |
| STATIC uint32 |
| get_asd(si_t *sih, uint32 *eromptr, uint sp, uint ad, uint st, |
| uint32 *addrl, uint32 *addrh, uint32 *sizel, uint32 *sizeh) |
| { |
| uint32 asd, sz, szd; |
| |
| asd = get_erom_ent(sih, eromptr, ER_VALID, ER_VALID); |
| if (((asd & ER_TAG1) != ER_ADD) || |
| (((asd & AD_SP_MASK) >> AD_SP_SHIFT) != sp) || |
| ((asd & AD_ST_MASK) != st)) { |
| /* This is not what we want, "push" it back */ |
| *eromptr -= sizeof(uint32); |
| return 0; |
| } |
| *addrl = asd & AD_ADDR_MASK; |
| if (asd & AD_AG32) |
| *addrh = get_erom_ent(sih, eromptr, 0, 0); |
| else |
| *addrh = 0; |
| *sizeh = 0; |
| sz = asd & AD_SZ_MASK; |
| if (sz == AD_SZ_SZD) { |
| szd = get_erom_ent(sih, eromptr, 0, 0); |
| *sizel = szd & SD_SZ_MASK; |
| if (szd & SD_SG32) |
| *sizeh = get_erom_ent(sih, eromptr, 0, 0); |
| } else |
| *sizel = AD_SZ_BASE << (sz >> AD_SZ_SHIFT); |
| |
| SI_MSG((" SP %d, ad %d: st = %d, 0x%08x_0x%08x @ 0x%08x_0x%08x\n", |
| sp, ad, st, *sizeh, *sizel, *addrh, *addrl)); |
| |
| return asd; |
| } |
| |
| /* parse the enumeration rom to identify all cores */ |
| void |
| ai_scan(si_t *sih, void *regs, uint devid) |
| { |
| si_info_t *sii = SI_INFO(sih); |
| chipcregs_t *cc = (chipcregs_t *)regs; |
| uint32 erombase, eromptr, eromlim; |
| |
| erombase = R_REG(sii->osh, &cc->eromptr); |
| |
| switch (BUSTYPE(sih->bustype)) { |
| case SI_BUS: |
| eromptr = (uintptr)REG_MAP(erombase, SI_CORE_SIZE); |
| break; |
| |
| case PCI_BUS: |
| /* Set wrappers address */ |
| sii->curwrap = (void *)((uintptr)regs + SI_CORE_SIZE); |
| |
| /* Now point the window at the erom */ |
| OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, erombase); |
| eromptr = (uint32)(uintptr)regs; |
| break; |
| |
| case SPI_BUS: |
| case SDIO_BUS: |
| eromptr = erombase; |
| break; |
| |
| case PCMCIA_BUS: |
| default: |
| SI_ERROR(("Don't know how to do AXI enumertion on bus %d\n", sih->bustype)); |
| ASSERT(0); |
| return; |
| } |
| eromlim = eromptr + ER_REMAPCONTROL; |
| |
| SI_MSG(("ai_scan: regs = 0x%p, erombase = 0x%08x, eromptr = 0x%08x, eromlim = 0x%08x\n", |
| regs, erombase, eromptr, eromlim)); |
| while (eromptr < eromlim) { |
| uint32 cia, cib, base, cid, mfg, crev, nmw, nsw, nmp, nsp; |
| uint32 mpd, asd, addrl, addrh, sizel, sizeh; |
| uint i, j, idx; |
| bool br; |
| |
| br = FALSE; |
| |
| /* Grok a component */ |
| cia = get_erom_ent(sih, &eromptr, ER_TAG, ER_CI); |
| if (cia == (ER_END | ER_VALID)) { |
| SI_MSG(("Found END of erom after %d cores\n", sii->numcores)); |
| return; |
| } |
| base = eromptr - sizeof(uint32); |
| cib = get_erom_ent(sih, &eromptr, 0, 0); |
| |
| if ((cib & ER_TAG) != ER_CI) { |
| SI_ERROR(("CIA not followed by CIB\n")); |
| goto error; |
| } |
| |
| cid = (cia & CIA_CID_MASK) >> CIA_CID_SHIFT; |
| mfg = (cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT; |
| crev = (cib & CIB_REV_MASK) >> CIB_REV_SHIFT; |
| nmw = (cib & CIB_NMW_MASK) >> CIB_NMW_SHIFT; |
| nsw = (cib & CIB_NSW_MASK) >> CIB_NSW_SHIFT; |
| nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT; |
| nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT; |
| |
| SI_MSG(("Found component 0x%04x/0x%4x rev %d at erom addr 0x%08x, with nmw = %d, " |
| "nsw = %d, nmp = %d & nsp = %d\n", |
| mfg, cid, crev, base, nmw, nsw, nmp, nsp)); |
| |
| if (((mfg == MFGID_ARM) && (cid == DEF_AI_COMP)) || (nsp == 0)) |
| continue; |
| if ((nmw + nsw == 0)) { |
| /* A component which is not a core */ |
| if (cid == OOB_ROUTER_CORE_ID) { |
| asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, |
| &addrl, &addrh, &sizel, &sizeh); |
| if (asd != 0) { |
| sii->common_info->oob_router = addrl; |
| } |
| } |
| continue; |
| } |
| |
| idx = sii->numcores; |
| /* sii->eromptr[idx] = base; */ |
| sii->common_info->cia[idx] = cia; |
| sii->common_info->cib[idx] = cib; |
| sii->common_info->coreid[idx] = cid; |
| |
| for (i = 0; i < nmp; i++) { |
| mpd = get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID); |
| if ((mpd & ER_TAG) != ER_MP) { |
| SI_ERROR(("Not enough MP entries for component 0x%x\n", cid)); |
| goto error; |
| } |
| SI_MSG((" Master port %d, mp: %d id: %d\n", i, |
| (mpd & MPD_MP_MASK) >> MPD_MP_SHIFT, |
| (mpd & MPD_MUI_MASK) >> MPD_MUI_SHIFT)); |
| } |
| |
| /* First Slave Address Descriptor should be port 0: |
| * the main register space for the core |
| */ |
| asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh); |
| if (asd == 0) { |
| /* Try again to see if it is a bridge */ |
| asd = get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl, &addrh, |
| &sizel, &sizeh); |
| if (asd != 0) |
| br = TRUE; |
| else |
| if ((addrh != 0) || (sizeh != 0) || (sizel != SI_CORE_SIZE)) { |
| SI_ERROR(("First Slave ASD for core 0x%04x malformed " |
| "(0x%08x)\n", cid, asd)); |
| goto error; |
| } |
| } |
| sii->common_info->coresba[idx] = addrl; |
| sii->common_info->coresba_size[idx] = sizel; |
| /* Get any more ASDs in port 0 */ |
| j = 1; |
| do { |
| asd = get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl, &addrh, |
| &sizel, &sizeh); |
| if ((asd != 0) && (j == 1) && (sizel == SI_CORE_SIZE)) |
| sii->common_info->coresba2[idx] = addrl; |
| sii->common_info->coresba2_size[idx] = sizel; |
| j++; |
| } while (asd != 0); |
| |
| /* Go through the ASDs for other slave ports */ |
| for (i = 1; i < nsp; i++) { |
| j = 0; |
| do { |
| asd = get_asd(sih, &eromptr, i, j++, AD_ST_SLAVE, &addrl, &addrh, |
| &sizel, &sizeh); |
| } while (asd != 0); |
| if (j == 0) { |
| SI_ERROR((" SP %d has no address descriptors\n", i)); |
| goto error; |
| } |
| } |
| |
| /* Now get master wrappers */ |
| for (i = 0; i < nmw; i++) { |
| asd = get_asd(sih, &eromptr, i, 0, AD_ST_MWRAP, &addrl, &addrh, |
| &sizel, &sizeh); |
| if (asd == 0) { |
| SI_ERROR(("Missing descriptor for MW %d\n", i)); |
| goto error; |
| } |
| if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) { |
| SI_ERROR(("Master wrapper %d is not 4KB\n", i)); |
| goto error; |
| } |
| if (i == 0) |
| sii->common_info->wrapba[idx] = addrl; |
| } |
| |
| /* And finally slave wrappers */ |
| for (i = 0; i < nsw; i++) { |
| uint fwp = (nsp == 1) ? 0 : 1; |
| asd = get_asd(sih, &eromptr, fwp + i, 0, AD_ST_SWRAP, &addrl, &addrh, |
| &sizel, &sizeh); |
| if (asd == 0) { |
| SI_ERROR(("Missing descriptor for SW %d\n", i)); |
| goto error; |
| } |
| if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) { |
| SI_ERROR(("Slave wrapper %d is not 4KB\n", i)); |
| goto error; |
| } |
| if ((nmw == 0) && (i == 0)) |
| sii->common_info->wrapba[idx] = addrl; |
| } |
| |
| /* Don't record bridges */ |
| if (br) |
| continue; |
| |
| /* Done with core */ |
| sii->numcores++; |
| } |
| |
| SI_ERROR(("Reached end of erom without finding END")); |
| |
| error: |
| sii->numcores = 0; |
| return; |
| } |
| |
| /* This function changes the logical "focus" to the indicated core. |
| * Return the current core's virtual address. |
| */ |
| void * |
| ai_setcoreidx(si_t *sih, uint coreidx) |
| { |
| si_info_t *sii = SI_INFO(sih); |
| uint32 addr = sii->common_info->coresba[coreidx]; |
| uint32 wrap = sii->common_info->wrapba[coreidx]; |
| void *regs; |
| |
| if (coreidx >= sii->numcores) |
| return (NULL); |
| |
| /* |
| * If the user has provided an interrupt mask enabled function, |
| * then assert interrupts are disabled before switching the core. |
| */ |
| ASSERT((sii->intrsenabled_fn == NULL) || !(*(sii)->intrsenabled_fn)((sii)->intr_arg)); |
| |
| switch (BUSTYPE(sih->bustype)) { |
| case SI_BUS: |
| /* map new one */ |
| if (!sii->common_info->regs[coreidx]) { |
| sii->common_info->regs[coreidx] = REG_MAP(addr, SI_CORE_SIZE); |
| ASSERT(GOODREGS(sii->common_info->regs[coreidx])); |
| } |
| sii->curmap = regs = sii->common_info->regs[coreidx]; |
| if (!sii->common_info->wrappers[coreidx]) { |
| sii->common_info->wrappers[coreidx] = REG_MAP(wrap, SI_CORE_SIZE); |
| ASSERT(GOODREGS(sii->common_info->wrappers[coreidx])); |
| } |
| sii->curwrap = sii->common_info->wrappers[coreidx]; |
| break; |
| |
| |
| case SPI_BUS: |
| case SDIO_BUS: |
| sii->curmap = regs = (void *)((uintptr)addr); |
| sii->curwrap = (void *)((uintptr)wrap); |
| break; |
| |
| case PCMCIA_BUS: |
| default: |
| ASSERT(0); |
| regs = NULL; |
| break; |
| } |
| |
| sii->curmap = regs; |
| sii->curidx = coreidx; |
| |
| return regs; |
| } |
| |
| /* Return the number of address spaces in current core */ |
| int |
| ai_numaddrspaces(si_t *sih) |
| { |
| return 2; |
| } |
| |
| /* Return the address of the nth address space in the current core */ |
| uint32 |
| ai_addrspace(si_t *sih, uint asidx) |
| { |
| si_info_t *sii; |
| uint cidx; |
| |
| sii = SI_INFO(sih); |
| cidx = sii->curidx; |
| |
| if (asidx == 0) |
| return sii->common_info->coresba[cidx]; |
| else if (asidx == 1) |
| return sii->common_info->coresba2[cidx]; |
| else { |
| SI_ERROR(("%s: Need to parse the erom again to find addr space %d\n", |
| __FUNCTION__, asidx)); |
| return 0; |
| } |
| } |
| |
| /* Return the size of the nth address space in the current core */ |
| uint32 |
| ai_addrspacesize(si_t *sih, uint asidx) |
| { |
| si_info_t *sii; |
| uint cidx; |
| |
| sii = SI_INFO(sih); |
| cidx = sii->curidx; |
| |
| if (asidx == 0) |
| return sii->common_info->coresba_size[cidx]; |
| else if (asidx == 1) |
| return sii->common_info->coresba2_size[cidx]; |
| else { |
| SI_ERROR(("%s: Need to parse the erom again to find addr space %d\n", |
| __FUNCTION__, asidx)); |
| return 0; |
| } |
| } |
| |
| uint |
| ai_flag(si_t *sih) |
| { |
| si_info_t *sii; |
| aidmp_t *ai; |
| |
| sii = SI_INFO(sih); |
| ai = sii->curwrap; |
| |
| return (R_REG(sii->osh, &ai->oobselouta30) & 0x1f); |
| } |
| |
| void |
| ai_setint(si_t *sih, int siflag) |
| { |
| } |
| |
| void |
| ai_write_wrap_reg(si_t *sih, uint32 offset, uint32 val) |
| { |
| si_info_t *sii = SI_INFO(sih); |
| aidmp_t *ai = sii->curwrap; |
| W_REG(sii->osh, (uint32 *)((uint8 *)ai+offset), val); |
| return; |
| } |
| |
| uint |
| ai_corevendor(si_t *sih) |
| { |
| si_info_t *sii; |
| uint32 cia; |
| |
| sii = SI_INFO(sih); |
| cia = sii->common_info->cia[sii->curidx]; |
| return ((cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT); |
| } |
| |
| uint |
| ai_corerev(si_t *sih) |
| { |
| si_info_t *sii; |
| uint32 cib; |
| |
| sii = SI_INFO(sih); |
| cib = sii->common_info->cib[sii->curidx]; |
| return ((cib & CIB_REV_MASK) >> CIB_REV_SHIFT); |
| } |
| |
| bool |
| ai_iscoreup(si_t *sih) |
| { |
| si_info_t *sii; |
| aidmp_t *ai; |
| |
| sii = SI_INFO(sih); |
| ai = sii->curwrap; |
| |
| return (((R_REG(sii->osh, &ai->ioctrl) & (SICF_FGC | SICF_CLOCK_EN)) == SICF_CLOCK_EN) && |
| ((R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) == 0)); |
| } |
| |
| /* |
| * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation, |
| * switch back to the original core, and return the new value. |
| * |
| * When using the silicon backplane, no fidleing with interrupts or core switches are needed. |
| * |
| * Also, when using pci/pcie, we can optimize away the core switching for pci registers |
| * and (on newer pci cores) chipcommon registers. |
| */ |
| uint |
| ai_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val) |
| { |
| uint origidx = 0; |
| uint32 *r = NULL; |
| uint w; |
| uint intr_val = 0; |
| bool fast = FALSE; |
| si_info_t *sii; |
| |
| sii = SI_INFO(sih); |
| |
| ASSERT(GOODIDX(coreidx)); |
| ASSERT(regoff < SI_CORE_SIZE); |
| ASSERT((val & ~mask) == 0); |
| |
| if (coreidx >= SI_MAXCORES) |
| return 0; |
| |
| if (BUSTYPE(sih->bustype) == SI_BUS) { |
| /* If internal bus, we can always get at everything */ |
| fast = TRUE; |
| /* map if does not exist */ |
| if (!sii->common_info->wrappers[coreidx]) { |
| sii->common_info->regs[coreidx] = |
| REG_MAP(sii->common_info->coresba[coreidx], SI_CORE_SIZE); |
| ASSERT(GOODREGS(sii->common_info->regs[coreidx])); |
| } |
| r = (uint32 *)((uchar *)sii->common_info->regs[coreidx] + regoff); |
| } else if (BUSTYPE(sih->bustype) == PCI_BUS) { |
| /* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */ |
| |
| if ((sii->common_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) { |
| /* Chipc registers are mapped at 12KB */ |
| |
| fast = TRUE; |
| r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff); |
| } else if (sii->pub.buscoreidx == coreidx) { |
| /* pci registers are at either in the last 2KB of an 8KB window |
| * or, in pcie and pci rev 13 at 8KB |
| */ |
| fast = TRUE; |
| if (SI_FAST(sii)) |
| r = (uint32 *)((char *)sii->curmap + |
| PCI_16KB0_PCIREGS_OFFSET + regoff); |
| else |
| r = (uint32 *)((char *)sii->curmap + |
| ((regoff >= SBCONFIGOFF) ? |
| PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) + |
| regoff); |
| } |
| } |
| |
| if (!fast) { |
| INTR_OFF(sii, intr_val); |
| |
| /* save current core index */ |
| origidx = si_coreidx(&sii->pub); |
| |
| /* switch core */ |
| r = (uint32*) ((uchar*) ai_setcoreidx(&sii->pub, coreidx) + regoff); |
| } |
| ASSERT(r != NULL); |
| |
| /* mask and set */ |
| if (mask || val) { |
| w = (R_REG(sii->osh, r) & ~mask) | val; |
| W_REG(sii->osh, r, w); |
| } |
| |
| /* readback */ |
| w = R_REG(sii->osh, r); |
| |
| if (!fast) { |
| /* restore core index */ |
| if (origidx != coreidx) |
| ai_setcoreidx(&sii->pub, origidx); |
| |
| INTR_RESTORE(sii, intr_val); |
| } |
| |
| return (w); |
| } |
| |
| void |
| ai_core_disable(si_t *sih, uint32 bits) |
| { |
| si_info_t *sii; |
| volatile uint32 dummy; |
| aidmp_t *ai; |
| |
| sii = SI_INFO(sih); |
| |
| ASSERT(GOODREGS(sii->curwrap)); |
| ai = sii->curwrap; |
| |
| /* if core is already in reset, just return */ |
| if (R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) |
| return; |
| |
| W_REG(sii->osh, &ai->ioctrl, bits); |
| dummy = R_REG(sii->osh, &ai->ioctrl); |
| OSL_DELAY(10); |
| |
| W_REG(sii->osh, &ai->resetctrl, AIRC_RESET); |
| OSL_DELAY(1); |
| } |
| |
| /* reset and re-enable a core |
| * inputs: |
| * bits - core specific bits that are set during and after reset sequence |
| * resetbits - core specific bits that are set only during reset sequence |
| */ |
| void |
| ai_core_reset(si_t *sih, uint32 bits, uint32 resetbits) |
| { |
| si_info_t *sii; |
| aidmp_t *ai; |
| volatile uint32 dummy; |
| |
| sii = SI_INFO(sih); |
| ASSERT(GOODREGS(sii->curwrap)); |
| ai = sii->curwrap; |
| |
| /* |
| * Must do the disable sequence first to work for arbitrary current core state. |
| */ |
| ai_core_disable(sih, (bits | resetbits)); |
| |
| /* |
| * Now do the initialization sequence. |
| */ |
| W_REG(sii->osh, &ai->ioctrl, (bits | SICF_FGC | SICF_CLOCK_EN)); |
| dummy = R_REG(sii->osh, &ai->ioctrl); |
| W_REG(sii->osh, &ai->resetctrl, 0); |
| OSL_DELAY(1); |
| |
| W_REG(sii->osh, &ai->ioctrl, (bits | SICF_CLOCK_EN)); |
| dummy = R_REG(sii->osh, &ai->ioctrl); |
| OSL_DELAY(1); |
| } |
| |
| |
| void |
| ai_core_cflags_wo(si_t *sih, uint32 mask, uint32 val) |
| { |
| si_info_t *sii; |
| aidmp_t *ai; |
| uint32 w; |
| |
| sii = SI_INFO(sih); |
| ASSERT(GOODREGS(sii->curwrap)); |
| ai = sii->curwrap; |
| |
| ASSERT((val & ~mask) == 0); |
| |
| if (mask || val) { |
| w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val); |
| W_REG(sii->osh, &ai->ioctrl, w); |
| } |
| } |
| |
| uint32 |
| ai_core_cflags(si_t *sih, uint32 mask, uint32 val) |
| { |
| si_info_t *sii; |
| aidmp_t *ai; |
| uint32 w; |
| |
| sii = SI_INFO(sih); |
| ASSERT(GOODREGS(sii->curwrap)); |
| ai = sii->curwrap; |
| |
| ASSERT((val & ~mask) == 0); |
| |
| if (mask || val) { |
| w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val); |
| W_REG(sii->osh, &ai->ioctrl, w); |
| } |
| |
| return R_REG(sii->osh, &ai->ioctrl); |
| } |
| |
| uint32 |
| ai_core_sflags(si_t *sih, uint32 mask, uint32 val) |
| { |
| si_info_t *sii; |
| aidmp_t *ai; |
| uint32 w; |
| |
| sii = SI_INFO(sih); |
| ASSERT(GOODREGS(sii->curwrap)); |
| ai = sii->curwrap; |
| |
| ASSERT((val & ~mask) == 0); |
| ASSERT((mask & ~SISF_CORE_BITS) == 0); |
| |
| if (mask || val) { |
| w = ((R_REG(sii->osh, &ai->iostatus) & ~mask) | val); |
| W_REG(sii->osh, &ai->iostatus, w); |
| } |
| |
| return R_REG(sii->osh, &ai->iostatus); |
| } |