| /* |
| * Misc utility routines for accessing chip-specific features |
| * of the SiliconBackplane-based Broadcom chips. |
| * |
| * Copyright (C) 1999-2010, Broadcom Corporation |
| * |
| * Unless you and Broadcom execute a separate written software license |
| * agreement governing use of this software, this software is licensed to you |
| * under the terms of the GNU General Public License version 2 (the "GPL"), |
| * available at http://www.broadcom.com/licenses/GPLv2.php, with the |
| * following added to such license: |
| * |
| * As a special exception, the copyright holders of this software give you |
| * permission to link this software with independent modules, and to copy and |
| * distribute the resulting executable under terms of your choice, provided that |
| * you also meet, for each linked independent module, the terms and conditions of |
| * the license of that module. An independent module is a module which is not |
| * derived from this software. The special exception does not apply to any |
| * modifications of the software. |
| * |
| * Notwithstanding the above, under no circumstances may you combine this |
| * software in any way with any other Broadcom software provided under a license |
| * other than the GPL, without Broadcom's express prior written consent. |
| * |
| * $Id: sbutils.c,v 1.662.4.10.2.7.4.2 2010/04/19 05:48:48 Exp $ |
| */ |
| |
| #include <typedefs.h> |
| #include <bcmdefs.h> |
| #include <osl.h> |
| #include <bcmutils.h> |
| #include <siutils.h> |
| #include <bcmdevs.h> |
| #include <hndsoc.h> |
| #include <sbchipc.h> |
| #include <pcicfg.h> |
| #include <sbpcmcia.h> |
| |
| #include "siutils_priv.h" |
| |
| /* local prototypes */ |
| static uint _sb_coreidx(si_info_t *sii, uint32 sba); |
| static uint _sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba, |
| uint ncores); |
| static uint32 _sb_coresba(si_info_t *sii); |
| static void *_sb_setcoreidx(si_info_t *sii, uint coreidx); |
| |
| #define SET_SBREG(sii, r, mask, val) \ |
| W_SBREG((sii), (r), ((R_SBREG((sii), (r)) & ~(mask)) | (val))) |
| #define REGS2SB(va) (sbconfig_t*) ((int8*)(va) + SBCONFIGOFF) |
| |
| /* sonicsrev */ |
| #define SONICS_2_2 (SBIDL_RV_2_2 >> SBIDL_RV_SHIFT) |
| #define SONICS_2_3 (SBIDL_RV_2_3 >> SBIDL_RV_SHIFT) |
| |
| #define R_SBREG(sii, sbr) sb_read_sbreg((sii), (sbr)) |
| #define W_SBREG(sii, sbr, v) sb_write_sbreg((sii), (sbr), (v)) |
| #define AND_SBREG(sii, sbr, v) W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) & (v))) |
| #define OR_SBREG(sii, sbr, v) W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) | (v))) |
| |
| static uint32 |
| sb_read_sbreg(si_info_t *sii, volatile uint32 *sbr) |
| { |
| uint8 tmp; |
| uint32 val, intr_val = 0; |
| |
| |
| /* |
| * compact flash only has 11 bits address, while we needs 12 bits address. |
| * MEM_SEG will be OR'd with other 11 bits address in hardware, |
| * so we program MEM_SEG with 12th bit when necessary(access sb regsiters). |
| * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special |
| */ |
| if (PCMCIA(sii)) { |
| INTR_OFF(sii, intr_val); |
| tmp = 1; |
| OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); |
| sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */ |
| } |
| |
| val = R_REG(sii->osh, sbr); |
| |
| if (PCMCIA(sii)) { |
| tmp = 0; |
| OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); |
| INTR_RESTORE(sii, intr_val); |
| } |
| |
| return (val); |
| } |
| |
| static void |
| sb_write_sbreg(si_info_t *sii, volatile uint32 *sbr, uint32 v) |
| { |
| uint8 tmp; |
| volatile uint32 dummy; |
| uint32 intr_val = 0; |
| |
| |
| /* |
| * compact flash only has 11 bits address, while we needs 12 bits address. |
| * MEM_SEG will be OR'd with other 11 bits address in hardware, |
| * so we program MEM_SEG with 12th bit when necessary(access sb regsiters). |
| * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special |
| */ |
| if (PCMCIA(sii)) { |
| INTR_OFF(sii, intr_val); |
| tmp = 1; |
| OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); |
| sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */ |
| } |
| |
| if (BUSTYPE(sii->pub.bustype) == PCMCIA_BUS) { |
| #ifdef IL_BIGENDIAN |
| dummy = R_REG(sii->osh, sbr); |
| W_REG(sii->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff)); |
| dummy = R_REG(sii->osh, sbr); |
| W_REG(sii->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff)); |
| #else |
| dummy = R_REG(sii->osh, sbr); |
| W_REG(sii->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff)); |
| dummy = R_REG(sii->osh, sbr); |
| W_REG(sii->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff)); |
| #endif /* IL_BIGENDIAN */ |
| } else |
| W_REG(sii->osh, sbr, v); |
| |
| if (PCMCIA(sii)) { |
| tmp = 0; |
| OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); |
| INTR_RESTORE(sii, intr_val); |
| } |
| } |
| |
| uint |
| sb_coreid(si_t *sih) |
| { |
| si_info_t *sii; |
| sbconfig_t *sb; |
| |
| sii = SI_INFO(sih); |
| sb = REGS2SB(sii->curmap); |
| |
| return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_CC_MASK) >> SBIDH_CC_SHIFT); |
| } |
| |
| uint |
| sb_flag(si_t *sih) |
| { |
| si_info_t *sii; |
| sbconfig_t *sb; |
| |
| sii = SI_INFO(sih); |
| sb = REGS2SB(sii->curmap); |
| |
| return R_SBREG(sii, &sb->sbtpsflag) & SBTPS_NUM0_MASK; |
| } |
| |
| void |
| sb_setint(si_t *sih, int siflag) |
| { |
| si_info_t *sii; |
| sbconfig_t *sb; |
| uint32 vec; |
| |
| sii = SI_INFO(sih); |
| sb = REGS2SB(sii->curmap); |
| |
| if (siflag == -1) |
| vec = 0; |
| else |
| vec = 1 << siflag; |
| W_SBREG(sii, &sb->sbintvec, vec); |
| } |
| |
| /* return core index of the core with address 'sba' */ |
| static uint |
| _sb_coreidx(si_info_t *sii, uint32 sba) |
| { |
| uint i; |
| |
| for (i = 0; i < sii->numcores; i ++) |
| if (sba == sii->common_info->coresba[i]) |
| return i; |
| return BADIDX; |
| } |
| |
| /* return core address of the current core */ |
| static uint32 |
| _sb_coresba(si_info_t *sii) |
| { |
| uint32 sbaddr; |
| |
| |
| switch (BUSTYPE(sii->pub.bustype)) { |
| case SI_BUS: { |
| sbconfig_t *sb = REGS2SB(sii->curmap); |
| sbaddr = sb_base(R_SBREG(sii, &sb->sbadmatch0)); |
| break; |
| } |
| |
| case PCI_BUS: |
| sbaddr = OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32)); |
| break; |
| |
| case PCMCIA_BUS: { |
| uint8 tmp = 0; |
| OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1); |
| sbaddr = (uint32)tmp << 12; |
| OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1); |
| sbaddr |= (uint32)tmp << 16; |
| OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1); |
| sbaddr |= (uint32)tmp << 24; |
| break; |
| } |
| |
| case SPI_BUS: |
| case SDIO_BUS: |
| sbaddr = (uint32)(uintptr)sii->curmap; |
| break; |
| |
| |
| default: |
| sbaddr = BADCOREADDR; |
| break; |
| } |
| |
| return sbaddr; |
| } |
| |
| uint |
| sb_corevendor(si_t *sih) |
| { |
| si_info_t *sii; |
| sbconfig_t *sb; |
| |
| sii = SI_INFO(sih); |
| sb = REGS2SB(sii->curmap); |
| |
| return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_VC_MASK) >> SBIDH_VC_SHIFT); |
| } |
| |
| uint |
| sb_corerev(si_t *sih) |
| { |
| si_info_t *sii; |
| sbconfig_t *sb; |
| uint sbidh; |
| |
| sii = SI_INFO(sih); |
| sb = REGS2SB(sii->curmap); |
| sbidh = R_SBREG(sii, &sb->sbidhigh); |
| |
| return (SBCOREREV(sbidh)); |
| } |
| |
| /* set core-specific control flags */ |
| void |
| sb_core_cflags_wo(si_t *sih, uint32 mask, uint32 val) |
| { |
| si_info_t *sii; |
| sbconfig_t *sb; |
| uint32 w; |
| |
| sii = SI_INFO(sih); |
| sb = REGS2SB(sii->curmap); |
| |
| ASSERT((val & ~mask) == 0); |
| |
| /* mask and set */ |
| w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) | |
| (val << SBTML_SICF_SHIFT); |
| W_SBREG(sii, &sb->sbtmstatelow, w); |
| } |
| |
| /* set/clear core-specific control flags */ |
| uint32 |
| sb_core_cflags(si_t *sih, uint32 mask, uint32 val) |
| { |
| si_info_t *sii; |
| sbconfig_t *sb; |
| uint32 w; |
| |
| sii = SI_INFO(sih); |
| sb = REGS2SB(sii->curmap); |
| |
| ASSERT((val & ~mask) == 0); |
| |
| /* mask and set */ |
| if (mask || val) { |
| w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) | |
| (val << SBTML_SICF_SHIFT); |
| W_SBREG(sii, &sb->sbtmstatelow, w); |
| } |
| |
| /* return the new value |
| * for write operation, the following readback ensures the completion of write opration. |
| */ |
| return (R_SBREG(sii, &sb->sbtmstatelow) >> SBTML_SICF_SHIFT); |
| } |
| |
| /* set/clear core-specific status flags */ |
| uint32 |
| sb_core_sflags(si_t *sih, uint32 mask, uint32 val) |
| { |
| si_info_t *sii; |
| sbconfig_t *sb; |
| uint32 w; |
| |
| sii = SI_INFO(sih); |
| sb = REGS2SB(sii->curmap); |
| |
| ASSERT((val & ~mask) == 0); |
| ASSERT((mask & ~SISF_CORE_BITS) == 0); |
| |
| /* mask and set */ |
| if (mask || val) { |
| w = (R_SBREG(sii, &sb->sbtmstatehigh) & ~(mask << SBTMH_SISF_SHIFT)) | |
| (val << SBTMH_SISF_SHIFT); |
| W_SBREG(sii, &sb->sbtmstatehigh, w); |
| } |
| |
| /* return the new value */ |
| return (R_SBREG(sii, &sb->sbtmstatehigh) >> SBTMH_SISF_SHIFT); |
| } |
| |
| bool |
| sb_iscoreup(si_t *sih) |
| { |
| si_info_t *sii; |
| sbconfig_t *sb; |
| |
| sii = SI_INFO(sih); |
| sb = REGS2SB(sii->curmap); |
| |
| return ((R_SBREG(sii, &sb->sbtmstatelow) & |
| (SBTML_RESET | SBTML_REJ_MASK | (SICF_CLOCK_EN << SBTML_SICF_SHIFT))) == |
| (SICF_CLOCK_EN << SBTML_SICF_SHIFT)); |
| } |
| |
| /* |
| * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation, |
| * switch back to the original core, and return the new value. |
| * |
| * When using the silicon backplane, no fidleing with interrupts or core switches are needed. |
| * |
| * Also, when using pci/pcie, we can optimize away the core switching for pci registers |
| * and (on newer pci cores) chipcommon registers. |
| */ |
| uint |
| sb_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val) |
| { |
| uint origidx = 0; |
| uint32 *r = NULL; |
| uint w; |
| uint intr_val = 0; |
| bool fast = FALSE; |
| si_info_t *sii; |
| |
| sii = SI_INFO(sih); |
| |
| ASSERT(GOODIDX(coreidx)); |
| ASSERT(regoff < SI_CORE_SIZE); |
| ASSERT((val & ~mask) == 0); |
| |
| if (coreidx >= SI_MAXCORES) |
| return 0; |
| |
| if (BUSTYPE(sii->pub.bustype) == SI_BUS) { |
| /* If internal bus, we can always get at everything */ |
| fast = TRUE; |
| /* map if does not exist */ |
| if (!sii->common_info->regs[coreidx]) { |
| sii->common_info->regs[coreidx] = |
| REG_MAP(sii->common_info->coresba[coreidx], SI_CORE_SIZE); |
| ASSERT(GOODREGS(sii->common_info->regs[coreidx])); |
| } |
| r = (uint32 *)((uchar *)sii->common_info->regs[coreidx] + regoff); |
| } else if (BUSTYPE(sii->pub.bustype) == PCI_BUS) { |
| /* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */ |
| |
| if ((sii->common_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) { |
| /* Chipc registers are mapped at 12KB */ |
| |
| fast = TRUE; |
| r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff); |
| } else if (sii->pub.buscoreidx == coreidx) { |
| /* pci registers are at either in the last 2KB of an 8KB window |
| * or, in pcie and pci rev 13 at 8KB |
| */ |
| fast = TRUE; |
| if (SI_FAST(sii)) |
| r = (uint32 *)((char *)sii->curmap + |
| PCI_16KB0_PCIREGS_OFFSET + regoff); |
| else |
| r = (uint32 *)((char *)sii->curmap + |
| ((regoff >= SBCONFIGOFF) ? |
| PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) + |
| regoff); |
| } |
| } |
| |
| if (!fast) { |
| INTR_OFF(sii, intr_val); |
| |
| /* save current core index */ |
| origidx = si_coreidx(&sii->pub); |
| |
| /* switch core */ |
| r = (uint32*) ((uchar*)sb_setcoreidx(&sii->pub, coreidx) + regoff); |
| } |
| ASSERT(r != NULL); |
| |
| /* mask and set */ |
| if (mask || val) { |
| if (regoff >= SBCONFIGOFF) { |
| w = (R_SBREG(sii, r) & ~mask) | val; |
| W_SBREG(sii, r, w); |
| } else { |
| w = (R_REG(sii->osh, r) & ~mask) | val; |
| W_REG(sii->osh, r, w); |
| } |
| } |
| |
| /* readback */ |
| if (regoff >= SBCONFIGOFF) |
| w = R_SBREG(sii, r); |
| else { |
| if ((CHIPID(sii->pub.chip) == BCM5354_CHIP_ID) && |
| (coreidx == SI_CC_IDX) && |
| (regoff == OFFSETOF(chipcregs_t, watchdog))) { |
| w = val; |
| } else |
| w = R_REG(sii->osh, r); |
| } |
| |
| if (!fast) { |
| /* restore core index */ |
| if (origidx != coreidx) |
| sb_setcoreidx(&sii->pub, origidx); |
| |
| INTR_RESTORE(sii, intr_val); |
| } |
| |
| return (w); |
| } |
| |
| /* Scan the enumeration space to find all cores starting from the given |
| * bus 'sbba'. Append coreid and other info to the lists in 'si'. 'sba' |
| * is the default core address at chip POR time and 'regs' is the virtual |
| * address that the default core is mapped at. 'ncores' is the number of |
| * cores expected on bus 'sbba'. It returns the total number of cores |
| * starting from bus 'sbba', inclusive. |
| */ |
| #define SB_MAXBUSES 2 |
| static uint |
| _sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba, uint numcores) |
| { |
| uint next; |
| uint ncc = 0; |
| uint i; |
| |
| if (bus >= SB_MAXBUSES) { |
| SI_ERROR(("_sb_scan: bus 0x%08x at level %d is too deep to scan\n", sbba, bus)); |
| return 0; |
| } |
| SI_MSG(("_sb_scan: scan bus 0x%08x assume %u cores\n", sbba, numcores)); |
| |
| /* Scan all cores on the bus starting from core 0. |
| * Core addresses must be contiguous on each bus. |
| */ |
| for (i = 0, next = sii->numcores; i < numcores && next < SB_BUS_MAXCORES; i++, next++) { |
| sii->common_info->coresba[next] = sbba + (i * SI_CORE_SIZE); |
| |
| /* keep and reuse the initial register mapping */ |
| if ((BUSTYPE(sii->pub.bustype) == SI_BUS) && |
| (sii->common_info->coresba[next] == sba)) { |
| SI_MSG(("_sb_scan: reuse mapped regs %p for core %u\n", regs, next)); |
| sii->common_info->regs[next] = regs; |
| } |
| |
| /* change core to 'next' and read its coreid */ |
| sii->curmap = _sb_setcoreidx(sii, next); |
| sii->curidx = next; |
| |
| sii->common_info->coreid[next] = sb_coreid(&sii->pub); |
| |
| /* core specific processing... */ |
| /* chipc provides # cores */ |
| if (sii->common_info->coreid[next] == CC_CORE_ID) { |
| chipcregs_t *cc = (chipcregs_t *)sii->curmap; |
| uint32 ccrev = sb_corerev(&sii->pub); |
| |
| /* determine numcores - this is the total # cores in the chip */ |
| if (((ccrev == 4) || (ccrev >= 6))) |
| numcores = (R_REG(sii->osh, &cc->chipid) & CID_CC_MASK) >> |
| CID_CC_SHIFT; |
| else { |
| /* Older chips */ |
| uint chip = sii->pub.chip; |
| |
| if (chip == BCM4306_CHIP_ID) /* < 4306c0 */ |
| numcores = 6; |
| else if (chip == BCM4704_CHIP_ID) |
| numcores = 9; |
| else if (chip == BCM5365_CHIP_ID) |
| numcores = 7; |
| else { |
| SI_ERROR(("sb_chip2numcores: unsupported chip 0x%x\n", |
| chip)); |
| ASSERT(0); |
| numcores = 1; |
| } |
| } |
| SI_MSG(("_sb_scan: there are %u cores in the chip %s\n", numcores, |
| sii->pub.issim ? "QT" : "")); |
| } |
| /* scan bridged SB(s) and add results to the end of the list */ |
| else if (sii->common_info->coreid[next] == OCP_CORE_ID) { |
| sbconfig_t *sb = REGS2SB(sii->curmap); |
| uint32 nsbba = R_SBREG(sii, &sb->sbadmatch1); |
| uint nsbcc; |
| |
| sii->numcores = next + 1; |
| |
| if ((nsbba & 0xfff00000) != SI_ENUM_BASE) |
| continue; |
| nsbba &= 0xfffff000; |
| if (_sb_coreidx(sii, nsbba) != BADIDX) |
| continue; |
| |
| nsbcc = (R_SBREG(sii, &sb->sbtmstatehigh) & 0x000f0000) >> 16; |
| nsbcc = _sb_scan(sii, sba, regs, bus + 1, nsbba, nsbcc); |
| if (sbba == SI_ENUM_BASE) |
| numcores -= nsbcc; |
| ncc += nsbcc; |
| } |
| } |
| |
| SI_MSG(("_sb_scan: found %u cores on bus 0x%08x\n", i, sbba)); |
| |
| sii->numcores = i + ncc; |
| return sii->numcores; |
| } |
| |
| /* scan the sb enumerated space to identify all cores */ |
| void |
| sb_scan(si_t *sih, void *regs, uint devid) |
| { |
| si_info_t *sii; |
| uint32 origsba; |
| |
| sii = SI_INFO(sih); |
| |
| /* Save the current core info and validate it later till we know |
| * for sure what is good and what is bad. |
| */ |
| origsba = _sb_coresba(sii); |
| |
| /* scan all SB(s) starting from SI_ENUM_BASE */ |
| sii->numcores = _sb_scan(sii, origsba, regs, 0, SI_ENUM_BASE, 1); |
| } |
| |
| /* |
| * This function changes logical "focus" to the indicated core; |
| * must be called with interrupts off. |
| * Moreover, callers should keep interrupts off during switching out of and back to d11 core |
| */ |
| void * |
| sb_setcoreidx(si_t *sih, uint coreidx) |
| { |
| si_info_t *sii; |
| |
| sii = SI_INFO(sih); |
| |
| if (coreidx >= sii->numcores) |
| return (NULL); |
| |
| /* |
| * If the user has provided an interrupt mask enabled function, |
| * then assert interrupts are disabled before switching the core. |
| */ |
| ASSERT((sii->intrsenabled_fn == NULL) || !(*(sii)->intrsenabled_fn)((sii)->intr_arg)); |
| |
| sii->curmap = _sb_setcoreidx(sii, coreidx); |
| sii->curidx = coreidx; |
| |
| return (sii->curmap); |
| } |
| |
| /* This function changes the logical "focus" to the indicated core. |
| * Return the current core's virtual address. |
| */ |
| static void * |
| _sb_setcoreidx(si_info_t *sii, uint coreidx) |
| { |
| uint32 sbaddr = sii->common_info->coresba[coreidx]; |
| void *regs; |
| |
| switch (BUSTYPE(sii->pub.bustype)) { |
| case SI_BUS: |
| /* map new one */ |
| if (!sii->common_info->regs[coreidx]) { |
| sii->common_info->regs[coreidx] = REG_MAP(sbaddr, SI_CORE_SIZE); |
| ASSERT(GOODREGS(sii->common_info->regs[coreidx])); |
| } |
| regs = sii->common_info->regs[coreidx]; |
| break; |
| |
| case PCI_BUS: |
| /* point bar0 window */ |
| OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, sbaddr); |
| regs = sii->curmap; |
| break; |
| |
| case PCMCIA_BUS: { |
| uint8 tmp = (sbaddr >> 12) & 0x0f; |
| OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1); |
| tmp = (sbaddr >> 16) & 0xff; |
| OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1); |
| tmp = (sbaddr >> 24) & 0xff; |
| OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1); |
| regs = sii->curmap; |
| break; |
| } |
| case SPI_BUS: |
| case SDIO_BUS: |
| /* map new one */ |
| if (!sii->common_info->regs[coreidx]) { |
| sii->common_info->regs[coreidx] = (void *)(uintptr)sbaddr; |
| ASSERT(GOODREGS(sii->common_info->regs[coreidx])); |
| } |
| regs = sii->common_info->regs[coreidx]; |
| break; |
| |
| |
| default: |
| ASSERT(0); |
| regs = NULL; |
| break; |
| } |
| |
| return regs; |
| } |
| |
| /* Return the address of sbadmatch0/1/2/3 register */ |
| static volatile uint32 * |
| sb_admatch(si_info_t *sii, uint asidx) |
| { |
| sbconfig_t *sb; |
| volatile uint32 *addrm; |
| |
| sb = REGS2SB(sii->curmap); |
| |
| switch (asidx) { |
| case 0: |
| addrm = &sb->sbadmatch0; |
| break; |
| |
| case 1: |
| addrm = &sb->sbadmatch1; |
| break; |
| |
| case 2: |
| addrm = &sb->sbadmatch2; |
| break; |
| |
| case 3: |
| addrm = &sb->sbadmatch3; |
| break; |
| |
| default: |
| SI_ERROR(("%s: Address space index (%d) out of range\n", __FUNCTION__, asidx)); |
| return 0; |
| } |
| |
| return (addrm); |
| } |
| |
| /* Return the number of address spaces in current core */ |
| int |
| sb_numaddrspaces(si_t *sih) |
| { |
| si_info_t *sii; |
| sbconfig_t *sb; |
| |
| sii = SI_INFO(sih); |
| sb = REGS2SB(sii->curmap); |
| |
| /* + 1 because of enumeration space */ |
| return ((R_SBREG(sii, &sb->sbidlow) & SBIDL_AR_MASK) >> SBIDL_AR_SHIFT) + 1; |
| } |
| |
| /* Return the address of the nth address space in the current core */ |
| uint32 |
| sb_addrspace(si_t *sih, uint asidx) |
| { |
| si_info_t *sii; |
| |
| sii = SI_INFO(sih); |
| |
| return (sb_base(R_SBREG(sii, sb_admatch(sii, asidx)))); |
| } |
| |
| /* Return the size of the nth address space in the current core */ |
| uint32 |
| sb_addrspacesize(si_t *sih, uint asidx) |
| { |
| si_info_t *sii; |
| |
| sii = SI_INFO(sih); |
| |
| return (sb_size(R_SBREG(sii, sb_admatch(sii, asidx)))); |
| } |
| |
| |
| /* do buffered registers update */ |
| void |
| sb_commit(si_t *sih) |
| { |
| si_info_t *sii; |
| uint origidx; |
| uint intr_val = 0; |
| |
| sii = SI_INFO(sih); |
| |
| origidx = sii->curidx; |
| ASSERT(GOODIDX(origidx)); |
| |
| INTR_OFF(sii, intr_val); |
| |
| /* switch over to chipcommon core if there is one, else use pci */ |
| if (sii->pub.ccrev != NOREV) { |
| chipcregs_t *ccregs = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0); |
| |
| /* do the buffer registers update */ |
| W_REG(sii->osh, &ccregs->broadcastaddress, SB_COMMIT); |
| W_REG(sii->osh, &ccregs->broadcastdata, 0x0); |
| } else |
| ASSERT(0); |
| |
| /* restore core index */ |
| sb_setcoreidx(sih, origidx); |
| INTR_RESTORE(sii, intr_val); |
| } |
| |
| void |
| sb_core_disable(si_t *sih, uint32 bits) |
| { |
| si_info_t *sii; |
| volatile uint32 dummy; |
| sbconfig_t *sb; |
| |
| sii = SI_INFO(sih); |
| |
| ASSERT(GOODREGS(sii->curmap)); |
| sb = REGS2SB(sii->curmap); |
| |
| /* if core is already in reset, just return */ |
| if (R_SBREG(sii, &sb->sbtmstatelow) & SBTML_RESET) |
| return; |
| |
| /* if clocks are not enabled, put into reset and return */ |
| if ((R_SBREG(sii, &sb->sbtmstatelow) & (SICF_CLOCK_EN << SBTML_SICF_SHIFT)) == 0) |
| goto disable; |
| |
| /* set target reject and spin until busy is clear (preserve core-specific bits) */ |
| OR_SBREG(sii, &sb->sbtmstatelow, SBTML_REJ); |
| dummy = R_SBREG(sii, &sb->sbtmstatelow); |
| OSL_DELAY(1); |
| SPINWAIT((R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY), 100000); |
| if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY) |
| SI_ERROR(("%s: target state still busy\n", __FUNCTION__)); |
| |
| if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT) { |
| OR_SBREG(sii, &sb->sbimstate, SBIM_RJ); |
| dummy = R_SBREG(sii, &sb->sbimstate); |
| OSL_DELAY(1); |
| SPINWAIT((R_SBREG(sii, &sb->sbimstate) & SBIM_BY), 100000); |
| } |
| |
| /* set reset and reject while enabling the clocks */ |
| W_SBREG(sii, &sb->sbtmstatelow, |
| (((bits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) | |
| SBTML_REJ | SBTML_RESET)); |
| dummy = R_SBREG(sii, &sb->sbtmstatelow); |
| OSL_DELAY(10); |
| |
| /* don't forget to clear the initiator reject bit */ |
| if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT) |
| AND_SBREG(sii, &sb->sbimstate, ~SBIM_RJ); |
| |
| disable: |
| /* leave reset and reject asserted */ |
| W_SBREG(sii, &sb->sbtmstatelow, ((bits << SBTML_SICF_SHIFT) | SBTML_REJ | SBTML_RESET)); |
| OSL_DELAY(1); |
| } |
| |
| /* reset and re-enable a core |
| * inputs: |
| * bits - core specific bits that are set during and after reset sequence |
| * resetbits - core specific bits that are set only during reset sequence |
| */ |
| void |
| sb_core_reset(si_t *sih, uint32 bits, uint32 resetbits) |
| { |
| si_info_t *sii; |
| sbconfig_t *sb; |
| volatile uint32 dummy; |
| |
| sii = SI_INFO(sih); |
| ASSERT(GOODREGS(sii->curmap)); |
| sb = REGS2SB(sii->curmap); |
| |
| /* |
| * Must do the disable sequence first to work for arbitrary current core state. |
| */ |
| sb_core_disable(sih, (bits | resetbits)); |
| |
| /* |
| * Now do the initialization sequence. |
| */ |
| |
| /* set reset while enabling the clock and forcing them on throughout the core */ |
| W_SBREG(sii, &sb->sbtmstatelow, |
| (((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) | |
| SBTML_RESET)); |
| dummy = R_SBREG(sii, &sb->sbtmstatelow); |
| OSL_DELAY(1); |
| |
| if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_SERR) { |
| W_SBREG(sii, &sb->sbtmstatehigh, 0); |
| } |
| if ((dummy = R_SBREG(sii, &sb->sbimstate)) & (SBIM_IBE | SBIM_TO)) { |
| AND_SBREG(sii, &sb->sbimstate, ~(SBIM_IBE | SBIM_TO)); |
| } |
| |
| /* clear reset and allow it to propagate throughout the core */ |
| W_SBREG(sii, &sb->sbtmstatelow, |
| ((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT)); |
| dummy = R_SBREG(sii, &sb->sbtmstatelow); |
| OSL_DELAY(1); |
| |
| /* leave clock enabled */ |
| W_SBREG(sii, &sb->sbtmstatelow, ((bits | SICF_CLOCK_EN) << SBTML_SICF_SHIFT)); |
| dummy = R_SBREG(sii, &sb->sbtmstatelow); |
| OSL_DELAY(1); |
| } |
| |
| void |
| sb_core_tofixup(si_t *sih) |
| { |
| si_info_t *sii; |
| sbconfig_t *sb; |
| |
| sii = SI_INFO(sih); |
| |
| if ((BUSTYPE(sii->pub.bustype) != PCI_BUS) || PCIE(sii) || |
| (PCI(sii) && (sii->pub.buscorerev >= 5))) |
| return; |
| |
| ASSERT(GOODREGS(sii->curmap)); |
| sb = REGS2SB(sii->curmap); |
| |
| if (BUSTYPE(sii->pub.bustype) == SI_BUS) { |
| SET_SBREG(sii, &sb->sbimconfiglow, |
| SBIMCL_RTO_MASK | SBIMCL_STO_MASK, |
| (0x5 << SBIMCL_RTO_SHIFT) | 0x3); |
| } else { |
| if (sb_coreid(sih) == PCI_CORE_ID) { |
| SET_SBREG(sii, &sb->sbimconfiglow, |
| SBIMCL_RTO_MASK | SBIMCL_STO_MASK, |
| (0x3 << SBIMCL_RTO_SHIFT) | 0x2); |
| } else { |
| SET_SBREG(sii, &sb->sbimconfiglow, (SBIMCL_RTO_MASK | SBIMCL_STO_MASK), 0); |
| } |
| } |
| |
| sb_commit(sih); |
| } |
| |
| /* |
| * Set the initiator timeout for the "master core". |
| * The master core is defined to be the core in control |
| * of the chip and so it issues accesses to non-memory |
| * locations (Because of dma *any* core can access memeory). |
| * |
| * The routine uses the bus to decide who is the master: |
| * SI_BUS => mips |
| * JTAG_BUS => chipc |
| * PCI_BUS => pci or pcie |
| * PCMCIA_BUS => pcmcia |
| * SDIO_BUS => pcmcia |
| * |
| * This routine exists so callers can disable initiator |
| * timeouts so accesses to very slow devices like otp |
| * won't cause an abort. The routine allows arbitrary |
| * settings of the service and request timeouts, though. |
| * |
| * Returns the timeout state before changing it or -1 |
| * on error. |
| */ |
| |
| #define TO_MASK (SBIMCL_RTO_MASK | SBIMCL_STO_MASK) |
| |
| uint32 |
| sb_set_initiator_to(si_t *sih, uint32 to, uint idx) |
| { |
| si_info_t *sii; |
| uint origidx; |
| uint intr_val = 0; |
| uint32 tmp, ret = 0xffffffff; |
| sbconfig_t *sb; |
| |
| sii = SI_INFO(sih); |
| |
| if ((to & ~TO_MASK) != 0) |
| return ret; |
| |
| /* Figure out the master core */ |
| if (idx == BADIDX) { |
| switch (BUSTYPE(sii->pub.bustype)) { |
| case PCI_BUS: |
| idx = sii->pub.buscoreidx; |
| break; |
| case JTAG_BUS: |
| idx = SI_CC_IDX; |
| break; |
| case PCMCIA_BUS: |
| case SDIO_BUS: |
| idx = si_findcoreidx(sih, PCMCIA_CORE_ID, 0); |
| break; |
| case SI_BUS: |
| idx = si_findcoreidx(sih, MIPS33_CORE_ID, 0); |
| break; |
| default: |
| ASSERT(0); |
| } |
| if (idx == BADIDX) |
| return ret; |
| } |
| |
| INTR_OFF(sii, intr_val); |
| origidx = si_coreidx(sih); |
| |
| sb = REGS2SB(sb_setcoreidx(sih, idx)); |
| |
| tmp = R_SBREG(sii, &sb->sbimconfiglow); |
| ret = tmp & TO_MASK; |
| W_SBREG(sii, &sb->sbimconfiglow, (tmp & ~TO_MASK) | to); |
| |
| sb_commit(sih); |
| sb_setcoreidx(sih, origidx); |
| INTR_RESTORE(sii, intr_val); |
| return ret; |
| } |
| |
| uint32 |
| sb_base(uint32 admatch) |
| { |
| uint32 base; |
| uint type; |
| |
| type = admatch & SBAM_TYPE_MASK; |
| ASSERT(type < 3); |
| |
| base = 0; |
| |
| if (type == 0) { |
| base = admatch & SBAM_BASE0_MASK; |
| } else if (type == 1) { |
| ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ |
| base = admatch & SBAM_BASE1_MASK; |
| } else if (type == 2) { |
| ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ |
| base = admatch & SBAM_BASE2_MASK; |
| } |
| |
| return (base); |
| } |
| |
| uint32 |
| sb_size(uint32 admatch) |
| { |
| uint32 size; |
| uint type; |
| |
| type = admatch & SBAM_TYPE_MASK; |
| ASSERT(type < 3); |
| |
| size = 0; |
| |
| if (type == 0) { |
| size = 1 << (((admatch & SBAM_ADINT0_MASK) >> SBAM_ADINT0_SHIFT) + 1); |
| } else if (type == 1) { |
| ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ |
| size = 1 << (((admatch & SBAM_ADINT1_MASK) >> SBAM_ADINT1_SHIFT) + 1); |
| } else if (type == 2) { |
| ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */ |
| size = 1 << (((admatch & SBAM_ADINT2_MASK) >> SBAM_ADINT2_SHIFT) + 1); |
| } |
| |
| return (size); |
| } |