blob: 5dee2e785dc5e84a97e44b7969897080141bcaa1 [file] [log] [blame]
/*
**
** Copyright 2008, The Android Open Source Project
** Copyright 2012, Samsung Electronics Co. LTD
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
/*!
* \file ExynosCameraHWInterface2.cpp
* \brief source file for Android Camera API 2.0 HAL
* \author Sungjoong Kang(sj3.kang@samsung.com)
* \date 2012/07/10
*
* <b>Revision History: </b>
* - 2012/05/31 : Sungjoong Kang(sj3.kang@samsung.com) \n
* Initial Release
*
* - 2012/07/10 : Sungjoong Kang(sj3.kang@samsung.com) \n
* 2nd Release
*
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "ExynosCameraHAL2"
#include <utils/Log.h>
#include <math.h>
#include "ExynosCameraHWInterface2.h"
#include "exynos_format.h"
namespace android {
void m_savePostView(const char *fname, uint8_t *buf, uint32_t size)
{
int nw;
int cnt = 0;
uint32_t written = 0;
ALOGV("opening file [%s], address[%x], size(%d)", fname, (unsigned int)buf, size);
int fd = open(fname, O_RDWR | O_CREAT, 0644);
if (fd < 0) {
ALOGE("failed to create file [%s]: %s", fname, strerror(errno));
return;
}
ALOGV("writing %d bytes to file [%s]", size, fname);
while (written < size) {
nw = ::write(fd, buf + written, size - written);
if (nw < 0) {
ALOGE("failed to write to file %d [%s]: %s",written,fname, strerror(errno));
break;
}
written += nw;
cnt++;
}
ALOGV("done writing %d bytes to file [%s] in %d passes",size, fname, cnt);
::close(fd);
}
int get_pixel_depth(uint32_t fmt)
{
int depth = 0;
switch (fmt) {
case V4L2_PIX_FMT_JPEG:
depth = 8;
break;
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV21:
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YVU420M:
case V4L2_PIX_FMT_NV12M:
case V4L2_PIX_FMT_NV12MT:
depth = 12;
break;
case V4L2_PIX_FMT_RGB565:
case V4L2_PIX_FMT_YUYV:
case V4L2_PIX_FMT_YVYU:
case V4L2_PIX_FMT_UYVY:
case V4L2_PIX_FMT_VYUY:
case V4L2_PIX_FMT_NV16:
case V4L2_PIX_FMT_NV61:
case V4L2_PIX_FMT_YUV422P:
case V4L2_PIX_FMT_SBGGR10:
case V4L2_PIX_FMT_SBGGR12:
case V4L2_PIX_FMT_SBGGR16:
depth = 16;
break;
case V4L2_PIX_FMT_RGB32:
depth = 32;
break;
default:
ALOGE("Get depth failed(format : %d)", fmt);
break;
}
return depth;
}
int cam_int_s_fmt(node_info_t *node)
{
struct v4l2_format v4l2_fmt;
unsigned int framesize;
int ret;
memset(&v4l2_fmt, 0, sizeof(struct v4l2_format));
v4l2_fmt.type = node->type;
framesize = (node->width * node->height * get_pixel_depth(node->format)) / 8;
if (node->planes >= 1) {
v4l2_fmt.fmt.pix_mp.width = node->width;
v4l2_fmt.fmt.pix_mp.height = node->height;
v4l2_fmt.fmt.pix_mp.pixelformat = node->format;
v4l2_fmt.fmt.pix_mp.field = V4L2_FIELD_ANY;
} else {
ALOGE("%s:S_FMT, Out of bound : Number of element plane",__FUNCTION__);
}
/* Set up for capture */
ret = exynos_v4l2_s_fmt(node->fd, &v4l2_fmt);
if (ret < 0)
ALOGE("%s: exynos_v4l2_s_fmt fail (%d)",__FUNCTION__, ret);
return ret;
}
int cam_int_reqbufs(node_info_t *node)
{
struct v4l2_requestbuffers req;
int ret;
req.count = node->buffers;
req.type = node->type;
req.memory = node->memory;
ret = exynos_v4l2_reqbufs(node->fd, &req);
if (ret < 0)
ALOGE("%s: VIDIOC_REQBUFS (fd:%d) failed (%d)",__FUNCTION__,node->fd, ret);
return req.count;
}
int cam_int_qbuf(node_info_t *node, int index)
{
struct v4l2_buffer v4l2_buf;
struct v4l2_plane planes[VIDEO_MAX_PLANES];
int i;
int ret = 0;
v4l2_buf.m.planes = planes;
v4l2_buf.type = node->type;
v4l2_buf.memory = node->memory;
v4l2_buf.index = index;
v4l2_buf.length = node->planes;
for(i = 0; i < node->planes; i++){
v4l2_buf.m.planes[i].m.fd = (int)(node->buffer[index].fd.extFd[i]);
v4l2_buf.m.planes[i].length = (unsigned long)(node->buffer[index].size.extS[i]);
}
ret = exynos_v4l2_qbuf(node->fd, &v4l2_buf);
if (ret < 0)
ALOGE("%s: cam_int_qbuf failed (index:%d)(ret:%d)",__FUNCTION__, index, ret);
return ret;
}
int cam_int_streamon(node_info_t *node)
{
enum v4l2_buf_type type = node->type;
int ret;
ret = exynos_v4l2_streamon(node->fd, type);
if (ret < 0)
ALOGE("%s: VIDIOC_STREAMON failed [%d] (%d)",__FUNCTION__, node->fd,ret);
ALOGV("On streaming I/O... ... fd(%d)", node->fd);
return ret;
}
int cam_int_streamoff(node_info_t *node)
{
enum v4l2_buf_type type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
int ret;
ALOGV("Off streaming I/O... fd(%d)", node->fd);
ret = exynos_v4l2_streamoff(node->fd, type);
if (ret < 0)
ALOGE("%s: VIDIOC_STREAMOFF failed (%d)",__FUNCTION__, ret);
return ret;
}
int isp_int_streamoff(node_info_t *node)
{
enum v4l2_buf_type type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
int ret;
ALOGV("Off streaming I/O... fd(%d)", node->fd);
ret = exynos_v4l2_streamoff(node->fd, type);
if (ret < 0)
ALOGE("%s: VIDIOC_STREAMOFF failed (%d)",__FUNCTION__, ret);
return ret;
}
int cam_int_dqbuf(node_info_t *node)
{
struct v4l2_buffer v4l2_buf;
struct v4l2_plane planes[VIDEO_MAX_PLANES];
int ret;
v4l2_buf.type = node->type;
v4l2_buf.memory = node->memory;
v4l2_buf.m.planes = planes;
v4l2_buf.length = node->planes;
ret = exynos_v4l2_dqbuf(node->fd, &v4l2_buf);
if (ret < 0)
ALOGE("%s: VIDIOC_DQBUF failed (%d)",__FUNCTION__, ret);
return v4l2_buf.index;
}
int cam_int_dqbuf(node_info_t *node, int num_plane)
{
struct v4l2_buffer v4l2_buf;
struct v4l2_plane planes[VIDEO_MAX_PLANES];
int ret;
v4l2_buf.type = node->type;
v4l2_buf.memory = node->memory;
v4l2_buf.m.planes = planes;
v4l2_buf.length = num_plane;
ret = exynos_v4l2_dqbuf(node->fd, &v4l2_buf);
if (ret < 0)
ALOGE("%s: VIDIOC_DQBUF failed (%d)",__FUNCTION__, ret);
return v4l2_buf.index;
}
int cam_int_s_input(node_info_t *node, int index)
{
int ret;
ret = exynos_v4l2_s_input(node->fd, index);
if (ret < 0)
ALOGE("%s: VIDIOC_S_INPUT failed (%d)",__FUNCTION__, ret);
return ret;
}
gralloc_module_t const* ExynosCameraHWInterface2::m_grallocHal;
RequestManager::RequestManager(SignalDrivenThread* main_thread):
m_lastAeMode(0),
m_lastAaMode(0),
m_lastAwbMode(0),
m_vdisBubbleEn(false),
m_lastAeComp(0),
m_lastCompletedFrameCnt(-1)
{
m_metadataConverter = new MetadataConverter;
m_mainThread = main_thread;
ResetEntry();
m_sensorPipelineSkipCnt = 0;
return;
}
RequestManager::~RequestManager()
{
ALOGV("%s", __FUNCTION__);
if (m_metadataConverter != NULL) {
delete m_metadataConverter;
m_metadataConverter = NULL;
}
releaseSensorQ();
return;
}
void RequestManager::ResetEntry()
{
Mutex::Autolock lock(m_requestMutex);
for (int i=0 ; i<NUM_MAX_REQUEST_MGR_ENTRY; i++) {
memset(&(entries[i]), 0x00, sizeof(request_manager_entry_t));
entries[i].internal_shot.shot.ctl.request.frameCount = -1;
}
m_numOfEntries = 0;
m_entryInsertionIndex = -1;
m_entryProcessingIndex = -1;
m_entryFrameOutputIndex = -1;
}
int RequestManager::GetNumEntries()
{
return m_numOfEntries;
}
void RequestManager::SetDefaultParameters(int cropX)
{
m_cropX = cropX;
}
bool RequestManager::IsRequestQueueFull()
{
Mutex::Autolock lock(m_requestMutex);
if (m_numOfEntries>=NUM_MAX_REQUEST_MGR_ENTRY)
return true;
else
return false;
}
void RequestManager::RegisterRequest(camera_metadata_t * new_request, int * afMode, uint32_t * afRegion)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
Mutex::Autolock lock(m_requestMutex);
request_manager_entry * newEntry = NULL;
int newInsertionIndex = GetNextIndex(m_entryInsertionIndex);
ALOGV("DEBUG(%s): got lock, new insertIndex(%d), cnt before reg(%d)", __FUNCTION__,newInsertionIndex, m_numOfEntries );
newEntry = &(entries[newInsertionIndex]);
if (newEntry->status!=EMPTY) {
ALOGV("DEBUG(%s): Circular buffer abnormal ", __FUNCTION__);
return;
}
newEntry->status = REGISTERED;
newEntry->original_request = new_request;
memset(&(newEntry->internal_shot), 0, sizeof(struct camera2_shot_ext));
m_metadataConverter->ToInternalShot(new_request, &(newEntry->internal_shot));
newEntry->output_stream_count = 0;
if (newEntry->internal_shot.shot.ctl.request.outputStreams[0] & MASK_OUTPUT_SCP)
newEntry->output_stream_count++;
if (newEntry->internal_shot.shot.ctl.request.outputStreams[0] & MASK_OUTPUT_SCC)
newEntry->output_stream_count++;
m_numOfEntries++;
m_entryInsertionIndex = newInsertionIndex;
*afMode = (int)(newEntry->internal_shot.shot.ctl.aa.afMode);
afRegion[0] = newEntry->internal_shot.shot.ctl.aa.afRegions[0];
afRegion[1] = newEntry->internal_shot.shot.ctl.aa.afRegions[1];
afRegion[2] = newEntry->internal_shot.shot.ctl.aa.afRegions[2];
afRegion[3] = newEntry->internal_shot.shot.ctl.aa.afRegions[3];
ALOGV("## RegisterReq DONE num(%d), insert(%d), processing(%d), frame(%d), (frameCnt(%d))",
m_numOfEntries,m_entryInsertionIndex,m_entryProcessingIndex, m_entryFrameOutputIndex, newEntry->internal_shot.shot.ctl.request.frameCount);
}
void RequestManager::DeregisterRequest(camera_metadata_t ** deregistered_request)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
int frame_index;
request_manager_entry * currentEntry;
Mutex::Autolock lock(m_requestMutex);
frame_index = GetCompletedIndex();
currentEntry = &(entries[frame_index]);
if (currentEntry->status != COMPLETED) {
CAM_LOGD("DBG(%s): Circular buffer abnormal. processing(%d), frame(%d), status(%d) ", __FUNCTION__,
m_entryProcessingIndex, frame_index,(int)(currentEntry->status));
return;
}
if (deregistered_request) *deregistered_request = currentEntry->original_request;
m_lastCompletedFrameCnt = currentEntry->internal_shot.shot.ctl.request.frameCount;
currentEntry->status = EMPTY;
currentEntry->original_request = NULL;
memset(&(currentEntry->internal_shot), 0, sizeof(struct camera2_shot_ext));
currentEntry->internal_shot.shot.ctl.request.frameCount = -1;
currentEntry->output_stream_count = 0;
m_numOfEntries--;
ALOGV("## DeRegistReq DONE num(%d), insert(%d), processing(%d), frame(%d)",
m_numOfEntries,m_entryInsertionIndex,m_entryProcessingIndex, m_entryFrameOutputIndex);
CheckCompleted(GetNextIndex(frame_index));
return;
}
bool RequestManager::PrepareFrame(size_t* num_entries, size_t* frame_size,
camera_metadata_t ** prepared_frame, int afState)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
Mutex::Autolock lock(m_requestMutex);
status_t res = NO_ERROR;
int tempFrameOutputIndex = GetCompletedIndex();
request_manager_entry * currentEntry = &(entries[tempFrameOutputIndex]);
ALOGV("DEBUG(%s): processing(%d), frameOut(%d), insert(%d) recentlycompleted(%d)", __FUNCTION__,
m_entryProcessingIndex, m_entryFrameOutputIndex, m_entryInsertionIndex, m_completedIndex);
if (currentEntry->status != COMPLETED) {
ALOGV("DBG(%s): Circular buffer abnormal status(%d)", __FUNCTION__, (int)(currentEntry->status));
return false;
}
m_entryFrameOutputIndex = tempFrameOutputIndex;
m_tempFrameMetadata = place_camera_metadata(m_tempFrameMetadataBuf, 2000, 35, 500); //estimated
add_camera_metadata_entry(m_tempFrameMetadata, ANDROID_CONTROL_AF_STATE, &afState, 1);
res = m_metadataConverter->ToDynamicMetadata(&(currentEntry->internal_shot),
m_tempFrameMetadata);
if (res!=NO_ERROR) {
ALOGE("ERROR(%s): ToDynamicMetadata (%d) ", __FUNCTION__, res);
return false;
}
*num_entries = get_camera_metadata_entry_count(m_tempFrameMetadata);
*frame_size = get_camera_metadata_size(m_tempFrameMetadata);
*prepared_frame = m_tempFrameMetadata;
ALOGV("## PrepareFrame DONE: frameOut(%d) frameCnt-req(%d) timestamp(%lld)", m_entryFrameOutputIndex,
currentEntry->internal_shot.shot.ctl.request.frameCount, currentEntry->internal_shot.shot.dm.sensor.timeStamp);
// Dump();
return true;
}
int RequestManager::MarkProcessingRequest(ExynosBuffer* buf)
{
struct camera2_shot_ext * shot_ext;
struct camera2_shot_ext * request_shot;
int targetStreamIndex = 0;
request_manager_entry * newEntry = NULL;
static int count = 0;
Mutex::Autolock lock(m_requestMutex);
if (m_numOfEntries == 0) {
CAM_LOGD("DEBUG(%s): Request Manager Empty ", __FUNCTION__);
return -1;
}
if ((m_entryProcessingIndex == m_entryInsertionIndex)
&& (entries[m_entryProcessingIndex].status == REQUESTED || entries[m_entryProcessingIndex].status == CAPTURED)) {
ALOGV("## MarkProcReq skipping(request underrun) - num(%d), insert(%d), processing(%d), frame(%d)",
m_numOfEntries,m_entryInsertionIndex,m_entryProcessingIndex, m_entryFrameOutputIndex);
return -1;
}
int newProcessingIndex = GetNextIndex(m_entryProcessingIndex);
ALOGV("DEBUG(%s): index(%d)", __FUNCTION__, newProcessingIndex);
newEntry = &(entries[newProcessingIndex]);
request_shot = &(newEntry->internal_shot);
if (newEntry->status != REGISTERED) {
CAM_LOGD("DEBUG(%s)(%d): Circular buffer abnormal, numOfEntries(%d), status(%d)", __FUNCTION__, newProcessingIndex, m_numOfEntries, newEntry->status);
for (int i = 0; i < NUM_MAX_REQUEST_MGR_ENTRY; i++) {
CAM_LOGD("DBG: entrie[%d].stream output cnt = %d, framecnt(%d)", i, entries[i].output_stream_count, entries[i].internal_shot.shot.ctl.request.frameCount);
}
return -1;
}
newEntry->status = REQUESTED;
shot_ext = (struct camera2_shot_ext *)buf->virt.extP[1];
memset(shot_ext, 0x00, sizeof(struct camera2_shot_ext));
shot_ext->shot.ctl.request.frameCount = request_shot->shot.ctl.request.frameCount;
shot_ext->request_sensor = 1;
shot_ext->dis_bypass = 1;
shot_ext->dnr_bypass = 1;
shot_ext->fd_bypass = 1;
shot_ext->setfile = 0;
targetStreamIndex = newEntry->internal_shot.shot.ctl.request.outputStreams[0];
shot_ext->shot.ctl.request.outputStreams[0] = targetStreamIndex;
if (targetStreamIndex & MASK_OUTPUT_SCP)
shot_ext->request_scp = 1;
if (targetStreamIndex & MASK_OUTPUT_SCC)
shot_ext->request_scc = 1;
if (shot_ext->shot.ctl.stats.faceDetectMode != FACEDETECT_MODE_OFF)
shot_ext->fd_bypass = 0;
if (count == 0){
shot_ext->shot.ctl.aa.mode = AA_CONTROL_AUTO;
} else
shot_ext->shot.ctl.aa.mode = AA_CONTROL_NONE;
count++;
shot_ext->shot.ctl.request.metadataMode = METADATA_MODE_FULL;
shot_ext->shot.ctl.stats.faceDetectMode = FACEDETECT_MODE_FULL;
shot_ext->shot.magicNumber = 0x23456789;
shot_ext->shot.ctl.sensor.exposureTime = 0;
shot_ext->shot.ctl.sensor.frameDuration = 33*1000*1000;
shot_ext->shot.ctl.sensor.sensitivity = 0;
shot_ext->shot.ctl.scaler.cropRegion[0] = newEntry->internal_shot.shot.ctl.scaler.cropRegion[0];
shot_ext->shot.ctl.scaler.cropRegion[1] = newEntry->internal_shot.shot.ctl.scaler.cropRegion[1];
shot_ext->shot.ctl.scaler.cropRegion[2] = newEntry->internal_shot.shot.ctl.scaler.cropRegion[2];
m_entryProcessingIndex = newProcessingIndex;
return newProcessingIndex;
}
void RequestManager::NotifyStreamOutput(int frameCnt)
{
int index;
Mutex::Autolock lock(m_requestMutex);
ALOGV("DEBUG(%s): frameCnt(%d)", __FUNCTION__, frameCnt);
index = FindEntryIndexByFrameCnt(frameCnt);
if (index == -1) {
ALOGE("ERR(%s): Cannot find entry for frameCnt(%d)", __FUNCTION__, frameCnt);
return;
}
ALOGV("DEBUG(%s): frameCnt(%d), last cnt (%d)", __FUNCTION__, frameCnt, entries[index].output_stream_count);
entries[index].output_stream_count--; //TODO : match stream id also
CheckCompleted(index);
}
void RequestManager::CheckCompleted(int index)
{
if ((entries[index].status == METADONE || entries[index].status == COMPLETED)
&& (entries[index].output_stream_count <= 0)){
ALOGV("(%s): Completed(index:%d)(frameCnt:%d)", __FUNCTION__,
index, entries[index].internal_shot.shot.ctl.request.frameCount );
entries[index].status = COMPLETED;
if (m_lastCompletedFrameCnt + 1 == entries[index].internal_shot.shot.ctl.request.frameCount)
m_mainThread->SetSignal(SIGNAL_MAIN_STREAM_OUTPUT_DONE);
}
}
int RequestManager::GetCompletedIndex()
{
return FindEntryIndexByFrameCnt(m_lastCompletedFrameCnt + 1);
}
void RequestManager::pushSensorQ(int index)
{
Mutex::Autolock lock(m_requestMutex);
m_sensorQ.push_back(index);
}
int RequestManager::popSensorQ()
{
List<int>::iterator sensor_token;
int index;
Mutex::Autolock lock(m_requestMutex);
if(m_sensorQ.size() == 0)
return -1;
sensor_token = m_sensorQ.begin()++;
index = *sensor_token;
m_sensorQ.erase(sensor_token);
return (index);
}
void RequestManager::releaseSensorQ()
{
List<int>::iterator r;
Mutex::Autolock lock(m_requestMutex);
ALOGV("(%s)m_sensorQ.size : %d", __FUNCTION__, m_sensorQ.size());
while(m_sensorQ.size() > 0){
r = m_sensorQ.begin()++;
m_sensorQ.erase(r);
}
return;
}
void RequestManager::ApplyDynamicMetadata(struct camera2_shot_ext *shot_ext)
{
int index;
struct camera2_shot_ext * request_shot;
nsecs_t timeStamp;
int i;
Mutex::Autolock lock(m_requestMutex);
ALOGV("DEBUG(%s): frameCnt(%d)", __FUNCTION__, shot_ext->shot.ctl.request.frameCount);
for (i = 0 ; i < NUM_MAX_REQUEST_MGR_ENTRY ; i++) {
if((entries[i].internal_shot.shot.ctl.request.frameCount == shot_ext->shot.ctl.request.frameCount)
&& (entries[i].status == CAPTURED)){
entries[i].status = METADONE;
break;
}
}
if (i == NUM_MAX_REQUEST_MGR_ENTRY){
ALOGE("[%s] no entry found(framecount:%d)", __FUNCTION__, shot_ext->shot.ctl.request.frameCount);
return;
}
request_manager_entry * newEntry = &(entries[i]);
request_shot = &(newEntry->internal_shot);
timeStamp = request_shot->shot.dm.sensor.timeStamp;
memcpy(&(request_shot->shot.dm), &(shot_ext->shot.dm), sizeof(struct camera2_dm));
request_shot->shot.dm.sensor.timeStamp = timeStamp;
m_lastTimeStamp = timeStamp;
CheckCompleted(i);
}
void RequestManager::UpdateIspParameters(struct camera2_shot_ext *shot_ext, int frameCnt, ctl_request_info_t *ctl_info)
{
int index, targetStreamIndex;
struct camera2_shot_ext * request_shot;
ALOGV("DEBUG(%s): updating info with frameCnt(%d)", __FUNCTION__, frameCnt);
if (frameCnt < 0)
return;
index = FindEntryIndexByFrameCnt(frameCnt);
if (index == -1) {
ALOGE("ERR(%s): Cannot find entry for frameCnt(%d)", __FUNCTION__, frameCnt);
return;
}
request_manager_entry * newEntry = &(entries[index]);
request_shot = &(newEntry->internal_shot);
memcpy(&(shot_ext->shot.ctl), &(request_shot->shot.ctl), sizeof(struct camera2_ctl));
shot_ext->shot.ctl.request.frameCount = frameCnt;
shot_ext->request_sensor = 1;
shot_ext->dis_bypass = 1;
shot_ext->dnr_bypass = 1;
shot_ext->fd_bypass = 1;
shot_ext->drc_bypass = 1;
shot_ext->setfile = 0;
shot_ext->request_scc = 0;
shot_ext->request_scp = 0;
shot_ext->isReprocessing = request_shot->isReprocessing;
shot_ext->reprocessInput = request_shot->reprocessInput;
shot_ext->shot.ctl.request.outputStreams[0] = 0;
shot_ext->awb_mode_dm = request_shot->awb_mode_dm;
shot_ext->shot.ctl.scaler.cropRegion[0] = request_shot->shot.ctl.scaler.cropRegion[0];
shot_ext->shot.ctl.scaler.cropRegion[1] = request_shot->shot.ctl.scaler.cropRegion[1];
shot_ext->shot.ctl.scaler.cropRegion[2] = request_shot->shot.ctl.scaler.cropRegion[2];
// mapping flash UI mode from aeMode
if (request_shot->shot.ctl.aa.aeMode >= AA_AEMODE_ON) {
if (request_shot->shot.ctl.aa.captureIntent == AA_CAPTURE_INTENT_PREVIEW)
ctl_info->flash.i_flashMode = request_shot->shot.ctl.aa.aeMode;
else if (request_shot->shot.ctl.aa.captureIntent == AA_CAPTURE_INTENT_VIDEO_RECORD)
ctl_info->flash.i_flashMode = request_shot->shot.ctl.aa.aeMode;
request_shot->shot.ctl.aa.aeMode = AA_AEMODE_ON;
}
// Apply ae/awb lock or unlock
if (request_shot->ae_lock == AEMODE_LOCK_ON)
request_shot->shot.ctl.aa.aeMode = AA_AEMODE_LOCKED;
if (request_shot->awb_lock == AWBMODE_LOCK_ON)
request_shot->shot.ctl.aa.awbMode = AA_AWBMODE_LOCKED;
if (m_lastAaMode == request_shot->shot.ctl.aa.mode) {
shot_ext->shot.ctl.aa.mode = (enum aa_mode)(0);
}
else {
shot_ext->shot.ctl.aa.mode = request_shot->shot.ctl.aa.mode;
m_lastAaMode = (int)(shot_ext->shot.ctl.aa.mode);
}
if (m_lastAeMode == request_shot->shot.ctl.aa.aeMode) {
shot_ext->shot.ctl.aa.aeMode = (enum aa_aemode)(0);
}
else {
shot_ext->shot.ctl.aa.aeMode = request_shot->shot.ctl.aa.aeMode;
m_lastAeMode = (int)(shot_ext->shot.ctl.aa.aeMode);
}
if (m_lastAwbMode == request_shot->shot.ctl.aa.awbMode) {
shot_ext->shot.ctl.aa.awbMode = (enum aa_awbmode)(0);
}
else {
shot_ext->shot.ctl.aa.awbMode = request_shot->shot.ctl.aa.awbMode;
m_lastAwbMode = (int)(shot_ext->shot.ctl.aa.awbMode);
}
if (m_lastAeComp == request_shot->shot.ctl.aa.aeExpCompensation) {
shot_ext->shot.ctl.aa.aeExpCompensation = 0;
}
else {
shot_ext->shot.ctl.aa.aeExpCompensation = request_shot->shot.ctl.aa.aeExpCompensation;
m_lastAeComp = (int)(shot_ext->shot.ctl.aa.aeExpCompensation);
}
if (request_shot->shot.ctl.aa.videoStabilizationMode) {
m_vdisBubbleEn = true;
shot_ext->dis_bypass = 0;
shot_ext->dnr_bypass = 0;
} else {
m_vdisBubbleEn = false;
shot_ext->dis_bypass = 1;
shot_ext->dnr_bypass = 1;
}
shot_ext->shot.ctl.aa.afTrigger = 0;
targetStreamIndex = newEntry->internal_shot.shot.ctl.request.outputStreams[0];
shot_ext->shot.ctl.request.outputStreams[0] = targetStreamIndex;
if (targetStreamIndex & MASK_OUTPUT_SCP)
shot_ext->request_scp = 1;
if (targetStreamIndex & MASK_OUTPUT_SCC)
shot_ext->request_scc = 1;
if (shot_ext->shot.ctl.stats.faceDetectMode != FACEDETECT_MODE_OFF)
shot_ext->fd_bypass = 0;
shot_ext->shot.ctl.aa.aeTargetFpsRange[0] = request_shot->shot.ctl.aa.aeTargetFpsRange[0];
shot_ext->shot.ctl.aa.aeTargetFpsRange[1] = request_shot->shot.ctl.aa.aeTargetFpsRange[1];
ALOGV("(%s): applied aa(%d) aemode(%d) expComp(%d), awb(%d) afmode(%d), ", __FUNCTION__,
(int)(shot_ext->shot.ctl.aa.mode), (int)(shot_ext->shot.ctl.aa.aeMode),
(int)(shot_ext->shot.ctl.aa.aeExpCompensation), (int)(shot_ext->shot.ctl.aa.awbMode),
(int)(shot_ext->shot.ctl.aa.afMode));
}
bool RequestManager::IsVdisEnable(void)
{
return m_vdisBubbleEn;
}
int RequestManager::FindEntryIndexByFrameCnt(int frameCnt)
{
for (int i = 0 ; i < NUM_MAX_REQUEST_MGR_ENTRY ; i++) {
if (entries[i].internal_shot.shot.ctl.request.frameCount == frameCnt)
return i;
}
return -1;
}
void RequestManager::RegisterTimestamp(int frameCnt, nsecs_t * frameTime)
{
int index = FindEntryIndexByFrameCnt(frameCnt);
if (index == -1) {
ALOGE("ERR(%s): Cannot find entry for frameCnt(%d)", __FUNCTION__, frameCnt);
return;
}
request_manager_entry * currentEntry = &(entries[index]);
if (currentEntry->internal_shot.isReprocessing == 1) {
ALOGV("DEBUG(%s): REPROCESSING : preserving timestamp for reqIndex(%d) frameCnt(%d) (%lld)", __FUNCTION__,
index, frameCnt, currentEntry->internal_shot.shot.dm.sensor.timeStamp);
} else {
currentEntry->internal_shot.shot.dm.sensor.timeStamp = *((uint64_t*)frameTime);
ALOGV("DEBUG(%s): applied timestamp for reqIndex(%d) frameCnt(%d) (%lld)", __FUNCTION__,
index, frameCnt, currentEntry->internal_shot.shot.dm.sensor.timeStamp);
}
}
nsecs_t RequestManager::GetTimestampByFrameCnt(int frameCnt)
{
int index = FindEntryIndexByFrameCnt(frameCnt);
if (index == -1) {
ALOGE("ERR(%s): Cannot find entry for frameCnt(%d) returning saved time(%lld)", __FUNCTION__, frameCnt, m_lastTimeStamp);
return m_lastTimeStamp;
}
else
return GetTimestamp(index);
}
nsecs_t RequestManager::GetTimestamp(int index)
{
Mutex::Autolock lock(m_requestMutex);
if (index < 0 || index >= NUM_MAX_REQUEST_MGR_ENTRY) {
ALOGE("ERR(%s): Request entry outside of bounds (%d)", __FUNCTION__, index);
return 0;
}
request_manager_entry * currentEntry = &(entries[index]);
nsecs_t frameTime = currentEntry->internal_shot.shot.dm.sensor.timeStamp;
if (frameTime == 0) {
ALOGV("DEBUG(%s): timestamp null, returning saved value", __FUNCTION__);
frameTime = m_lastTimeStamp;
}
ALOGV("DEBUG(%s): Returning timestamp for reqIndex(%d) (%lld)", __FUNCTION__, index, frameTime);
return frameTime;
}
uint8_t RequestManager::GetOutputStreamByFrameCnt(int frameCnt)
{
int index = FindEntryIndexByFrameCnt(frameCnt);
if (index == -1) {
ALOGE("ERR(%s): Cannot find entry for frameCnt(%d)", __FUNCTION__, frameCnt);
return 0;
}
else
return GetOutputStream(index);
}
uint8_t RequestManager::GetOutputStream(int index)
{
Mutex::Autolock lock(m_requestMutex);
if (index < 0 || index >= NUM_MAX_REQUEST_MGR_ENTRY) {
ALOGE("ERR(%s): Request entry outside of bounds (%d)", __FUNCTION__, index);
return 0;
}
request_manager_entry * currentEntry = &(entries[index]);
return currentEntry->internal_shot.shot.ctl.request.outputStreams[0];
}
camera2_shot_ext * RequestManager::GetInternalShotExtByFrameCnt(int frameCnt)
{
int index = FindEntryIndexByFrameCnt(frameCnt);
if (index == -1) {
ALOGE("ERR(%s): Cannot find entry for frameCnt(%d)", __FUNCTION__, frameCnt);
return 0;
}
else
return GetInternalShotExt(index);
}
camera2_shot_ext * RequestManager::GetInternalShotExt(int index)
{
Mutex::Autolock lock(m_requestMutex);
if (index < 0 || index >= NUM_MAX_REQUEST_MGR_ENTRY) {
ALOGE("ERR(%s): Request entry outside of bounds (%d)", __FUNCTION__, index);
return 0;
}
request_manager_entry * currentEntry = &(entries[index]);
return &currentEntry->internal_shot;
}
int RequestManager::FindFrameCnt(struct camera2_shot_ext * shot_ext)
{
Mutex::Autolock lock(m_requestMutex);
int i;
if (m_numOfEntries == 0) {
CAM_LOGD("DBG(%s): No Entry found", __FUNCTION__);
return -1;
}
for (i = 0 ; i < NUM_MAX_REQUEST_MGR_ENTRY ; i++) {
if(entries[i].internal_shot.shot.ctl.request.frameCount != shot_ext->shot.ctl.request.frameCount)
continue;
if (entries[i].status == REQUESTED) {
entries[i].status = CAPTURED;
return entries[i].internal_shot.shot.ctl.request.frameCount;
}
CAM_LOGE("ERR(%s): frameCount(%d), index(%d), status(%d)", __FUNCTION__, shot_ext->shot.ctl.request.frameCount, i, entries[i].status);
}
CAM_LOGD("(%s): No Entry found frame count(%d)", __FUNCTION__, shot_ext->shot.ctl.request.frameCount);
return -1;
}
void RequestManager::SetInitialSkip(int count)
{
ALOGV("(%s): Pipeline Restarting. setting cnt(%d) - current(%d)", __FUNCTION__, count, m_sensorPipelineSkipCnt);
if (count > m_sensorPipelineSkipCnt)
m_sensorPipelineSkipCnt = count;
}
int RequestManager::GetSkipCnt()
{
ALOGV("(%s): skip cnt(%d)", __FUNCTION__, m_sensorPipelineSkipCnt);
if (m_sensorPipelineSkipCnt == 0)
return m_sensorPipelineSkipCnt;
else
return --m_sensorPipelineSkipCnt;
}
void RequestManager::Dump(void)
{
int i = 0;
request_manager_entry * currentEntry;
ALOGD("## Dump totalentry(%d), insert(%d), processing(%d), frame(%d)",
m_numOfEntries,m_entryInsertionIndex,m_entryProcessingIndex, m_entryFrameOutputIndex);
for (i = 0 ; i < NUM_MAX_REQUEST_MGR_ENTRY ; i++) {
currentEntry = &(entries[i]);
ALOGD("[%2d] status[%d] frameCnt[%3d] numOutput[%d] outstream[0]-%x ", i,
currentEntry->status, currentEntry->internal_shot.shot.ctl.request.frameCount,
currentEntry->output_stream_count,
currentEntry->internal_shot.shot.ctl.request.outputStreams[0]);
}
}
int RequestManager::GetNextIndex(int index)
{
index++;
if (index >= NUM_MAX_REQUEST_MGR_ENTRY)
index = 0;
return index;
}
int RequestManager::GetPrevIndex(int index)
{
index--;
if (index < 0)
index = NUM_MAX_REQUEST_MGR_ENTRY-1;
return index;
}
ExynosCameraHWInterface2::ExynosCameraHWInterface2(int cameraId, camera2_device_t *dev, ExynosCamera2 * camera, int *openInvalid):
m_requestQueueOps(NULL),
m_frameQueueOps(NULL),
m_callbackCookie(NULL),
m_numOfRemainingReqInSvc(0),
m_isRequestQueuePending(false),
m_isRequestQueueNull(true),
m_isIspStarted(false),
m_ionCameraClient(0),
m_zoomRatio(1),
m_scp_closing(false),
m_scp_closed(false),
m_afState(HAL_AFSTATE_INACTIVE),
m_afMode(NO_CHANGE),
m_afMode2(NO_CHANGE),
m_vdisBubbleCnt(0),
m_vdisDupFrame(0),
m_IsAfModeUpdateRequired(false),
m_IsAfTriggerRequired(false),
m_IsAfLockRequired(false),
m_sccLocalBufferValid(false),
m_wideAspect(false),
m_scpOutputSignalCnt(0),
m_scpOutputImageCnt(0),
m_afTriggerId(0),
m_afPendingTriggerId(0),
m_afModeWaitingCnt(0),
m_jpegEncodingCount(0),
m_scpForceSuspended(false),
m_halDevice(dev),
m_nightCaptureCnt(0),
m_nightCaptureFrameCnt(0),
m_lastSceneMode(0),
m_cameraId(cameraId),
m_thumbNailW(160),
m_thumbNailH(120)
{
ALOGD("(%s): ENTER", __FUNCTION__);
int ret = 0;
int res = 0;
m_exynosPictureCSC = NULL;
m_exynosVideoCSC = NULL;
if (!m_grallocHal) {
ret = hw_get_module(GRALLOC_HARDWARE_MODULE_ID, (const hw_module_t **)&m_grallocHal);
if (ret)
ALOGE("ERR(%s):Fail on loading gralloc HAL", __FUNCTION__);
}
m_camera2 = camera;
m_ionCameraClient = createIonClient(m_ionCameraClient);
if(m_ionCameraClient == 0)
ALOGE("ERR(%s):Fail on ion_client_create", __FUNCTION__);
m_BayerManager = new BayerBufManager();
m_mainThread = new MainThread(this);
m_requestManager = new RequestManager((SignalDrivenThread*)(m_mainThread.get()));
*openInvalid = InitializeISPChain();
if (*openInvalid < 0) {
ALOGD("(%s): ISP chain init failed. exiting", __FUNCTION__);
// clean process
// 1. close video nodes
// SCP
res = exynos_v4l2_close(m_camera_info.scp.fd);
if (res != NO_ERROR ) {
ALOGE("ERR(%s): exynos_v4l2_close failed(%d)",__FUNCTION__ , res);
}
// SCC
res = exynos_v4l2_close(m_camera_info.capture.fd);
if (res != NO_ERROR ) {
ALOGE("ERR(%s): exynos_v4l2_close failed(%d)",__FUNCTION__ , res);
}
// Sensor
res = exynos_v4l2_close(m_camera_info.sensor.fd);
if (res != NO_ERROR ) {
ALOGE("ERR(%s): exynos_v4l2_close failed(%d)",__FUNCTION__ , res);
}
// ISP
res = exynos_v4l2_close(m_camera_info.isp.fd);
if (res != NO_ERROR ) {
ALOGE("ERR(%s): exynos_v4l2_close failed(%d)",__FUNCTION__ , res);
}
} else {
m_sensorThread = new SensorThread(this);
m_mainThread->Start("MainThread", PRIORITY_DEFAULT, 0);
m_sensorThread->Start("SensorThread", PRIORITY_DEFAULT, 0);
ALOGV("DEBUG(%s): created sensorthread ", __FUNCTION__);
for (int i = 0 ; i < STREAM_ID_LAST+1 ; i++)
m_subStreams[i].type = SUBSTREAM_TYPE_NONE;
CSC_METHOD cscMethod = CSC_METHOD_HW;
m_exynosPictureCSC = csc_init(cscMethod);
if (m_exynosPictureCSC == NULL)
ALOGE("ERR(%s): csc_init() fail", __FUNCTION__);
csc_set_hw_property(m_exynosPictureCSC, CSC_HW_PROPERTY_FIXED_NODE, PICTURE_GSC_NODE_NUM);
csc_set_hw_property(m_exynosPictureCSC, CSC_HW_PROPERTY_HW_TYPE, CSC_HW_TYPE_GSCALER);
m_exynosVideoCSC = csc_init(cscMethod);
if (m_exynosVideoCSC == NULL)
ALOGE("ERR(%s): csc_init() fail", __FUNCTION__);
csc_set_hw_property(m_exynosVideoCSC, CSC_HW_PROPERTY_FIXED_NODE, VIDEO_GSC_NODE_NUM);
csc_set_hw_property(m_exynosVideoCSC, CSC_HW_PROPERTY_HW_TYPE, CSC_HW_TYPE_GSCALER);
m_setExifFixedAttribute();
// contol information clear
// flash
m_ctlInfo.flash.i_flashMode = AA_AEMODE_ON;
m_ctlInfo.flash.m_afFlashDoneFlg= false;
m_ctlInfo.flash.m_flashEnableFlg = false;
m_ctlInfo.flash.m_flashFrameCount = 0;
m_ctlInfo.flash.m_flashCnt = 0;
m_ctlInfo.flash.m_flashTimeOut = 0;
m_ctlInfo.flash.m_flashDecisionResult = false;
m_ctlInfo.flash.m_flashTorchMode = false;
m_ctlInfo.flash.m_precaptureState = 0;
m_ctlInfo.flash.m_precaptureTriggerId = 0;
// ae
m_ctlInfo.ae.aeStateNoti = AE_STATE_INACTIVE;
// af
m_ctlInfo.af.m_afTriggerTimeOut = 0;
// scene
m_ctlInfo.scene.prevSceneMode = AA_SCENE_MODE_MAX;
}
ALOGD("(%s): EXIT", __FUNCTION__);
}
ExynosCameraHWInterface2::~ExynosCameraHWInterface2()
{
ALOGD("(%s): ENTER", __FUNCTION__);
this->release();
ALOGD("(%s): EXIT", __FUNCTION__);
}
void ExynosCameraHWInterface2::release()
{
int i, res;
ALOGD("(HAL2::release): ENTER");
if (m_streamThreads[1] != NULL) {
m_streamThreads[1]->release();
m_streamThreads[1]->SetSignal(SIGNAL_THREAD_TERMINATE);
}
if (m_streamThreads[0] != NULL) {
m_streamThreads[0]->release();
m_streamThreads[0]->SetSignal(SIGNAL_THREAD_TERMINATE);
}
if (m_sensorThread != NULL) {
m_sensorThread->release();
}
if (m_mainThread != NULL) {
m_mainThread->release();
}
if (m_exynosPictureCSC)
csc_deinit(m_exynosPictureCSC);
m_exynosPictureCSC = NULL;
if (m_exynosVideoCSC)
csc_deinit(m_exynosVideoCSC);
m_exynosVideoCSC = NULL;
if (m_streamThreads[1] != NULL) {
ALOGD("(HAL2::release): START Waiting for (indirect) stream thread 1 termination");
while (!m_streamThreads[1]->IsTerminated())
usleep(SIG_WAITING_TICK);
ALOGD("(HAL2::release): END Waiting for (indirect) stream thread 1 termination");
m_streamThreads[1] = NULL;
}
if (m_streamThreads[0] != NULL) {
ALOGD("(HAL2::release): START Waiting for (indirect) stream thread 0 termination");
while (!m_streamThreads[0]->IsTerminated())
usleep(SIG_WAITING_TICK);
ALOGD("(HAL2::release): END Waiting for (indirect) stream thread 0 termination");
m_streamThreads[0] = NULL;
}
if (m_sensorThread != NULL) {
ALOGD("(HAL2::release): START Waiting for (indirect) sensor thread termination");
while (!m_sensorThread->IsTerminated())
usleep(SIG_WAITING_TICK);
ALOGD("(HAL2::release): END Waiting for (indirect) sensor thread termination");
m_sensorThread = NULL;
}
if (m_mainThread != NULL) {
ALOGD("(HAL2::release): START Waiting for (indirect) main thread termination");
while (!m_mainThread->IsTerminated())
usleep(SIG_WAITING_TICK);
ALOGD("(HAL2::release): END Waiting for (indirect) main thread termination");
m_mainThread = NULL;
}
if (m_requestManager != NULL) {
delete m_requestManager;
m_requestManager = NULL;
}
if (m_BayerManager != NULL) {
delete m_BayerManager;
m_BayerManager = NULL;
}
for (i = 0; i < NUM_BAYER_BUFFERS; i++)
freeCameraMemory(&m_camera_info.sensor.buffer[i], m_camera_info.sensor.planes);
if (m_sccLocalBufferValid) {
for (i = 0; i < NUM_SCC_BUFFERS; i++)
#ifdef ENABLE_FRAME_SYNC
freeCameraMemory(&m_sccLocalBuffer[i], 2);
#else
freeCameraMemory(&m_sccLocalBuffer[i], 1);
#endif
}
else {
for (i = 0; i < NUM_SCC_BUFFERS; i++)
freeCameraMemory(&m_camera_info.capture.buffer[i], m_camera_info.capture.planes);
}
ALOGV("DEBUG(%s): calling exynos_v4l2_close - sensor", __FUNCTION__);
res = exynos_v4l2_close(m_camera_info.sensor.fd);
if (res != NO_ERROR ) {
ALOGE("ERR(%s): exynos_v4l2_close failed(%d)",__FUNCTION__ , res);
}
ALOGV("DEBUG(%s): calling exynos_v4l2_close - isp", __FUNCTION__);
res = exynos_v4l2_close(m_camera_info.isp.fd);
if (res != NO_ERROR ) {
ALOGE("ERR(%s): exynos_v4l2_close failed(%d)",__FUNCTION__ , res);
}
ALOGV("DEBUG(%s): calling exynos_v4l2_close - capture", __FUNCTION__);
res = exynos_v4l2_close(m_camera_info.capture.fd);
if (res != NO_ERROR ) {
ALOGE("ERR(%s): exynos_v4l2_close failed(%d)",__FUNCTION__ , res);
}
ALOGV("DEBUG(%s): calling exynos_v4l2_close - scp", __FUNCTION__);
res = exynos_v4l2_close(m_camera_info.scp.fd);
if (res != NO_ERROR ) {
ALOGE("ERR(%s): exynos_v4l2_close failed(%d)",__FUNCTION__ , res);
}
ALOGV("DEBUG(%s): calling deleteIonClient", __FUNCTION__);
deleteIonClient(m_ionCameraClient);
ALOGD("(HAL2::release): EXIT");
}
int ExynosCameraHWInterface2::InitializeISPChain()
{
char node_name[30];
int fd = 0;
int i;
int ret = 0;
/* Open Sensor */
memset(&node_name, 0x00, sizeof(char[30]));
sprintf(node_name, "%s%d", NODE_PREFIX, 40);
fd = exynos_v4l2_open(node_name, O_RDWR, 0);
if (fd < 0) {
ALOGE("ERR(%s): failed to open sensor video node (%s) fd (%d)", __FUNCTION__,node_name, fd);
}
else {
ALOGV("DEBUG(%s): sensor video node opened(%s) fd (%d)", __FUNCTION__,node_name, fd);
}
m_camera_info.sensor.fd = fd;
/* Open ISP */
memset(&node_name, 0x00, sizeof(char[30]));
sprintf(node_name, "%s%d", NODE_PREFIX, 41);
fd = exynos_v4l2_open(node_name, O_RDWR, 0);
if (fd < 0) {
ALOGE("ERR(%s): failed to open isp video node (%s) fd (%d)", __FUNCTION__,node_name, fd);
}
else {
ALOGV("DEBUG(%s): isp video node opened(%s) fd (%d)", __FUNCTION__,node_name, fd);
}
m_camera_info.isp.fd = fd;
/* Open ScalerC */
memset(&node_name, 0x00, sizeof(char[30]));
sprintf(node_name, "%s%d", NODE_PREFIX, 42);
fd = exynos_v4l2_open(node_name, O_RDWR, 0);
if (fd < 0) {
ALOGE("ERR(%s): failed to open capture video node (%s) fd (%d)", __FUNCTION__,node_name, fd);
}
else {
ALOGV("DEBUG(%s): capture video node opened(%s) fd (%d)", __FUNCTION__,node_name, fd);
}
m_camera_info.capture.fd = fd;
/* Open ScalerP */
memset(&node_name, 0x00, sizeof(char[30]));
sprintf(node_name, "%s%d", NODE_PREFIX, 44);
fd = exynos_v4l2_open(node_name, O_RDWR, 0);
if (fd < 0) {
ALOGE("DEBUG(%s): failed to open preview video node (%s) fd (%d)", __FUNCTION__,node_name, fd);
}
else {
ALOGV("DEBUG(%s): preview video node opened(%s) fd (%d)", __FUNCTION__,node_name, fd);
}
m_camera_info.scp.fd = fd;
if(m_cameraId == 0)
m_camera_info.sensor_id = SENSOR_NAME_S5K4E5;
else
m_camera_info.sensor_id = SENSOR_NAME_S5K6A3;
memset(&m_camera_info.dummy_shot, 0x00, sizeof(struct camera2_shot_ext));
m_camera_info.dummy_shot.shot.ctl.request.metadataMode = METADATA_MODE_FULL;
m_camera_info.dummy_shot.shot.magicNumber = 0x23456789;
m_camera_info.dummy_shot.dis_bypass = 1;
m_camera_info.dummy_shot.dnr_bypass = 1;
m_camera_info.dummy_shot.fd_bypass = 1;
/*sensor setting*/
m_camera_info.dummy_shot.shot.ctl.sensor.exposureTime = 0;
m_camera_info.dummy_shot.shot.ctl.sensor.frameDuration = 0;
m_camera_info.dummy_shot.shot.ctl.sensor.sensitivity = 0;
m_camera_info.dummy_shot.shot.ctl.scaler.cropRegion[0] = 0;
m_camera_info.dummy_shot.shot.ctl.scaler.cropRegion[1] = 0;
/*request setting*/
m_camera_info.dummy_shot.request_sensor = 1;
m_camera_info.dummy_shot.request_scc = 0;
m_camera_info.dummy_shot.request_scp = 0;
m_camera_info.dummy_shot.shot.ctl.request.outputStreams[0] = 0;
m_camera_info.sensor.width = m_camera2->getSensorRawW();
m_camera_info.sensor.height = m_camera2->getSensorRawH();
m_camera_info.sensor.format = V4L2_PIX_FMT_SBGGR16;
m_camera_info.sensor.planes = 2;
m_camera_info.sensor.buffers = NUM_BAYER_BUFFERS;
m_camera_info.sensor.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
m_camera_info.sensor.memory = V4L2_MEMORY_DMABUF;
for(i = 0; i < m_camera_info.sensor.buffers; i++){
initCameraMemory(&m_camera_info.sensor.buffer[i], m_camera_info.sensor.planes);
m_camera_info.sensor.buffer[i].size.extS[0] = m_camera_info.sensor.width*m_camera_info.sensor.height*2;
m_camera_info.sensor.buffer[i].size.extS[1] = 8*1024; // HACK, driver use 8*1024, should be use predefined value
allocCameraMemory(m_ionCameraClient, &m_camera_info.sensor.buffer[i], m_camera_info.sensor.planes, 1<<1);
}
m_camera_info.isp.width = m_camera_info.sensor.width;
m_camera_info.isp.height = m_camera_info.sensor.height;
m_camera_info.isp.format = m_camera_info.sensor.format;
m_camera_info.isp.planes = m_camera_info.sensor.planes;
m_camera_info.isp.buffers = m_camera_info.sensor.buffers;
m_camera_info.isp.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
m_camera_info.isp.memory = V4L2_MEMORY_DMABUF;
for(i = 0; i < m_camera_info.isp.buffers; i++){
initCameraMemory(&m_camera_info.isp.buffer[i], m_camera_info.isp.planes);
m_camera_info.isp.buffer[i].size.extS[0] = m_camera_info.sensor.buffer[i].size.extS[0];
m_camera_info.isp.buffer[i].size.extS[1] = m_camera_info.sensor.buffer[i].size.extS[1];
m_camera_info.isp.buffer[i].fd.extFd[0] = m_camera_info.sensor.buffer[i].fd.extFd[0];
m_camera_info.isp.buffer[i].fd.extFd[1] = m_camera_info.sensor.buffer[i].fd.extFd[1];
m_camera_info.isp.buffer[i].virt.extP[0] = m_camera_info.sensor.buffer[i].virt.extP[0];
m_camera_info.isp.buffer[i].virt.extP[1] = m_camera_info.sensor.buffer[i].virt.extP[1];
};
/* init ISP */
ret = cam_int_s_input(&(m_camera_info.isp), m_camera_info.sensor_id);
if (ret < 0) {
ALOGE("ERR(%s): cam_int_s_input(%d) failed!!!! ", __FUNCTION__, m_camera_info.sensor_id);
return false;
}
cam_int_s_fmt(&(m_camera_info.isp));
ALOGV("DEBUG(%s): isp calling reqbuf", __FUNCTION__);
cam_int_reqbufs(&(m_camera_info.isp));
ALOGV("DEBUG(%s): isp calling querybuf", __FUNCTION__);
ALOGV("DEBUG(%s): isp mem alloc done", __FUNCTION__);
/* init Sensor */
cam_int_s_input(&(m_camera_info.sensor), m_camera_info.sensor_id);
ALOGV("DEBUG(%s): sensor s_input done", __FUNCTION__);
if (cam_int_s_fmt(&(m_camera_info.sensor))< 0) {
ALOGE("ERR(%s): sensor s_fmt fail", __FUNCTION__);
}
ALOGV("DEBUG(%s): sensor s_fmt done", __FUNCTION__);
cam_int_reqbufs(&(m_camera_info.sensor));
ALOGV("DEBUG(%s): sensor reqbuf done", __FUNCTION__);
for (i = 0; i < m_camera_info.sensor.buffers; i++) {
ALOGV("DEBUG(%s): sensor initial QBUF [%d]", __FUNCTION__, i);
m_camera_info.dummy_shot.shot.ctl.sensor.frameDuration = 33*1000*1000; // apply from frame #1
m_camera_info.dummy_shot.shot.ctl.request.frameCount = -1;
memcpy( m_camera_info.sensor.buffer[i].virt.extP[1], &(m_camera_info.dummy_shot),
sizeof(struct camera2_shot_ext));
}
for (i = 0; i < NUM_MIN_SENSOR_QBUF; i++)
cam_int_qbuf(&(m_camera_info.sensor), i);
for (i = NUM_MIN_SENSOR_QBUF; i < m_camera_info.sensor.buffers; i++)
m_requestManager->pushSensorQ(i);
ALOGV("== stream_on :: sensor");
cam_int_streamon(&(m_camera_info.sensor));
m_camera_info.sensor.status = true;
/* init Capture */
m_camera_info.capture.width = m_camera2->getSensorW();
m_camera_info.capture.height = m_camera2->getSensorH();
m_camera_info.capture.format = V4L2_PIX_FMT_YUYV;
#ifdef ENABLE_FRAME_SYNC
m_camera_info.capture.planes = 2;
#else
m_camera_info.capture.planes = 1;
#endif
m_camera_info.capture.buffers = NUM_SCC_BUFFERS;
m_camera_info.capture.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
m_camera_info.capture.memory = V4L2_MEMORY_DMABUF;
m_camera_info.capture.status = false;
return true;
}
void ExynosCameraHWInterface2::StartSCCThread(bool threadExists)
{
ALOGV("(%s)", __FUNCTION__);
StreamThread *AllocatedStream;
stream_parameters_t newParameters;
uint32_t format_actual;
if (!threadExists) {
m_streamThreads[1] = new StreamThread(this, 1);
}
AllocatedStream = (StreamThread*)(m_streamThreads[1].get());
if (!threadExists) {
AllocatedStream->Start("StreamThread", PRIORITY_DEFAULT, 0);
m_streamThreadInitialize((SignalDrivenThread*)AllocatedStream);
AllocatedStream->m_numRegisteredStream = 1;
}
AllocatedStream->m_index = 1;
format_actual = HAL_PIXEL_FORMAT_YCbCr_422_I; // YUYV
newParameters.width = m_camera2->getSensorW();
newParameters.height = m_camera2->getSensorH();
newParameters.format = format_actual;
newParameters.streamOps = NULL;
newParameters.numHwBuffers = NUM_SCC_BUFFERS;
#ifdef ENABLE_FRAME_SYNC
newParameters.planes = 2;
#else
newParameters.planes = 1;
#endif
newParameters.numSvcBufsInHal = 0;
newParameters.node = &m_camera_info.capture;
AllocatedStream->streamType = STREAM_TYPE_INDIRECT;
ALOGV("(%s): m_numRegisteredStream = %d", __FUNCTION__, AllocatedStream->m_numRegisteredStream);
if (!threadExists) {
if (!m_sccLocalBufferValid) {
for (int i = 0; i < m_camera_info.capture.buffers; i++){
initCameraMemory(&m_camera_info.capture.buffer[i], newParameters.node->planes);
m_camera_info.capture.buffer[i].size.extS[0] = m_camera_info.capture.width*m_camera_info.capture.height*2;
#ifdef ENABLE_FRAME_SYNC
m_camera_info.capture.buffer[i].size.extS[1] = 4*1024; // HACK, driver use 4*1024, should be use predefined value
allocCameraMemory(m_ionCameraClient, &m_camera_info.capture.buffer[i], m_camera_info.capture.planes, 1<<1);
#else
allocCameraMemory(m_ionCameraClient, &m_camera_info.capture.buffer[i], m_camera_info.capture.planes);
#endif
m_sccLocalBuffer[i] = m_camera_info.capture.buffer[i];
}
m_sccLocalBufferValid = true;
}
} else {
if (m_sccLocalBufferValid) {
for (int i = 0; i < m_camera_info.capture.buffers; i++)
m_camera_info.capture.buffer[i] = m_sccLocalBuffer[i];
} else {
ALOGE("(%s): SCC Thread starting with no buffer", __FUNCTION__);
}
}
cam_int_s_input(newParameters.node, m_camera_info.sensor_id);
m_camera_info.capture.buffers = NUM_SCC_BUFFERS;
cam_int_s_fmt(newParameters.node);
ALOGV("DEBUG(%s): capture calling reqbuf", __FUNCTION__);
cam_int_reqbufs(newParameters.node);
ALOGV("DEBUG(%s): capture calling querybuf", __FUNCTION__);
for (int i = 0; i < newParameters.node->buffers; i++) {
ALOGV("DEBUG(%s): capture initial QBUF [%d]", __FUNCTION__, i);
cam_int_qbuf(newParameters.node, i);
newParameters.svcBufStatus[i] = ON_DRIVER;
}
ALOGV("== stream_on :: capture");
if (cam_int_streamon(newParameters.node) < 0) {
ALOGE("ERR(%s): capture stream on fail", __FUNCTION__);
} else {
m_camera_info.capture.status = true;
}
AllocatedStream->setParameter(&newParameters);
AllocatedStream->m_activated = true;
AllocatedStream->m_isBufferInit = true;
}
void ExynosCameraHWInterface2::StartISP()
{
ALOGV("== stream_on :: isp");
cam_int_streamon(&(m_camera_info.isp));
exynos_v4l2_s_ctrl(m_camera_info.sensor.fd, V4L2_CID_IS_S_STREAM, IS_ENABLE_STREAM);
}
int ExynosCameraHWInterface2::getCameraId() const
{
return m_cameraId;
}
int ExynosCameraHWInterface2::setRequestQueueSrcOps(const camera2_request_queue_src_ops_t *request_src_ops)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
if ((NULL != request_src_ops) && (NULL != request_src_ops->dequeue_request)
&& (NULL != request_src_ops->free_request) && (NULL != request_src_ops->request_count)) {
m_requestQueueOps = (camera2_request_queue_src_ops_t*)request_src_ops;
return 0;
}
else {
ALOGE("DEBUG(%s):setRequestQueueSrcOps : NULL arguments", __FUNCTION__);
return 1;
}
}
int ExynosCameraHWInterface2::notifyRequestQueueNotEmpty()
{
int i = 0;
ALOGV("DEBUG(%s):setting [SIGNAL_MAIN_REQ_Q_NOT_EMPTY] current(%d)", __FUNCTION__, m_requestManager->GetNumEntries());
if ((NULL==m_frameQueueOps)|| (NULL==m_requestQueueOps)) {
ALOGE("DEBUG(%s):queue ops NULL. ignoring request", __FUNCTION__);
return 0;
}
m_isRequestQueueNull = false;
if (m_requestManager->GetNumEntries() == 0)
m_requestManager->SetInitialSkip(0);
if (m_isIspStarted == false) {
/* isp */
m_camera_info.sensor.buffers = NUM_BAYER_BUFFERS;
m_camera_info.isp.buffers = m_camera_info.sensor.buffers;
cam_int_s_fmt(&(m_camera_info.isp));
cam_int_reqbufs(&(m_camera_info.isp));
/* sensor */
if (m_camera_info.sensor.status == false) {
cam_int_s_fmt(&(m_camera_info.sensor));
cam_int_reqbufs(&(m_camera_info.sensor));
for (i = 0; i < m_camera_info.sensor.buffers; i++) {
ALOGV("DEBUG(%s): sensor initial QBUF [%d]", __FUNCTION__, i);
m_camera_info.dummy_shot.shot.ctl.sensor.frameDuration = 33*1000*1000; // apply from frame #1
m_camera_info.dummy_shot.shot.ctl.request.frameCount = -1;
memcpy( m_camera_info.sensor.buffer[i].virt.extP[1], &(m_camera_info.dummy_shot),
sizeof(struct camera2_shot_ext));
}
for (i = 0; i < NUM_MIN_SENSOR_QBUF; i++)
cam_int_qbuf(&(m_camera_info.sensor), i);
for (i = NUM_MIN_SENSOR_QBUF; i < m_camera_info.sensor.buffers; i++)
m_requestManager->pushSensorQ(i);
ALOGV("DEBUG(%s): calling sensor streamon", __FUNCTION__);
cam_int_streamon(&(m_camera_info.sensor));
m_camera_info.sensor.status = true;
}
}
if (!(m_streamThreads[1].get())) {
ALOGV("DEBUG(%s): stream thread 1 not exist. starting without stream", __FUNCTION__);
StartSCCThread(false);
} else {
if (m_streamThreads[1]->m_activated == false) {
ALOGV("DEBUG(%s): stream thread 1 suspended. restarting", __FUNCTION__);
StartSCCThread(true);
} else {
if (m_camera_info.capture.status == false) {
m_camera_info.capture.buffers = NUM_SCC_BUFFERS;
cam_int_s_fmt(&(m_camera_info.capture));
ALOGV("DEBUG(%s): capture calling reqbuf", __FUNCTION__);
cam_int_reqbufs(&(m_camera_info.capture));
ALOGV("DEBUG(%s): capture calling querybuf", __FUNCTION__);
if (m_streamThreads[1]->streamType == STREAM_TYPE_DIRECT) {
StreamThread * targetStream = m_streamThreads[1].get();
stream_parameters_t *targetStreamParms = &(targetStream->m_parameters);
node_info_t *currentNode = targetStreamParms->node;
struct v4l2_buffer v4l2_buf;
struct v4l2_plane planes[VIDEO_MAX_PLANES];
for (i = 0 ; i < targetStreamParms->numSvcBuffers ; i++) {
v4l2_buf.m.planes = planes;
v4l2_buf.type = currentNode->type;
v4l2_buf.memory = currentNode->memory;
v4l2_buf.length = currentNode->planes;
v4l2_buf.index = i;
ExynosBuffer metaBuf = targetStreamParms->metaBuffers[i];
if (i < currentNode->buffers) {
#ifdef ENABLE_FRAME_SYNC
v4l2_buf.m.planes[0].m.fd = targetStreamParms->svcBuffers[i].fd.extFd[0];
v4l2_buf.m.planes[2].m.fd = targetStreamParms->svcBuffers[i].fd.extFd[1];
v4l2_buf.m.planes[1].m.fd = targetStreamParms->svcBuffers[i].fd.extFd[2];
v4l2_buf.length += targetStreamParms->metaPlanes;
v4l2_buf.m.planes[v4l2_buf.length-1].m.fd = metaBuf.fd.extFd[0];
v4l2_buf.m.planes[v4l2_buf.length-1].length = metaBuf.size.extS[0];
ALOGV("Qbuf metaBuf: fd(%d), length(%d) plane(%d)", metaBuf.fd.extFd[0], metaBuf.size.extS[0], v4l2_buf.length);
#endif
if (exynos_v4l2_qbuf(currentNode->fd, &v4l2_buf) < 0) {
ALOGE("ERR(%s): exynos_v4l2_qbuf() fail fd(%d)", __FUNCTION__, currentNode->fd);
}
ALOGV("DEBUG(%s): exynos_v4l2_qbuf() success fd(%d)", __FUNCTION__, currentNode->fd);
targetStreamParms->svcBufStatus[i] = REQUIRES_DQ_FROM_SVC;
}
else {
targetStreamParms->svcBufStatus[i] = ON_SERVICE;
}
}
} else {
for (int i = 0; i < m_camera_info.capture.buffers; i++) {
ALOGV("DEBUG(%s): capture initial QBUF [%d]", __FUNCTION__, i);
cam_int_qbuf(&(m_camera_info.capture), i);
}
}
ALOGV("== stream_on :: capture");
if (cam_int_streamon(&(m_camera_info.capture)) < 0) {
ALOGE("ERR(%s): capture stream on fail", __FUNCTION__);
} else {
m_camera_info.capture.status = true;
}
}
if (m_scpForceSuspended) {
m_scpForceSuspended = false;
}
}
}
if (m_isIspStarted == false) {
StartISP();
ALOGV("DEBUG(%s):starting sensor thread", __FUNCTION__);
m_requestManager->SetInitialSkip(6);
m_sensorThread->Start("SensorThread", PRIORITY_DEFAULT, 0);
m_isIspStarted = true;
}
m_mainThread->SetSignal(SIGNAL_MAIN_REQ_Q_NOT_EMPTY);
return 0;
}
int ExynosCameraHWInterface2::setFrameQueueDstOps(const camera2_frame_queue_dst_ops_t *frame_dst_ops)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
if ((NULL != frame_dst_ops) && (NULL != frame_dst_ops->dequeue_frame)
&& (NULL != frame_dst_ops->cancel_frame) && (NULL !=frame_dst_ops->enqueue_frame)) {
m_frameQueueOps = (camera2_frame_queue_dst_ops_t *)frame_dst_ops;
return 0;
}
else {
ALOGE("DEBUG(%s):setFrameQueueDstOps : NULL arguments", __FUNCTION__);
return 1;
}
}
int ExynosCameraHWInterface2::getInProgressCount()
{
int inProgressCount = m_requestManager->GetNumEntries();
ALOGV("DEBUG(%s): # of dequeued req (%d) jpeg(%d) = (%d)", __FUNCTION__,
inProgressCount, m_jpegEncodingCount, (inProgressCount + m_jpegEncodingCount));
return (inProgressCount + m_jpegEncodingCount);
}
int ExynosCameraHWInterface2::flushCapturesInProgress()
{
return 0;
}
int ExynosCameraHWInterface2::constructDefaultRequest(int request_template, camera_metadata_t **request)
{
ALOGV("DEBUG(%s): making template (%d) ", __FUNCTION__, request_template);
if (request == NULL) return BAD_VALUE;
if (request_template < 0 || request_template >= CAMERA2_TEMPLATE_COUNT) {
return BAD_VALUE;
}
status_t res;
// Pass 1, calculate size and allocate
res = m_camera2->constructDefaultRequest(request_template,
request,
true);
if (res != OK) {
return res;
}
// Pass 2, build request
res = m_camera2->constructDefaultRequest(request_template,
request,
false);
if (res != OK) {
ALOGE("Unable to populate new request for template %d",
request_template);
}
return res;
}
int ExynosCameraHWInterface2::allocateStream(uint32_t width, uint32_t height, int format, const camera2_stream_ops_t *stream_ops,
uint32_t *stream_id, uint32_t *format_actual, uint32_t *usage, uint32_t *max_buffers)
{
ALOGD("(%s): stream width(%d) height(%d) format(%x)", __FUNCTION__, width, height, format);
bool useDirectOutput = false;
StreamThread *AllocatedStream;
stream_parameters_t newParameters;
substream_parameters_t *subParameters;
StreamThread *parentStream;
status_t res;
int allocCase = 0;
if ((format == HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED || format == CAMERA2_HAL_PIXEL_FORMAT_OPAQUE) &&
m_camera2->isSupportedResolution(width, height)) {
if (!(m_streamThreads[0].get())) {
ALOGV("DEBUG(%s): stream 0 not exist", __FUNCTION__);
allocCase = 0;
}
else {
if ((m_streamThreads[0].get())->m_activated == true) {
ALOGV("DEBUG(%s): stream 0 exists and activated.", __FUNCTION__);
allocCase = 1;
}
else {
ALOGV("DEBUG(%s): stream 0 exists and deactivated.", __FUNCTION__);
allocCase = 2;
}
}
// TODO : instead of that, use calculate aspect ratio and selection with calculated ratio.
if ((width == 1920 && height == 1080) || (width == 1280 && height == 720)
|| (width == 720 && height == 480) || (width == 1440 && height == 960)
|| (width == 1344 && height == 896)) {
m_wideAspect = true;
} else {
m_wideAspect = false;
}
ALOGV("DEBUG(%s): m_wideAspect (%d)", __FUNCTION__, m_wideAspect);
if (allocCase == 0 || allocCase == 2) {
*stream_id = STREAM_ID_PREVIEW;
m_streamThreads[0] = new StreamThread(this, *stream_id);
AllocatedStream = (StreamThread*)(m_streamThreads[0].get());
AllocatedStream->Start("StreamThread", PRIORITY_DEFAULT, 0);
m_streamThreadInitialize((SignalDrivenThread*)AllocatedStream);
*format_actual = HAL_PIXEL_FORMAT_EXYNOS_YV12;
*usage = GRALLOC_USAGE_SW_WRITE_OFTEN;
*max_buffers = 6;
newParameters.width = width;
newParameters.height = height;
newParameters.format = *format_actual;
newParameters.streamOps = stream_ops;
newParameters.usage = *usage;
newParameters.numHwBuffers = NUM_SCP_BUFFERS;
newParameters.numOwnSvcBuffers = *max_buffers;
newParameters.planes = NUM_PLANES(*format_actual);
newParameters.metaPlanes = 1;
newParameters.numSvcBufsInHal = 0;
newParameters.minUndequedBuffer = 3;
newParameters.needsIonMap = true;
newParameters.node = &m_camera_info.scp;
newParameters.node->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
newParameters.node->memory = V4L2_MEMORY_DMABUF;
AllocatedStream->streamType = STREAM_TYPE_DIRECT;
AllocatedStream->m_index = 0;
AllocatedStream->setParameter(&newParameters);
AllocatedStream->m_activated = true;
AllocatedStream->m_numRegisteredStream = 1;
ALOGV("(%s): m_numRegisteredStream = %d", __FUNCTION__, AllocatedStream->m_numRegisteredStream);
m_requestManager->SetDefaultParameters(m_camera2->getSensorW());
m_camera_info.dummy_shot.shot.ctl.scaler.cropRegion[2] = m_camera2->getSensorW();
if (m_subStreams[STREAM_ID_RECORD].type != SUBSTREAM_TYPE_NONE)
AllocatedStream->attachSubStream(STREAM_ID_RECORD, 10);
if (m_subStreams[STREAM_ID_PRVCB].type != SUBSTREAM_TYPE_NONE)
AllocatedStream->attachSubStream(STREAM_ID_PRVCB, 70);
return 0;
} else if (allocCase == 1) {
*stream_id = STREAM_ID_RECORD;
subParameters = &m_subStreams[STREAM_ID_RECORD];
memset(subParameters, 0, sizeof(substream_parameters_t));
parentStream = (StreamThread*)(m_streamThreads[0].get());
if (!parentStream) {
return 1;
}
*format_actual = HAL_PIXEL_FORMAT_YCbCr_420_SP; // NV12M
*usage = GRALLOC_USAGE_SW_WRITE_OFTEN;
*max_buffers = 6;
subParameters->type = SUBSTREAM_TYPE_RECORD;
subParameters->width = width;
subParameters->height = height;
subParameters->format = *format_actual;
subParameters->svcPlanes = NUM_PLANES(*format_actual);
subParameters->streamOps = stream_ops;
subParameters->usage = *usage;
subParameters->numOwnSvcBuffers = *max_buffers;
subParameters->numSvcBufsInHal = 0;
subParameters->needBufferInit = false;
subParameters->minUndequedBuffer = 2;
res = parentStream->attachSubStream(STREAM_ID_RECORD, 20);
if (res != NO_ERROR) {
ALOGE("(%s): substream attach failed. res(%d)", __FUNCTION__, res);
return 1;
}
ALOGV("(%s): m_numRegisteredStream = %d", __FUNCTION__, parentStream->m_numRegisteredStream);
ALOGV("(%s): Enabling Record", __FUNCTION__);
return 0;
}
}
else if ((format == CAMERA2_HAL_PIXEL_FORMAT_ZSL)
&& (width == m_camera2->getSensorW()) && (height == m_camera2->getSensorH())) {
if (!(m_streamThreads[1].get())) {
ALOGV("DEBUG(%s): stream thread 1 not exist", __FUNCTION__);
useDirectOutput = true;
}
else {
ALOGV("DEBUG(%s): stream thread 1 exists and deactivated.", __FUNCTION__);
useDirectOutput = false;
}
if (useDirectOutput) {
*stream_id = STREAM_ID_ZSL;
m_streamThreads[1] = new StreamThread(this, *stream_id);
AllocatedStream = (StreamThread*)(m_streamThreads[1].get());
AllocatedStream->Start("StreamThread", PRIORITY_DEFAULT, 0);
m_streamThreadInitialize((SignalDrivenThread*)AllocatedStream);
*format_actual = HAL_PIXEL_FORMAT_EXYNOS_YV12;
*max_buffers = 6;
*format_actual = HAL_PIXEL_FORMAT_YCbCr_422_I; // YUYV
*usage = GRALLOC_USAGE_SW_WRITE_OFTEN;
*max_buffers = 6;
newParameters.width = width;
newParameters.height = height;
newParameters.format = *format_actual;
newParameters.streamOps = stream_ops;
newParameters.usage = *usage;
newParameters.numHwBuffers = NUM_SCC_BUFFERS;
newParameters.numOwnSvcBuffers = *max_buffers;
newParameters.planes = NUM_PLANES(*format_actual);
newParameters.metaPlanes = 1;
newParameters.numSvcBufsInHal = 0;
newParameters.minUndequedBuffer = 2;
newParameters.needsIonMap = false;
newParameters.node = &m_camera_info.capture;
newParameters.node->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
newParameters.node->memory = V4L2_MEMORY_DMABUF;
AllocatedStream->streamType = STREAM_TYPE_DIRECT;
AllocatedStream->m_index = 1;
AllocatedStream->setParameter(&newParameters);
AllocatedStream->m_activated = true;
AllocatedStream->m_numRegisteredStream = 1;
ALOGV("(%s): m_numRegisteredStream = %d", __FUNCTION__, AllocatedStream->m_numRegisteredStream);
return 0;
} else {
bool bJpegExists = false;
AllocatedStream = (StreamThread*)(m_streamThreads[1].get());
subParameters = &m_subStreams[STREAM_ID_JPEG];
if (subParameters->type == SUBSTREAM_TYPE_JPEG) {
ALOGD("(%s): jpeg stream exists", __FUNCTION__);
bJpegExists = true;
AllocatedStream->detachSubStream(STREAM_ID_JPEG);
}
AllocatedStream->m_releasing = true;
ALOGD("START stream thread 1 release %d", __LINE__);
do {
AllocatedStream->release();
usleep(SIG_WAITING_TICK);
} while (AllocatedStream->m_releasing);
ALOGD("END stream thread 1 release %d", __LINE__);
*stream_id = STREAM_ID_ZSL;
m_streamThreadInitialize((SignalDrivenThread*)AllocatedStream);
*format_actual = HAL_PIXEL_FORMAT_EXYNOS_YV12;
*max_buffers = 6;
*format_actual = HAL_PIXEL_FORMAT_YCbCr_422_I; // YUYV
*usage = GRALLOC_USAGE_SW_WRITE_OFTEN;
*max_buffers = 6;
newParameters.width = width;
newParameters.height = height;
newParameters.format = *format_actual;
newParameters.streamOps = stream_ops;
newParameters.usage = *usage;
newParameters.numHwBuffers = NUM_SCC_BUFFERS;
newParameters.numOwnSvcBuffers = *max_buffers;
newParameters.planes = NUM_PLANES(*format_actual);
newParameters.metaPlanes = 1;
newParameters.numSvcBufsInHal = 0;
newParameters.minUndequedBuffer = 2;
newParameters.needsIonMap = false;
newParameters.node = &m_camera_info.capture;
newParameters.node->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
newParameters.node->memory = V4L2_MEMORY_DMABUF;
AllocatedStream->streamType = STREAM_TYPE_DIRECT;
AllocatedStream->m_index = 1;
AllocatedStream->setParameter(&newParameters);
AllocatedStream->m_activated = true;
AllocatedStream->m_numRegisteredStream = 1;
if (bJpegExists) {
AllocatedStream->attachSubStream(STREAM_ID_JPEG, 10);
}
ALOGV("(%s): m_numRegisteredStream = %d", __FUNCTION__, AllocatedStream->m_numRegisteredStream);
return 0;
}
}
else if (format == HAL_PIXEL_FORMAT_BLOB
&& m_camera2->isSupportedJpegResolution(width, height)) {
*stream_id = STREAM_ID_JPEG;
subParameters = &m_subStreams[*stream_id];
memset(subParameters, 0, sizeof(substream_parameters_t));
if (!(m_streamThreads[1].get())) {
ALOGV("DEBUG(%s): stream thread 1 not exist", __FUNCTION__);
StartSCCThread(false);
}
else if (m_streamThreads[1]->m_activated == false) {
ALOGV("DEBUG(%s): stream thread 1 suspended. restarting", __FUNCTION__);
StartSCCThread(true);
}
parentStream = (StreamThread*)(m_streamThreads[1].get());
*format_actual = HAL_PIXEL_FORMAT_BLOB;
*usage = GRALLOC_USAGE_SW_WRITE_OFTEN;
*max_buffers = 4;
subParameters->type = SUBSTREAM_TYPE_JPEG;
subParameters->width = width;
subParameters->height = height;
subParameters->format = *format_actual;
subParameters->svcPlanes = 1;
subParameters->streamOps = stream_ops;
subParameters->usage = *usage;
subParameters->numOwnSvcBuffers = *max_buffers;
subParameters->numSvcBufsInHal = 0;
subParameters->needBufferInit = false;
subParameters->minUndequedBuffer = 2;
res = parentStream->attachSubStream(STREAM_ID_JPEG, 10);
if (res != NO_ERROR) {
ALOGE("(%s): substream attach failed. res(%d)", __FUNCTION__, res);
return 1;
}
ALOGV("(%s): m_numRegisteredStream = %d", __FUNCTION__, parentStream->m_numRegisteredStream);
ALOGV("(%s): Enabling Jpeg", __FUNCTION__);
return 0;
}
else if (format == HAL_PIXEL_FORMAT_YCrCb_420_SP || format == HAL_PIXEL_FORMAT_YV12) {
*stream_id = STREAM_ID_PRVCB;
subParameters = &m_subStreams[STREAM_ID_PRVCB];
memset(subParameters, 0, sizeof(substream_parameters_t));
parentStream = (StreamThread*)(m_streamThreads[0].get());
if (!parentStream) {
return 1;
}
*format_actual = format;
*usage = GRALLOC_USAGE_SW_WRITE_OFTEN;
*max_buffers = 6;
subParameters->type = SUBSTREAM_TYPE_PRVCB;
subParameters->width = width;
subParameters->height = height;
subParameters->format = *format_actual;
subParameters->svcPlanes = NUM_PLANES(*format_actual);
subParameters->streamOps = stream_ops;
subParameters->usage = *usage;
subParameters->numOwnSvcBuffers = *max_buffers;
subParameters->numSvcBufsInHal = 0;
subParameters->needBufferInit = false;
subParameters->minUndequedBuffer = 2;
if (format == HAL_PIXEL_FORMAT_YCrCb_420_SP) {
subParameters->internalFormat = HAL_PIXEL_FORMAT_EXYNOS_YCrCb_420_SP;
subParameters->internalPlanes = NUM_PLANES(HAL_PIXEL_FORMAT_EXYNOS_YCrCb_420_SP);
}
else {
subParameters->internalFormat = HAL_PIXEL_FORMAT_EXYNOS_YV12;
subParameters->internalPlanes = NUM_PLANES(HAL_PIXEL_FORMAT_EXYNOS_YV12);
}
res = parentStream->attachSubStream(STREAM_ID_PRVCB, 20);
if (res != NO_ERROR) {
ALOGE("(%s): substream attach failed. res(%d)", __FUNCTION__, res);
return 1;
}
ALOGV("(%s): m_numRegisteredStream = %d", __FUNCTION__, parentStream->m_numRegisteredStream);
ALOGV("(%s): Enabling previewcb", __FUNCTION__);
return 0;
}
ALOGE("(%s): Unsupported Pixel Format", __FUNCTION__);
return 1;
}
int ExynosCameraHWInterface2::registerStreamBuffers(uint32_t stream_id,
int num_buffers, buffer_handle_t *registeringBuffers)
{
int i,j;
void *virtAddr[3];
int plane_index = 0;
StreamThread * targetStream;
stream_parameters_t *targetStreamParms;
node_info_t *currentNode;
struct v4l2_buffer v4l2_buf;
struct v4l2_plane planes[VIDEO_MAX_PLANES];
ALOGD("(%s): stream_id(%d), num_buff(%d), handle(%x) ", __FUNCTION__,
stream_id, num_buffers, (uint32_t)registeringBuffers);
if (stream_id == STREAM_ID_PREVIEW && m_streamThreads[0].get()) {
targetStream = m_streamThreads[0].get();
targetStreamParms = &(m_streamThreads[0]->m_parameters);
}
else if (stream_id == STREAM_ID_JPEG || stream_id == STREAM_ID_RECORD || stream_id == STREAM_ID_PRVCB) {
substream_parameters_t *targetParms;
targetParms = &m_subStreams[stream_id];
targetParms->numSvcBuffers = num_buffers;
for (i = 0 ; i < targetParms->numSvcBuffers ; i++) {
ALOGV("(%s): registering substream(%d) Buffers[%d] (%x) ", __FUNCTION__,
i, stream_id, (uint32_t)(registeringBuffers[i]));
if (m_grallocHal) {
if (m_grallocHal->lock(m_grallocHal, registeringBuffers[i],
targetParms->usage, 0, 0,
targetParms->width, targetParms->height, virtAddr) != 0) {
ALOGE("ERR(%s): could not obtain gralloc buffer", __FUNCTION__);
}
else {
ExynosBuffer currentBuf;
const private_handle_t *priv_handle = reinterpret_cast<const private_handle_t *>(registeringBuffers[i]);
if (targetParms->svcPlanes == 1) {
currentBuf.fd.extFd[0] = priv_handle->fd;
currentBuf.size.extS[0] = priv_handle->size;
currentBuf.size.extS[1] = 0;
currentBuf.size.extS[2] = 0;
} else if (targetParms->svcPlanes == 2) {
currentBuf.fd.extFd[0] = priv_handle->fd;
currentBuf.fd.extFd[1] = priv_handle->fd1;
} else if (targetParms->svcPlanes == 3) {
currentBuf.fd.extFd[0] = priv_handle->fd;
currentBuf.fd.extFd[1] = priv_handle->fd1;
currentBuf.fd.extFd[2] = priv_handle->fd2;
}
for (plane_index = 0 ; plane_index < targetParms->svcPlanes ; plane_index++) {
currentBuf.virt.extP[plane_index] = (char *)virtAddr[plane_index];
CAM_LOGV("DEBUG(%s): plane(%d): fd(%d) addr(%x) size(%d)",
__FUNCTION__, plane_index, currentBuf.fd.extFd[plane_index],
(unsigned int)currentBuf.virt.extP[plane_index], currentBuf.size.extS[plane_index]);
}
targetParms->svcBufStatus[i] = ON_SERVICE;
targetParms->svcBuffers[i] = currentBuf;
targetParms->svcBufHandle[i] = registeringBuffers[i];
}
}
}
targetParms->needBufferInit = true;
return 0;
}
else if (stream_id == STREAM_ID_ZSL && m_streamThreads[1].get()) {
targetStream = m_streamThreads[1].get();
targetStreamParms = &(m_streamThreads[1]->m_parameters);
}
else {
ALOGE("(%s): unregistered stream id (%d)", __FUNCTION__, stream_id);
return 1;
}
if (targetStream->streamType == STREAM_TYPE_DIRECT) {
if (num_buffers < targetStreamParms->numHwBuffers) {
ALOGE("ERR(%s) registering insufficient num of buffers (%d) < (%d)",
__FUNCTION__, num_buffers, targetStreamParms->numHwBuffers);
return 1;
}
}
CAM_LOGV("DEBUG(%s): format(%x) width(%d), height(%d) svcPlanes(%d)",
__FUNCTION__, targetStreamParms->format, targetStreamParms->width,
targetStreamParms->height, targetStreamParms->planes);
targetStreamParms->numSvcBuffers = num_buffers;
currentNode = targetStreamParms->node;
currentNode->width = targetStreamParms->width;
currentNode->height = targetStreamParms->height;
currentNode->format = HAL_PIXEL_FORMAT_2_V4L2_PIX(targetStreamParms->format);
currentNode->planes = targetStreamParms->planes;
currentNode->buffers = targetStreamParms->numHwBuffers;
cam_int_s_input(currentNode, m_camera_info.sensor_id);
cam_int_s_fmt(currentNode);
cam_int_reqbufs(currentNode);
for (i = 0 ; i < targetStreamParms->numSvcBuffers ; i++) {
ALOGV("DEBUG(%s): registering Stream Buffers[%d] (%x) ", __FUNCTION__,
i, (uint32_t)(registeringBuffers[i]));
v4l2_buf.m.planes = planes;
v4l2_buf.type = currentNode->type;
v4l2_buf.memory = currentNode->memory;
v4l2_buf.index = i;
v4l2_buf.length = currentNode->planes;
ExynosBuffer currentBuf;
ExynosBuffer metaBuf;
const private_handle_t *priv_handle = reinterpret_cast<const private_handle_t *>(registeringBuffers[i]);
m_getAlignedYUVSize(currentNode->format,
currentNode->width, currentNode->height, &currentBuf);
ALOGV("DEBUG(%s): ion_size(%d), stride(%d), ", __FUNCTION__, priv_handle->size, priv_handle->stride);
if (currentNode->planes == 1) {
v4l2_buf.m.planes[0].m.fd = priv_handle->fd;
currentBuf.fd.extFd[0] = priv_handle->fd;
currentBuf.size.extS[0] = priv_handle->size;
currentBuf.size.extS[1] = 0;
currentBuf.size.extS[2] = 0;
} else if (currentNode->planes == 2) {
v4l2_buf.m.planes[0].m.fd = priv_handle->fd;
v4l2_buf.m.planes[1].m.fd = priv_handle->fd1;
currentBuf.fd.extFd[0] = priv_handle->fd;
currentBuf.fd.extFd[1] = priv_handle->fd1;
} else if (currentNode->planes == 3) {
v4l2_buf.m.planes[0].m.fd = priv_handle->fd;
v4l2_buf.m.planes[2].m.fd = priv_handle->fd1;
v4l2_buf.m.planes[1].m.fd = priv_handle->fd2;
currentBuf.fd.extFd[0] = priv_handle->fd;
currentBuf.fd.extFd[2] = priv_handle->fd1;
currentBuf.fd.extFd[1] = priv_handle->fd2;
}
for (plane_index = 0 ; plane_index < (int)v4l2_buf.length ; plane_index++) {
if (targetStreamParms->needsIonMap)
currentBuf.virt.extP[plane_index] = (char *)ion_map(currentBuf.fd.extFd[plane_index], currentBuf.size.extS[plane_index], 0);
v4l2_buf.m.planes[plane_index].length = currentBuf.size.extS[plane_index];
ALOGV("(%s): MAPPING plane(%d): fd(%d) addr(%x), length(%d)",
__FUNCTION__, plane_index, v4l2_buf.m.planes[plane_index].m.fd,
(unsigned int)currentBuf.virt.extP[plane_index],
v4l2_buf.m.planes[plane_index].length);
}
if (i < currentNode->buffers) {
#ifdef ENABLE_FRAME_SYNC
/* add plane for metadata*/
metaBuf.size.extS[0] = 4*1024;
allocCameraMemory(m_ionCameraClient , &metaBuf, 1, 1<<0);
v4l2_buf.length += targetStreamParms->metaPlanes;
v4l2_buf.m.planes[v4l2_buf.length-1].m.fd = metaBuf.fd.extFd[0];
v4l2_buf.m.planes[v4l2_buf.length-1].length = metaBuf.size.extS[0];
ALOGV("Qbuf metaBuf: fd(%d), length(%d) plane(%d)", metaBuf.fd.extFd[0], metaBuf.size.extS[0], v4l2_buf.length);
#endif
if (exynos_v4l2_qbuf(currentNode->fd, &v4l2_buf) < 0) {
ALOGE("ERR(%s): stream id(%d) exynos_v4l2_qbuf() fail fd(%d)",
__FUNCTION__, stream_id, currentNode->fd);
}
ALOGV("DEBUG(%s): stream id(%d) exynos_v4l2_qbuf() success fd(%d)",
__FUNCTION__, stream_id, currentNode->fd);
targetStreamParms->svcBufStatus[i] = REQUIRES_DQ_FROM_SVC;
}
else {
targetStreamParms->svcBufStatus[i] = ON_SERVICE;
}
targetStreamParms->svcBuffers[i] = currentBuf;
targetStreamParms->metaBuffers[i] = metaBuf;
targetStreamParms->svcBufHandle[i] = registeringBuffers[i];
}
ALOGV("DEBUG(%s): calling streamon stream id = %d", __FUNCTION__, stream_id);
cam_int_streamon(targetStreamParms->node);
ALOGV("DEBUG(%s): calling streamon END", __FUNCTION__);
currentNode->status = true;
ALOGV("DEBUG(%s): END registerStreamBuffers", __FUNCTION__);
return 0;
}
int ExynosCameraHWInterface2::releaseStream(uint32_t stream_id)
{
StreamThread *targetStream;
status_t res = NO_ERROR;
ALOGD("(%s): stream_id(%d)", __FUNCTION__, stream_id);
bool releasingScpMain = false;
if (stream_id == STREAM_ID_PREVIEW) {
targetStream = (StreamThread*)(m_streamThreads[0].get());
if (!targetStream) {
ALOGW("(%s): Stream Not Exists", __FUNCTION__);
return NO_ERROR;
}
targetStream->m_numRegisteredStream--;
ALOGV("(%s): m_numRegisteredStream = %d", __FUNCTION__, targetStream->m_numRegisteredStream);
releasingScpMain = true;
if (targetStream->m_parameters.needsIonMap) {
for (int i = 0; i < targetStream->m_parameters.numSvcBuffers; i++) {
for (int j = 0; j < targetStream->m_parameters.planes; j++) {
ion_unmap(targetStream->m_parameters.svcBuffers[i].virt.extP[j],
targetStream->m_parameters.svcBuffers[i].size.extS[j]);
ALOGV("(%s) ummap stream buffer[%d], plane(%d), fd %d vaddr %x", __FUNCTION__, i, j,
targetStream->m_parameters.svcBuffers[i].fd.extFd[j], (unsigned int)(targetStream->m_parameters.svcBuffers[i].virt.extP[j]));
}
}
}
} else if (stream_id == STREAM_ID_JPEG) {
if (m_resizeBuf.size.s != 0) {
freeCameraMemory(&m_resizeBuf, 1);
}
memset(&m_subStreams[stream_id], 0, sizeof(substream_parameters_t));
targetStream = (StreamThread*)(m_streamThreads[1].get());
if (!targetStream) {
ALOGW("(%s): Stream Not Exists", __FUNCTION__);
return NO_ERROR;
}
if (targetStream->detachSubStream(stream_id) != NO_ERROR) {
ALOGE("(%s): substream detach failed. res(%d)", __FUNCTION__, res);
return 1;
}
ALOGV("(%s): m_numRegisteredStream = %d", __FUNCTION__, targetStream->m_numRegisteredStream);
return 0;
} else if (stream_id == STREAM_ID_RECORD) {
memset(&m_subStreams[stream_id], 0, sizeof(substream_parameters_t));
targetStream = (StreamThread*)(m_streamThreads[0].get());
if (!targetStream) {
ALOGW("(%s): Stream Not Exists", __FUNCTION__);
return NO_ERROR;
}
if (targetStream->detachSubStream(stream_id) != NO_ERROR) {
ALOGE("(%s): substream detach failed. res(%d)", __FUNCTION__, res);
return 1;
}
if (targetStream->m_numRegisteredStream != 0)
return 0;
} else if (stream_id == STREAM_ID_PRVCB) {
if (m_previewCbBuf.size.s != 0) {
freeCameraMemory(&m_previewCbBuf, m_subStreams[stream_id].internalPlanes);
}
memset(&m_subStreams[stream_id], 0, sizeof(substream_parameters_t));
targetStream = (StreamThread*)(m_streamThreads[0].get());
if (!targetStream) {
ALOGW("(%s): Stream Not Exists", __FUNCTION__);
return NO_ERROR;
}
if (targetStream->detachSubStream(stream_id) != NO_ERROR) {
ALOGE("(%s): substream detach failed. res(%d)", __FUNCTION__, res);
return 1;
}
if (targetStream->m_numRegisteredStream != 0)
return 0;
} else if (stream_id == STREAM_ID_ZSL) {
targetStream = (StreamThread*)(m_streamThreads[1].get());
if (!targetStream) {
ALOGW("(%s): Stream Not Exists", __FUNCTION__);
return NO_ERROR;
}
targetStream->m_numRegisteredStream--;
ALOGV("(%s): m_numRegisteredStream = %d", __FUNCTION__, targetStream->m_numRegisteredStream);
if (targetStream->m_parameters.needsIonMap) {
for (int i = 0; i < targetStream->m_parameters.numSvcBuffers; i++) {
for (int j = 0; j < targetStream->m_parameters.planes; j++) {
ion_unmap(targetStream->m_parameters.svcBuffers[i].virt.extP[j],
targetStream->m_parameters.svcBuffers[i].size.extS[j]);
ALOGV("(%s) ummap stream buffer[%d], plane(%d), fd %d vaddr %x", __FUNCTION__, i, j,
targetStream->m_parameters.svcBuffers[i].fd.extFd[j], (unsigned int)(targetStream->m_parameters.svcBuffers[i].virt.extP[j]));
}
}
}
} else {
ALOGE("ERR:(%s): wrong stream id (%d)", __FUNCTION__, stream_id);
return 1;
}
if (m_sensorThread != NULL && releasingScpMain) {
m_sensorThread->release();
ALOGD("(%s): START Waiting for (indirect) sensor thread termination", __FUNCTION__);
while (!m_sensorThread->IsTerminated())
usleep(SIG_WAITING_TICK);
ALOGD("(%s): END Waiting for (indirect) sensor thread termination", __FUNCTION__);
}
if (m_streamThreads[1]->m_numRegisteredStream == 0 && m_streamThreads[1]->m_activated) {
ALOGV("(%s): deactivating stream thread 1 ", __FUNCTION__);
targetStream = (StreamThread*)(m_streamThreads[1].get());
targetStream->m_releasing = true;
ALOGD("START stream thread release %d", __LINE__);
do {
targetStream->release();
usleep(SIG_WAITING_TICK);
} while (targetStream->m_releasing);
m_camera_info.capture.status = false;
ALOGD("END stream thread release %d", __LINE__);
}
if (releasingScpMain || (m_streamThreads[0].get() != NULL && m_streamThreads[0]->m_numRegisteredStream == 0 && m_streamThreads[0]->m_activated)) {
ALOGV("(%s): deactivating stream thread 0", __FUNCTION__);
targetStream = (StreamThread*)(m_streamThreads[0].get());
targetStream->m_releasing = true;
ALOGD("(%s): START Waiting for (indirect) stream thread release - line(%d)", __FUNCTION__, __LINE__);
do {
targetStream->release();
usleep(SIG_WAITING_TICK);
} while (targetStream->m_releasing);
ALOGD("(%s): END Waiting for (indirect) stream thread release - line(%d)", __FUNCTION__, __LINE__);
targetStream->SetSignal(SIGNAL_THREAD_TERMINATE);
if (targetStream != NULL) {
ALOGD("(%s): START Waiting for (indirect) stream thread termination", __FUNCTION__);
while (!targetStream->IsTerminated())
usleep(SIG_WAITING_TICK);
ALOGD("(%s): END Waiting for (indirect) stream thread termination", __FUNCTION__);
m_streamThreads[0] = NULL;
}
if (m_camera_info.capture.status == true) {
m_scpForceSuspended = true;
}
m_isIspStarted = false;
}
ALOGV("(%s): END", __FUNCTION__);
return 0;
}
int ExynosCameraHWInterface2::allocateReprocessStream(
uint32_t width, uint32_t height, uint32_t format,
const camera2_stream_in_ops_t *reprocess_stream_ops,
uint32_t *stream_id, uint32_t *consumer_usage, uint32_t *max_buffers)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
return 0;
}
int ExynosCameraHWInterface2::allocateReprocessStreamFromStream(
uint32_t output_stream_id,
const camera2_stream_in_ops_t *reprocess_stream_ops,
// outputs
uint32_t *stream_id)
{
ALOGD("(%s): output_stream_id(%d)", __FUNCTION__, output_stream_id);
*stream_id = STREAM_ID_JPEG_REPROCESS;
m_reprocessStreamId = *stream_id;
m_reprocessOps = reprocess_stream_ops;
m_reprocessOutputStreamId = output_stream_id;
return 0;
}
int ExynosCameraHWInterface2::releaseReprocessStream(uint32_t stream_id)
{
ALOGD("(%s): stream_id(%d)", __FUNCTION__, stream_id);
if (stream_id == STREAM_ID_JPEG_REPROCESS) {
m_reprocessStreamId = 0;
m_reprocessOps = NULL;
m_reprocessOutputStreamId = 0;
return 0;
}
return 1;
}
int ExynosCameraHWInterface2::triggerAction(uint32_t trigger_id, int ext1, int ext2)
{
Mutex::Autolock lock(m_afModeTriggerLock);
ALOGV("DEBUG(%s): id(%x), %d, %d", __FUNCTION__, trigger_id, ext1, ext2);
switch (trigger_id) {
case CAMERA2_TRIGGER_AUTOFOCUS:
ALOGV("DEBUG(%s):TRIGGER_AUTOFOCUS id(%d)", __FUNCTION__, ext1);
OnAfTrigger(ext1);
break;
case CAMERA2_TRIGGER_CANCEL_AUTOFOCUS:
ALOGV("DEBUG(%s):CANCEL_AUTOFOCUS id(%d)", __FUNCTION__, ext1);
OnAfCancel(ext1);
break;
case CAMERA2_TRIGGER_PRECAPTURE_METERING:
ALOGV("DEBUG(%s):CAMERA2_TRIGGER_PRECAPTURE_METERING id(%d)", __FUNCTION__, ext1);
OnPrecaptureMeteringTriggerStart(ext1);
break;
default:
break;
}
return 0;
}
int ExynosCameraHWInterface2::setNotifyCallback(camera2_notify_callback notify_cb, void *user)
{
ALOGV("DEBUG(%s): cb_addr(%x)", __FUNCTION__, (unsigned int)notify_cb);
m_notifyCb = notify_cb;
m_callbackCookie = user;
return 0;
}
int ExynosCameraHWInterface2::getMetadataVendorTagOps(vendor_tag_query_ops_t **ops)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
return 0;
}
int ExynosCameraHWInterface2::dump(int fd)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
return 0;
}
void ExynosCameraHWInterface2::m_getAlignedYUVSize(int colorFormat, int w, int h, ExynosBuffer *buf)
{
switch (colorFormat) {
// 1p
case V4L2_PIX_FMT_RGB565 :
case V4L2_PIX_FMT_YUYV :
case V4L2_PIX_FMT_UYVY :
case V4L2_PIX_FMT_VYUY :
case V4L2_PIX_FMT_YVYU :
buf->size.extS[0] = FRAME_SIZE(V4L2_PIX_2_HAL_PIXEL_FORMAT(colorFormat), w, h);
buf->size.extS[1] = 0;
buf->size.extS[2] = 0;
break;
// 2p
case V4L2_PIX_FMT_NV12 :
case V4L2_PIX_FMT_NV12T :
case V4L2_PIX_FMT_NV21 :
buf->size.extS[0] = ALIGN(w, 16) * ALIGN(h, 16);
buf->size.extS[1] = ALIGN(w/2, 16) * ALIGN(h/2, 16);
buf->size.extS[2] = 0;
break;
case V4L2_PIX_FMT_NV12M :
case V4L2_PIX_FMT_NV12MT_16X16 :
case V4L2_PIX_FMT_NV21M:
buf->size.extS[0] = ALIGN(w, 16) * ALIGN(h, 16);
buf->size.extS[1] = ALIGN(buf->size.extS[0] / 2, 256);
buf->size.extS[2] = 0;
break;
case V4L2_PIX_FMT_NV16 :
case V4L2_PIX_FMT_NV61 :
buf->size.extS[0] = ALIGN(w, 16) * ALIGN(h, 16);
buf->size.extS[1] = ALIGN(w, 16) * ALIGN(h, 16);
buf->size.extS[2] = 0;
break;
// 3p
case V4L2_PIX_FMT_YUV420 :
case V4L2_PIX_FMT_YVU420 :
buf->size.extS[0] = (w * h);
buf->size.extS[1] = (w * h) >> 2;
buf->size.extS[2] = (w * h) >> 2;
break;
case V4L2_PIX_FMT_YUV420M:
case V4L2_PIX_FMT_YVU420M :
buf->size.extS[0] = ALIGN(w, 32) * ALIGN(h, 16);
buf->size.extS[1] = ALIGN(w/2, 16) * ALIGN(h/2, 8);
buf->size.extS[2] = ALIGN(w/2, 16) * ALIGN(h/2, 8);
break;
case V4L2_PIX_FMT_YUV422P :
buf->size.extS[0] = ALIGN(w, 16) * ALIGN(h, 16);
buf->size.extS[1] = ALIGN(w/2, 16) * ALIGN(h/2, 8);
buf->size.extS[2] = ALIGN(w/2, 16) * ALIGN(h/2, 8);
break;
default:
ALOGE("ERR(%s):unmatched colorFormat(%d)", __FUNCTION__, colorFormat);
return;
break;
}
}
bool ExynosCameraHWInterface2::m_getRatioSize(int src_w, int src_h,
int dst_w, int dst_h,
int *crop_x, int *crop_y,
int *crop_w, int *crop_h,
int zoom)
{
*crop_w = src_w;
*crop_h = src_h;
if ( src_w != dst_w
|| src_h != dst_h) {
float src_ratio = 1.0f;
float dst_ratio = 1.0f;
// ex : 1024 / 768
src_ratio = (float)src_w / (float)src_h;
// ex : 352 / 288
dst_ratio = (float)dst_w / (float)dst_h;
if (dst_w * dst_h < src_w * src_h) {
if (dst_ratio <= src_ratio) {
// shrink w
*crop_w = src_h * dst_ratio;
*crop_h = src_h;
} else {
// shrink h
*crop_w = src_w;
*crop_h = src_w / dst_ratio;
}
} else {
if (dst_ratio <= src_ratio) {
// shrink w
*crop_w = src_h * dst_ratio;
*crop_h = src_h;
} else {
// shrink h
*crop_w = src_w;
*crop_h = src_w / dst_ratio;
}
}
}
if (zoom != 0) {
float zoomLevel = ((float)zoom + 10.0) / 10.0;
*crop_w = (int)((float)*crop_w / zoomLevel);
*crop_h = (int)((float)*crop_h / zoomLevel);
}
#define CAMERA_CROP_WIDTH_RESTRAIN_NUM (0x2)
unsigned int w_align = (*crop_w & (CAMERA_CROP_WIDTH_RESTRAIN_NUM - 1));
if (w_align != 0) {
if ( (CAMERA_CROP_WIDTH_RESTRAIN_NUM >> 1) <= w_align
&& *crop_w + (CAMERA_CROP_WIDTH_RESTRAIN_NUM - w_align) <= dst_w) {
*crop_w += (CAMERA_CROP_WIDTH_RESTRAIN_NUM - w_align);
}
else
*crop_w -= w_align;
}
#define CAMERA_CROP_HEIGHT_RESTRAIN_NUM (0x2)
unsigned int h_align = (*crop_h & (CAMERA_CROP_HEIGHT_RESTRAIN_NUM - 1));
if (h_align != 0) {
if ( (CAMERA_CROP_HEIGHT_RESTRAIN_NUM >> 1) <= h_align
&& *crop_h + (CAMERA_CROP_HEIGHT_RESTRAIN_NUM - h_align) <= dst_h) {
*crop_h += (CAMERA_CROP_HEIGHT_RESTRAIN_NUM - h_align);
}
else
*crop_h -= h_align;
}
*crop_x = (src_w - *crop_w) >> 1;
*crop_y = (src_h - *crop_h) >> 1;
if (*crop_x & (CAMERA_CROP_WIDTH_RESTRAIN_NUM >> 1))
*crop_x -= 1;
if (*crop_y & (CAMERA_CROP_HEIGHT_RESTRAIN_NUM >> 1))
*crop_y -= 1;
return true;
}
BayerBufManager::BayerBufManager()
{
ALOGV("DEBUG(%s): ", __FUNCTION__);
for (int i = 0; i < NUM_BAYER_BUFFERS ; i++) {
entries[i].status = BAYER_ON_HAL_EMPTY;
entries[i].reqFrameCnt = 0;
}
sensorEnqueueHead = 0;
sensorDequeueHead = 0;
ispEnqueueHead = 0;
ispDequeueHead = 0;
numOnSensor = 0;
numOnIsp = 0;
numOnHalFilled = 0;
numOnHalEmpty = NUM_BAYER_BUFFERS;
}
BayerBufManager::~BayerBufManager()
{
ALOGV("%s", __FUNCTION__);
}
int BayerBufManager::GetIndexForSensorEnqueue()
{
int ret = 0;
if (numOnHalEmpty == 0)
ret = -1;
else
ret = sensorEnqueueHead;
ALOGV("DEBUG(%s): returning (%d)", __FUNCTION__, ret);
return ret;
}
int BayerBufManager::MarkSensorEnqueue(int index)
{
ALOGV("DEBUG(%s) : BayerIndex[%d] ", __FUNCTION__, index);
// sanity check
if (index != sensorEnqueueHead) {
ALOGV("DEBUG(%s) : Abnormal BayerIndex[%d] - expected[%d]", __FUNCTION__, index, sensorEnqueueHead);
return -1;
}
if (entries[index].status != BAYER_ON_HAL_EMPTY) {
ALOGV("DEBUG(%s) : Abnormal status in BayerIndex[%d] = (%d) expected (%d)", __FUNCTION__,
index, entries[index].status, BAYER_ON_HAL_EMPTY);
return -1;
}
entries[index].status = BAYER_ON_SENSOR;
entries[index].reqFrameCnt = 0;
numOnHalEmpty--;
numOnSensor++;
sensorEnqueueHead = GetNextIndex(index);
ALOGV("DEBUG(%s) END: HAL-e(%d) HAL-f(%d) Sensor(%d) ISP(%d) ",
__FUNCTION__, numOnHalEmpty, numOnHalFilled, numOnSensor, numOnIsp);
return 0;
}
int BayerBufManager::MarkSensorDequeue(int index, int reqFrameCnt, nsecs_t *timeStamp)
{
ALOGV("DEBUG(%s) : BayerIndex[%d] reqFrameCnt(%d)", __FUNCTION__, index, reqFrameCnt);
if (entries[index].status != BAYER_ON_SENSOR) {
ALOGE("DEBUG(%s) : Abnormal status in BayerIndex[%d] = (%d) expected (%d)", __FUNCTION__,
index, entries[index].status, BAYER_ON_SENSOR);
return -1;
}
entries[index].status = BAYER_ON_HAL_FILLED;
numOnHalFilled++;
numOnSensor--;
return 0;
}
int BayerBufManager::GetIndexForIspEnqueue(int *reqFrameCnt)
{
int ret = 0;
if (numOnHalFilled == 0)
ret = -1;
else {
*reqFrameCnt = entries[ispEnqueueHead].reqFrameCnt;
ret = ispEnqueueHead;
}
ALOGV("DEBUG(%s): returning BayerIndex[%d]", __FUNCTION__, ret);
return ret;
}
int BayerBufManager::GetIndexForIspDequeue(int *reqFrameCnt)
{
int ret = 0;
if (numOnIsp == 0)
ret = -1;
else {
*reqFrameCnt = entries[ispDequeueHead].reqFrameCnt;
ret = ispDequeueHead;
}
ALOGV("DEBUG(%s): returning BayerIndex[%d]", __FUNCTION__, ret);
return ret;
}
int BayerBufManager::MarkIspEnqueue(int index)
{
ALOGV("DEBUG(%s) : BayerIndex[%d] ", __FUNCTION__, index);
// sanity check
if (index != ispEnqueueHead) {
ALOGV("DEBUG(%s) : Abnormal BayerIndex[%d] - expected[%d]", __FUNCTION__, index, ispEnqueueHead);
return -1;
}
if (entries[index].status != BAYER_ON_HAL_FILLED) {
ALOGV("DEBUG(%s) : Abnormal status in BayerIndex[%d] = (%d) expected (%d)", __FUNCTION__,
index, entries[index].status, BAYER_ON_HAL_FILLED);
return -1;
}
entries[index].status = BAYER_ON_ISP;
numOnHalFilled--;
numOnIsp++;
ispEnqueueHead = GetNextIndex(index);
ALOGV("DEBUG(%s) END: HAL-e(%d) HAL-f(%d) Sensor(%d) ISP(%d) ",
__FUNCTION__, numOnHalEmpty, numOnHalFilled, numOnSensor, numOnIsp);
return 0;
}
int BayerBufManager::MarkIspDequeue(int index)
{
ALOGV("DEBUG(%s) : BayerIndex[%d]", __FUNCTION__, index);
// sanity check
if (index != ispDequeueHead) {
ALOGV("DEBUG(%s) : Abnormal BayerIndex[%d] - expected[%d]", __FUNCTION__, index, ispDequeueHead);
return -1;
}
if (entries[index].status != BAYER_ON_ISP) {
ALOGV("DEBUG(%s) : Abnormal status in BayerIndex[%d] = (%d) expected (%d)", __FUNCTION__,
index, entries[index].status, BAYER_ON_ISP);
return -1;
}
entries[index].status = BAYER_ON_HAL_EMPTY;
entries[index].reqFrameCnt = 0;
numOnHalEmpty++;
numOnIsp--;
ispDequeueHead = GetNextIndex(index);
ALOGV("DEBUG(%s) END: HAL-e(%d) HAL-f(%d) Sensor(%d) ISP(%d) ",
__FUNCTION__, numOnHalEmpty, numOnHalFilled, numOnSensor, numOnIsp);
return 0;
}
int BayerBufManager::GetNumOnSensor()
{
return numOnSensor;
}
int BayerBufManager::GetNumOnHalFilled()
{
return numOnHalFilled;
}
int BayerBufManager::GetNumOnIsp()
{
return numOnIsp;
}
int BayerBufManager::GetNextIndex(int index)
{
index++;
if (index >= NUM_BAYER_BUFFERS)
index = 0;
return index;
}
void ExynosCameraHWInterface2::m_mainThreadFunc(SignalDrivenThread * self)
{
camera_metadata_t *currentRequest = NULL;
camera_metadata_t *currentFrame = NULL;
size_t numEntries = 0;
size_t frameSize = 0;
camera_metadata_t * preparedFrame = NULL;
camera_metadata_t *deregisteredRequest = NULL;
uint32_t currentSignal = self->GetProcessingSignal();
MainThread * selfThread = ((MainThread*)self);
int res = 0;
int ret;
int afMode;
uint32_t afRegion[4];
ALOGV("DEBUG(%s): m_mainThreadFunc (%x)", __FUNCTION__, currentSignal);
if (currentSignal & SIGNAL_THREAD_RELEASE) {
ALOGV("DEBUG(%s): processing SIGNAL_THREAD_RELEASE", __FUNCTION__);
ALOGV("DEBUG(%s): processing SIGNAL_THREAD_RELEASE DONE", __FUNCTION__);
selfThread->SetSignal(SIGNAL_THREAD_TERMINATE);
return;
}
if (currentSignal & SIGNAL_MAIN_REQ_Q_NOT_EMPTY) {
ALOGV("DEBUG(%s): MainThread processing SIGNAL_MAIN_REQ_Q_NOT_EMPTY", __FUNCTION__);
if (m_requestManager->IsRequestQueueFull()==false) {
Mutex::Autolock lock(m_afModeTriggerLock);
m_requestQueueOps->dequeue_request(m_requestQueueOps, &currentRequest);
if (NULL == currentRequest) {
ALOGD("DEBUG(%s)(0x%x): No more service requests left in the queue ", __FUNCTION__, currentSignal);
m_isRequestQueueNull = true;
if (m_requestManager->IsVdisEnable())
m_vdisBubbleCnt = 1;
}
else {
m_requestManager->RegisterRequest(currentRequest, &afMode, afRegion);
SetAfMode((enum aa_afmode)afMode);
SetAfRegion(afRegion);
m_numOfRemainingReqInSvc = m_requestQueueOps->request_count(m_requestQueueOps);
ALOGV("DEBUG(%s): remaining req cnt (%d)", __FUNCTION__, m_numOfRemainingReqInSvc);
if (m_requestManager->IsRequestQueueFull()==false)
selfThread->SetSignal(SIGNAL_MAIN_REQ_Q_NOT_EMPTY); // dequeue repeatedly
m_sensorThread->SetSignal(SIGNAL_SENSOR_START_REQ_PROCESSING);
}
}
else {
m_isRequestQueuePending = true;
}
}
if (currentSignal & SIGNAL_MAIN_STREAM_OUTPUT_DONE) {
ALOGV("DEBUG(%s): MainThread processing SIGNAL_MAIN_STREAM_OUTPUT_DONE", __FUNCTION__);
/*while (1)*/ {
ret = m_requestManager->PrepareFrame(&numEntries, &frameSize, &preparedFrame, GetAfStateForService());
if (ret == false)
CAM_LOGE("ERR(%s): PrepareFrame ret = %d", __FUNCTION__, ret);
m_requestManager->DeregisterRequest(&deregisteredRequest);
ret = m_requestQueueOps->free_request(m_requestQueueOps, deregisteredRequest);
if (ret < 0)
CAM_LOGE("ERR(%s): free_request ret = %d", __FUNCTION__, ret);
ret = m_frameQueueOps->dequeue_frame(m_frameQueueOps, numEntries, frameSize, &currentFrame);
if (ret < 0)
CAM_LOGE("ERR(%s): dequeue_frame ret = %d", __FUNCTION__, ret);
if (currentFrame==NULL) {
ALOGV("DBG(%s): frame dequeue returned NULL",__FUNCTION__ );
}
else {
ALOGV("DEBUG(%s): frame dequeue done. numEntries(%d) frameSize(%d)",__FUNCTION__ , numEntries, frameSize);
}
res = append_camera_metadata(currentFrame, preparedFrame);
if (res==0) {
ALOGV("DEBUG(%s): frame metadata append success",__FUNCTION__);
m_frameQueueOps->enqueue_frame(m_frameQueueOps, currentFrame);
}
else {
ALOGE("ERR(%s): frame metadata append fail (%d)",__FUNCTION__, res);
}
}
if (!m_isRequestQueueNull) {
selfThread->SetSignal(SIGNAL_MAIN_REQ_Q_NOT_EMPTY);
}
if (getInProgressCount()>0) {
ALOGV("DEBUG(%s): STREAM_OUTPUT_DONE and signalling REQ_PROCESSING",__FUNCTION__);
m_sensorThread->SetSignal(SIGNAL_SENSOR_START_REQ_PROCESSING);
}
}
ALOGV("DEBUG(%s): MainThread Exit", __FUNCTION__);
return;
}
void ExynosCameraHWInterface2::DumpInfoWithShot(struct camera2_shot_ext * shot_ext)
{
ALOGD("#### common Section");
ALOGD("#### magic(%x) ",
shot_ext->shot.magicNumber);
ALOGD("#### ctl Section");
ALOGD("#### meta(%d) aper(%f) exp(%lld) duration(%lld) ISO(%d) AWB(%d)",
shot_ext->shot.ctl.request.metadataMode,
shot_ext->shot.ctl.lens.aperture,
shot_ext->shot.ctl.sensor.exposureTime,
shot_ext->shot.ctl.sensor.frameDuration,
shot_ext->shot.ctl.sensor.sensitivity,
shot_ext->shot.ctl.aa.awbMode);
ALOGD("#### OutputStream Sensor(%d) SCP(%d) SCC(%d) streams(%x)",
shot_ext->request_sensor, shot_ext->request_scp, shot_ext->request_scc,
shot_ext->shot.ctl.request.outputStreams[0]);
ALOGD("#### DM Section");
ALOGD("#### meta(%d) aper(%f) exp(%lld) duration(%lld) ISO(%d) timestamp(%lld) AWB(%d) cnt(%d)",
shot_ext->shot.dm.request.metadataMode,
shot_ext->shot.dm.lens.aperture,
shot_ext->shot.dm.sensor.exposureTime,
shot_ext->shot.dm.sensor.frameDuration,
shot_ext->shot.dm.sensor.sensitivity,
shot_ext->shot.dm.sensor.timeStamp,
shot_ext->shot.dm.aa.awbMode,
shot_ext->shot.dm.request.frameCount );
}
void ExynosCameraHWInterface2::m_preCaptureSetter(struct camera2_shot_ext * shot_ext)
{
// Flash
switch (m_ctlInfo.flash.m_flashCnt) {
case IS_FLASH_STATE_ON:
ALOGV("(%s): [Flash] Flash ON for Capture (%d)", __FUNCTION__, shot_ext->shot.ctl.request.frameCount);
// check AF locked
if (m_ctlInfo.flash.m_precaptureTriggerId > 0) {
if (m_ctlInfo.flash.m_flashTimeOut == 0) {
if (m_ctlInfo.flash.i_flashMode == AA_AEMODE_ON_ALWAYS_FLASH) {
shot_ext->shot.ctl.aa.aeflashMode = AA_FLASHMODE_ON_ALWAYS;
m_ctlInfo.flash.m_flashTimeOut = 5;
} else
shot_ext->shot.ctl.aa.aeflashMode = AA_FLASHMODE_ON;
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_ON_WAIT;
} else {
m_ctlInfo.flash.m_flashTimeOut--;
}
} else {
if (m_ctlInfo.flash.i_flashMode == AA_AEMODE_ON_ALWAYS_FLASH) {
shot_ext->shot.ctl.aa.aeflashMode = AA_FLASHMODE_ON_ALWAYS;
m_ctlInfo.flash.m_flashTimeOut = 5;
} else
shot_ext->shot.ctl.aa.aeflashMode = AA_FLASHMODE_ON;
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_ON_WAIT;
}
break;
case IS_FLASH_STATE_ON_WAIT:
break;
case IS_FLASH_STATE_ON_DONE:
if (!m_ctlInfo.flash.m_afFlashDoneFlg)
// auto transition at pre-capture trigger
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_AUTO_AE_AWB_LOCK;
break;
case IS_FLASH_STATE_AUTO_AE_AWB_LOCK:
ALOGV("(%s): [Flash] IS_FLASH_AF_AUTO_AE_AWB_LOCK (%d)", __FUNCTION__, shot_ext->shot.ctl.request.frameCount);
shot_ext->shot.ctl.aa.aeflashMode = AA_FLASHMODE_AUTO;
//shot_ext->shot.ctl.aa.aeMode = AA_AEMODE_LOCKED;
shot_ext->shot.ctl.aa.awbMode = AA_AWBMODE_LOCKED;
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_AE_AWB_LOCK_WAIT;
break;
case IS_FLASH_STATE_AE_AWB_LOCK_WAIT:
case IS_FLASH_STATE_AUTO_WAIT:
shot_ext->shot.ctl.aa.aeMode =(enum aa_aemode)0;
shot_ext->shot.ctl.aa.awbMode = (enum aa_awbmode)0;
break;
case IS_FLASH_STATE_AUTO_DONE:
ALOGV("(%s): [Flash] IS_FLASH_AF_AUTO DONE (%d)", __FUNCTION__, shot_ext->shot.ctl.request.frameCount);
shot_ext->shot.ctl.aa.aeflashMode = AA_FLASHMODE_OFF;
break;
case IS_FLASH_STATE_AUTO_OFF:
ALOGV("(%s): [Flash] IS_FLASH_AF_AUTO Clear (%d)", __FUNCTION__, shot_ext->shot.ctl.request.frameCount);
shot_ext->shot.ctl.aa.aeflashMode = AA_FLASHMODE_OFF;
m_ctlInfo.flash.m_flashEnableFlg = false;
break;
case IS_FLASH_STATE_CAPTURE:
ALOGV("(%s): [Flash] IS_FLASH_CAPTURE (%d)", __FUNCTION__, shot_ext->shot.ctl.request.frameCount);
m_ctlInfo.flash.m_flashTimeOut = FLASH_STABLE_WAIT_TIMEOUT;
shot_ext->shot.ctl.aa.aeflashMode = AA_FLASHMODE_CAPTURE;
shot_ext->request_scc = 0;
shot_ext->request_scp = 0;
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_CAPTURE_WAIT; // auto transition
break;
case IS_FLASH_STATE_CAPTURE_WAIT:
shot_ext->request_scc = 0;
shot_ext->request_scp = 0;
break;
case IS_FLASH_STATE_CAPTURE_JPEG:
ALOGV("(%s): [Flash] Flash Capture (%d)!!!!!", __FUNCTION__, (FLASH_STABLE_WAIT_TIMEOUT -m_ctlInfo.flash.m_flashTimeOut));
shot_ext->request_scc = 1;
shot_ext->request_scp = 1;
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_CAPTURE_END; // auto transition
break;
case IS_FLASH_STATE_CAPTURE_END:
ALOGV("(%s): [Flash] Flash Capture END (%d)", __FUNCTION__, shot_ext->shot.ctl.request.frameCount);
shot_ext->shot.ctl.aa.aeflashMode = AA_FLASHMODE_OFF;
shot_ext->request_scc = 0;
shot_ext->request_scp = 0;
m_ctlInfo.flash.m_flashEnableFlg = false;
m_ctlInfo.flash.m_flashCnt = 0;
m_ctlInfo.flash.m_afFlashDoneFlg= false;
break;
case IS_FLASH_STATE_NONE:
break;
default:
ALOGE("(%s): [Flash] flash state error!! (%d)", __FUNCTION__, m_ctlInfo.flash.m_flashCnt);
}
}
void ExynosCameraHWInterface2::m_preCaptureListenerSensor(struct camera2_shot_ext * shot_ext)
{
// Flash
switch (m_ctlInfo.flash.m_flashCnt) {
case IS_FLASH_STATE_AUTO_WAIT:
if (m_ctlInfo.flash.m_flashDecisionResult) {
if (shot_ext->shot.dm.flash.flashMode == CAM2_FLASH_MODE_OFF) {
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_AUTO_DONE;
ALOGV("(%s): [Flash] Lis : AUTO -> OFF (%d)", __FUNCTION__, shot_ext->shot.dm.flash.flashMode);
} else {
ALOGV("(%s): [Flash] Waiting : AUTO -> OFF", __FUNCTION__);
}
} else {
//If flash isn't activated at flash auto mode, skip flash auto control
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_AUTO_DONE;
ALOGV("(%s): [Flash] Skip : AUTO -> OFF", __FUNCTION__);
}
break;
}
}
void ExynosCameraHWInterface2::m_preCaptureListenerISP(struct camera2_shot_ext * shot_ext)
{
// Flash
switch (m_ctlInfo.flash.m_flashCnt) {
case IS_FLASH_STATE_ON_WAIT:
if (shot_ext->shot.dm.flash.decision > 0) {
// store decision result to skip capture sequenece
ALOGV("(%s): [Flash] IS_FLASH_ON, decision - %d", __FUNCTION__, shot_ext->shot.dm.flash.decision);
if (shot_ext->shot.dm.flash.decision == 2)
m_ctlInfo.flash.m_flashDecisionResult = false;
else
m_ctlInfo.flash.m_flashDecisionResult = true;
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_ON_DONE;
} else {
if (m_ctlInfo.flash.m_flashTimeOut == 0) {
ALOGV("(%s): [Flash] Timeout IS_FLASH_ON, decision is false setting", __FUNCTION__);
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_ON_DONE;
m_ctlInfo.flash.m_flashDecisionResult = false;
} else {
m_ctlInfo.flash.m_flashTimeOut--;
}
}
break;
case IS_FLASH_STATE_AE_AWB_LOCK_WAIT:
if (shot_ext->shot.dm.aa.awbMode == AA_AWBMODE_LOCKED) {
ALOGV("(%s): [Flash] FLASH_AUTO_AE_AWB_LOCK_WAIT - %d", __FUNCTION__, shot_ext->shot.dm.aa.awbMode);
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_AUTO_WAIT;
} else {
ALOGV("(%s): [Flash] Waiting : AA_AWBMODE_LOCKED", __FUNCTION__);
}
break;
case IS_FLASH_STATE_CAPTURE_WAIT:
if (m_ctlInfo.flash.m_flashDecisionResult) {
if (shot_ext->shot.dm.flash.firingStable) {
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_CAPTURE_JPEG;
} else {
if (m_ctlInfo.flash.m_flashTimeOut == 0) {
ALOGE("(%s): [Flash] Wait firingStable time-out!!", __FUNCTION__);
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_CAPTURE_JPEG;
} else {
ALOGV("(%s): [Flash] Wait firingStable - %d", __FUNCTION__, m_ctlInfo.flash.m_flashTimeOut);
m_ctlInfo.flash.m_flashTimeOut--;
}
}
} else {
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_CAPTURE_JPEG;
}
break;
}
}
void ExynosCameraHWInterface2::m_preCaptureAeState(struct camera2_shot_ext * shot_ext)
{
switch (m_ctlInfo.flash.i_flashMode) {
case AA_AEMODE_ON:
// At flash off mode, capture can be done as zsl capture
shot_ext->shot.dm.aa.aeState = AE_STATE_CONVERGED;
break;
case AA_AEMODE_ON_AUTO_FLASH:
// At flash auto mode, main flash have to be done if pre-flash was done.
if (m_ctlInfo.flash.m_flashDecisionResult && m_ctlInfo.flash.m_afFlashDoneFlg)
shot_ext->shot.dm.aa.aeState = AE_STATE_FLASH_REQUIRED;
break;
}
}
void ExynosCameraHWInterface2::m_updateAfRegion(struct camera2_shot_ext * shot_ext)
{
shot_ext->shot.ctl.aa.afRegions[0] = currentAfRegion[0];
shot_ext->shot.ctl.aa.afRegions[1] = currentAfRegion[1];
shot_ext->shot.ctl.aa.afRegions[2] = currentAfRegion[2];
shot_ext->shot.ctl.aa.afRegions[3] = currentAfRegion[3];
}
void ExynosCameraHWInterface2::SetAfRegion(uint32_t * afRegion)
{
currentAfRegion[0] = afRegion[0];
currentAfRegion[1] = afRegion[1];
currentAfRegion[2] = afRegion[2];
currentAfRegion[3] = afRegion[3];
}
void ExynosCameraHWInterface2::m_afTrigger(struct camera2_shot_ext * shot_ext, int mode)
{
if (m_afState == HAL_AFSTATE_SCANNING) {
ALOGD("(%s): restarting trigger ", __FUNCTION__);
} else if (!mode) {
if (m_afState != HAL_AFSTATE_NEEDS_COMMAND)
ALOGD("(%s): wrong trigger state %d", __FUNCTION__, m_afState);
else
m_afState = HAL_AFSTATE_STARTED;
}
ALOGD("### AF Triggering with mode (%d) (%d)", m_afMode, m_afState);
shot_ext->shot.ctl.aa.afTrigger = 1;
shot_ext->shot.ctl.aa.afMode = m_afMode;
m_IsAfTriggerRequired = false;
}
void ExynosCameraHWInterface2::m_sensorThreadFunc(SignalDrivenThread * self)
{
uint32_t currentSignal = self->GetProcessingSignal();
SensorThread * selfThread = ((SensorThread*)self);
int index;
int index_isp;
status_t res;
nsecs_t frameTime;
int bayersOnSensor = 0, bayersOnIsp = 0;
int j = 0;
bool isCapture = false;
ALOGV("DEBUG(%s): m_sensorThreadFunc (%x)", __FUNCTION__, currentSignal);
if (currentSignal & SIGNAL_THREAD_RELEASE) {
CAM_LOGD("(%s): ENTER processing SIGNAL_THREAD_RELEASE", __FUNCTION__);
ALOGV("(%s): calling sensor streamoff", __FUNCTION__);
cam_int_streamoff(&(m_camera_info.sensor));
ALOGV("(%s): calling sensor streamoff done", __FUNCTION__);
m_camera_info.sensor.buffers = 0;
ALOGV("DEBUG(%s): sensor calling reqbuf 0 ", __FUNCTION__);
cam_int_reqbufs(&(m_camera_info.sensor));
ALOGV("DEBUG(%s): sensor calling reqbuf 0 done", __FUNCTION__);
m_camera_info.sensor.status = false;
ALOGV("(%s): calling ISP streamoff", __FUNCTION__);
isp_int_streamoff(&(m_camera_info.isp));
ALOGV("(%s): calling ISP streamoff done", __FUNCTION__);
m_camera_info.isp.buffers = 0;
ALOGV("DEBUG(%s): isp calling reqbuf 0 ", __FUNCTION__);
cam_int_reqbufs(&(m_camera_info.isp));
ALOGV("DEBUG(%s): isp calling reqbuf 0 done", __FUNCTION__);
exynos_v4l2_s_ctrl(m_camera_info.sensor.fd, V4L2_CID_IS_S_STREAM, IS_DISABLE_STREAM);
m_requestManager->releaseSensorQ();
m_requestManager->ResetEntry();
ALOGV("(%s): EXIT processing SIGNAL_THREAD_RELEASE", __FUNCTION__);
selfThread->SetSignal(SIGNAL_THREAD_TERMINATE);
return;
}
if (currentSignal & SIGNAL_SENSOR_START_REQ_PROCESSING)
{
ALOGV("DEBUG(%s): SensorThread processing SIGNAL_SENSOR_START_REQ_PROCESSING", __FUNCTION__);
int targetStreamIndex = 0, i=0;
int matchedFrameCnt = -1, processingReqIndex;
struct camera2_shot_ext *shot_ext;
struct camera2_shot_ext *shot_ext_capture;
bool triggered = false;
/* dqbuf from sensor */
ALOGV("Sensor DQbuf start");
index = cam_int_dqbuf(&(m_camera_info.sensor));
m_requestManager->pushSensorQ(index);
ALOGV("Sensor DQbuf done(%d)", index);
shot_ext = (struct camera2_shot_ext *)(m_camera_info.sensor.buffer[index].virt.extP[1]);
if (m_nightCaptureCnt != 0) {
matchedFrameCnt = m_nightCaptureFrameCnt;
} else if (m_ctlInfo.flash.m_flashCnt >= IS_FLASH_STATE_CAPTURE) {
matchedFrameCnt = m_ctlInfo.flash.m_flashFrameCount;
ALOGV("Skip frame, request is fixed at %d", matchedFrameCnt);
} else {
matchedFrameCnt = m_requestManager->FindFrameCnt(shot_ext);
}
if (matchedFrameCnt == -1 && m_vdisBubbleCnt > 0) {
matchedFrameCnt = m_vdisDupFrame;
}
if (matchedFrameCnt != -1) {
if (m_vdisBubbleCnt == 0 || m_vdisDupFrame != matchedFrameCnt) {
frameTime = systemTime();
m_requestManager->RegisterTimestamp(matchedFrameCnt, &frameTime);
m_requestManager->UpdateIspParameters(shot_ext, matchedFrameCnt, &m_ctlInfo);
} else {
ALOGV("bubble for vids: m_vdisBubbleCnt %d, matchedFrameCnt %d", m_vdisDupFrame, matchedFrameCnt);
}
// face af mode setting in case of face priority scene mode
if (m_ctlInfo.scene.prevSceneMode != shot_ext->shot.ctl.aa.sceneMode) {
ALOGV("(%s): Scene mode changed (%d)", __FUNCTION__, shot_ext->shot.ctl.aa.sceneMode);
m_ctlInfo.scene.prevSceneMode = shot_ext->shot.ctl.aa.sceneMode;
}
m_zoomRatio = (float)m_camera2->getSensorW() / (float)shot_ext->shot.ctl.scaler.cropRegion[2];
float zoomLeft, zoomTop, zoomWidth, zoomHeight;
int crop_x = 0, crop_y = 0, crop_w = 0, crop_h = 0;
m_getRatioSize(m_camera2->getSensorW(), m_camera2->getSensorH(),
m_streamThreads[0]->m_parameters.width, m_streamThreads[0]->m_parameters.height,
&crop_x, &crop_y,
&crop_w, &crop_h,
0);
if (m_streamThreads[0]->m_parameters.width >= m_streamThreads[0]->m_parameters.height) {
zoomWidth = m_camera2->getSensorW() / m_zoomRatio;
zoomHeight = zoomWidth *
m_streamThreads[0]->m_parameters.height / m_streamThreads[0]->m_parameters.width;
} else {
zoomHeight = m_camera2->getSensorH() / m_zoomRatio;
zoomWidth = zoomHeight *
m_streamThreads[0]->m_parameters.width / m_streamThreads[0]->m_parameters.height;
}
zoomLeft = (crop_w - zoomWidth) / 2;
zoomTop = (crop_h - zoomHeight) / 2;
int32_t new_cropRegion[3] = { zoomLeft, zoomTop, zoomWidth };
int cropCompensation = (new_cropRegion[0] * 2 + new_cropRegion[2]) - ALIGN(crop_w, 4);
if (cropCompensation)
new_cropRegion[2] -= cropCompensation;
shot_ext->shot.ctl.scaler.cropRegion[0] = new_cropRegion[0];
shot_ext->shot.ctl.scaler.cropRegion[1] = new_cropRegion[1];
shot_ext->shot.ctl.scaler.cropRegion[2] = new_cropRegion[2];
if (m_IsAfModeUpdateRequired && (m_ctlInfo.flash.m_precaptureTriggerId == 0)) {
ALOGD("### Applying AF Mode change(Mode %d) ", m_afMode);
shot_ext->shot.ctl.aa.afMode = m_afMode;
if (m_afMode == AA_AFMODE_CONTINUOUS_VIDEO || m_afMode == AA_AFMODE_CONTINUOUS_PICTURE) {
ALOGD("### With Automatic triger for continuous modes");
m_afState = HAL_AFSTATE_STARTED;
shot_ext->shot.ctl.aa.afTrigger = 1;
triggered = true;
if ((m_ctlInfo.scene.prevSceneMode == AA_SCENE_MODE_UNSUPPORTED) ||
(m_ctlInfo.scene.prevSceneMode == AA_SCENE_MODE_FACE_PRIORITY)) {
switch (m_afMode) {
case AA_AFMODE_CONTINUOUS_PICTURE:
shot_ext->shot.ctl.aa.afMode = AA_AFMODE_CONTINUOUS_PICTURE_FACE;
ALOGD("### Face AF Mode change (Mode %d) ", shot_ext->shot.ctl.aa.afMode);
break;
}
}
// reset flash result
if (m_ctlInfo.flash.m_afFlashDoneFlg) {
m_ctlInfo.flash.m_flashEnableFlg = false;
m_ctlInfo.flash.m_afFlashDoneFlg = false;
m_ctlInfo.flash.m_flashDecisionResult = false;
m_ctlInfo.flash.m_flashCnt = 0;
}
m_ctlInfo.af.m_afTriggerTimeOut = 1;
}
m_IsAfModeUpdateRequired = false;
// support inifinity focus mode
if ((m_afMode == AA_AFMODE_MANUAL) && ( shot_ext->shot.ctl.lens.focusDistance == 0)) {
shot_ext->shot.ctl.aa.afMode = AA_AFMODE_INFINITY;
shot_ext->shot.ctl.aa.afTrigger = 1;
triggered = true;
}
if (m_afMode2 != NO_CHANGE) {
enum aa_afmode tempAfMode = m_afMode2;
m_afMode2 = NO_CHANGE;
SetAfMode(tempAfMode);
}
}
else {
shot_ext->shot.ctl.aa.afMode = NO_CHANGE;
}
if (m_IsAfTriggerRequired) {
if (m_ctlInfo.flash.m_flashEnableFlg && m_ctlInfo.flash.m_afFlashDoneFlg) {
// flash case
if (m_ctlInfo.flash.m_flashCnt == IS_FLASH_STATE_ON_DONE) {
if ((m_afMode != AA_AFMODE_AUTO) && (m_afMode != AA_AFMODE_MACRO)) {
// Flash is enabled and start AF
m_afTrigger(shot_ext, 1);
} else {
m_afTrigger(shot_ext, 0);
}
}
} else {
// non-flash case
m_afTrigger(shot_ext, 0);
}
} else {
shot_ext->shot.ctl.aa.afTrigger = 0;
}
if (m_wideAspect) {
shot_ext->setfile = ISS_SUB_SCENARIO_VIDEO;
} else {
shot_ext->setfile = ISS_SUB_SCENARIO_STILL;
}
if (triggered)
shot_ext->shot.ctl.aa.afTrigger = 1;
// TODO : check collision with AFMode Update
if (m_IsAfLockRequired) {
shot_ext->shot.ctl.aa.afMode = AA_AFMODE_OFF;
m_IsAfLockRequired = false;
}
ALOGV("### Isp Qbuf start(%d) count (%d), SCP(%d) SCC(%d) DIS(%d) shot_size(%d)",
index,
shot_ext->shot.ctl.request.frameCount,
shot_ext->request_scp,
shot_ext->request_scc,
shot_ext->dis_bypass, sizeof(camera2_shot));
// update AF region
m_updateAfRegion(shot_ext);
m_lastSceneMode = shot_ext->shot.ctl.aa.sceneMode;
if (shot_ext->shot.ctl.aa.sceneMode == AA_SCENE_MODE_NIGHT
&& shot_ext->shot.ctl.aa.aeMode == AA_AEMODE_LOCKED)
shot_ext->shot.ctl.aa.aeMode = AA_AEMODE_ON;
if (m_nightCaptureCnt == 0) {
if (shot_ext->shot.ctl.aa.captureIntent == AA_CAPTURE_INTENT_STILL_CAPTURE
&& shot_ext->shot.ctl.aa.sceneMode == AA_SCENE_MODE_NIGHT) {
shot_ext->shot.ctl.aa.sceneMode = AA_SCENE_MODE_NIGHT_CAPTURE;
shot_ext->shot.ctl.aa.aeTargetFpsRange[0] = 2;
shot_ext->shot.ctl.aa.aeTargetFpsRange[1] = 30;
m_nightCaptureCnt = 4;
m_nightCaptureFrameCnt = matchedFrameCnt;
shot_ext->request_scc = 0;
}
}
else if (m_nightCaptureCnt == 1) {
shot_ext->shot.ctl.aa.sceneMode = AA_SCENE_MODE_NIGHT_CAPTURE;
shot_ext->shot.ctl.aa.aeTargetFpsRange[0] = 30;
shot_ext->shot.ctl.aa.aeTargetFpsRange[1] = 30;
m_nightCaptureCnt--;
m_nightCaptureFrameCnt = 0;
shot_ext->request_scc = 1;
}
else if (m_nightCaptureCnt == 2) {
shot_ext->shot.ctl.aa.sceneMode = AA_SCENE_MODE_NIGHT_CAPTURE;
shot_ext->shot.ctl.aa.aeTargetFpsRange[0] = 2;
shot_ext->shot.ctl.aa.aeTargetFpsRange[1] = 30;
m_nightCaptureCnt--;
shot_ext->request_scc = 0;
}
else if (m_nightCaptureCnt == 3) {
shot_ext->shot.ctl.aa.sceneMode = AA_SCENE_MODE_NIGHT_CAPTURE;
shot_ext->shot.ctl.aa.aeTargetFpsRange[0] = 2;
shot_ext->shot.ctl.aa.aeTargetFpsRange[1] = 30;
m_nightCaptureCnt--;
shot_ext->request_scc = 0;
}
else if (m_nightCaptureCnt == 4) {
shot_ext->shot.ctl.aa.sceneMode = AA_SCENE_MODE_NIGHT_CAPTURE;
shot_ext->shot.ctl.aa.aeTargetFpsRange[0] = 2;
shot_ext->shot.ctl.aa.aeTargetFpsRange[1] = 30;
m_nightCaptureCnt--;
shot_ext->request_scc = 0;
}
switch (shot_ext->shot.ctl.aa.aeTargetFpsRange[1]) {
case 15:
shot_ext->shot.ctl.sensor.frameDuration = (66666 * 1000);
break;
case 24:
shot_ext->shot.ctl.sensor.frameDuration = (41666 * 1000);
break;
case 25:
shot_ext->shot.ctl.sensor.frameDuration = (40000 * 1000);
break;
case 30:
default:
shot_ext->shot.ctl.sensor.frameDuration = (33333 * 1000);
break;
}
shot_ext->shot.ctl.aa.aeTargetFpsRange[1] = 30;
// Flash mode
// Keep and Skip request_scc = 1 at flash enable mode to operate flash sequence
if ((m_ctlInfo.flash.i_flashMode >= AA_AEMODE_ON_AUTO_FLASH)
&& (shot_ext->shot.ctl.aa.captureIntent == AA_CAPTURE_INTENT_STILL_CAPTURE)
&& (m_cameraId == 0)) {
if (!m_ctlInfo.flash.m_flashDecisionResult) {
m_ctlInfo.flash.m_flashEnableFlg = false;
m_ctlInfo.flash.m_afFlashDoneFlg = false;
m_ctlInfo.flash.m_flashCnt = 0;
} else if ((m_ctlInfo.flash.m_flashCnt == IS_FLASH_STATE_AUTO_DONE) ||
(m_ctlInfo.flash.m_flashCnt == IS_FLASH_STATE_AUTO_OFF)) {
ALOGD("(%s): [Flash] Flash capture start : skip request scc 1#####", __FUNCTION__);
shot_ext->request_scc = 0;
m_ctlInfo.flash.m_flashFrameCount = matchedFrameCnt;
m_ctlInfo.flash.m_flashEnableFlg = true;
m_ctlInfo.flash.m_afFlashDoneFlg = false;
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_CAPTURE;
} else if (m_ctlInfo.flash.m_flashCnt < IS_FLASH_STATE_AUTO_DONE) {
ALOGE("(%s): [Flash] Flash capture Error- wrong state !!!!!! (%d)", __FUNCTION__, m_ctlInfo.flash.m_flashCnt);
shot_ext->shot.ctl.aa.aeflashMode = AA_FLASHMODE_OFF;
m_ctlInfo.flash.m_flashEnableFlg = false;
m_ctlInfo.flash.m_afFlashDoneFlg= false;
m_ctlInfo.flash.m_flashCnt = 0;
}
} else if (shot_ext->shot.ctl.aa.captureIntent == AA_CAPTURE_INTENT_STILL_CAPTURE) {
m_ctlInfo.flash.m_flashDecisionResult = false;
}
if (shot_ext->shot.ctl.flash.flashMode == CAM2_FLASH_MODE_TORCH) {
if (m_ctlInfo.flash.m_flashTorchMode == false) {
m_ctlInfo.flash.m_flashTorchMode = true;
}
} else {
if (m_ctlInfo.flash.m_flashTorchMode == true) {
shot_ext->shot.ctl.flash.flashMode = CAM2_FLASH_MODE_OFF;
shot_ext->shot.ctl.flash.firingPower = 0;
m_ctlInfo.flash.m_flashTorchMode = false;
} else {
shot_ext->shot.ctl.flash.flashMode = CAM2_FLASH_MODE_NOP;
}
}
if (shot_ext->isReprocessing) {
ALOGV("(%s): Sending signal for Reprocess request", __FUNCTION__);
m_currentReprocessOutStreams = shot_ext->shot.ctl.request.outputStreams[0];
shot_ext->request_scp = 0;
shot_ext->request_scc = 0;
m_reprocessingFrameCnt = shot_ext->shot.ctl.request.frameCount;
m_ctlInfo.flash.m_flashDecisionResult = false;
memcpy(&m_jpegMetadata, (void*)(m_requestManager->GetInternalShotExtByFrameCnt(m_reprocessingFrameCnt)),
sizeof(struct camera2_shot_ext));
m_streamThreads[1]->SetSignal(SIGNAL_STREAM_REPROCESSING_START);
m_ctlInfo.flash.m_flashEnableFlg = false;
}
if (m_ctlInfo.flash.m_flashEnableFlg) {
m_preCaptureListenerSensor(shot_ext);
m_preCaptureSetter(shot_ext);
}
ALOGV("(%s): queued aa(%d) aemode(%d) awb(%d) afmode(%d) trigger(%d)", __FUNCTION__,
(int)(shot_ext->shot.ctl.aa.mode), (int)(shot_ext->shot.ctl.aa.aeMode),
(int)(shot_ext->shot.ctl.aa.awbMode), (int)(shot_ext->shot.ctl.aa.afMode),
(int)(shot_ext->shot.ctl.aa.afTrigger));
if (m_vdisBubbleCnt > 0 && m_vdisDupFrame == matchedFrameCnt) {
shot_ext->dis_bypass = 1;
shot_ext->dnr_bypass = 1;
shot_ext->request_scp = 0;
shot_ext->request_scc = 0;
m_vdisBubbleCnt--;
matchedFrameCnt = -1;
} else {
m_vdisDupFrame = matchedFrameCnt;
}
if (m_scpForceSuspended)
shot_ext->request_scc = 0;
uint32_t current_scp = shot_ext->request_scp;
uint32_t current_scc = shot_ext->request_scc;
if (shot_ext->shot.dm.request.frameCount == 0) {
CAM_LOGE("ERR(%s): dm.request.frameCount = %d", __FUNCTION__, shot_ext->shot.dm.request.frameCount);
}
cam_int_qbuf(&(m_camera_info.isp), index);
ALOGV("### isp DQBUF start");
index_isp = cam_int_dqbuf(&(m_camera_info.isp));
shot_ext = (struct camera2_shot_ext *)(m_camera_info.isp.buffer[index_isp].virt.extP[1]);
if (m_ctlInfo.flash.m_flashEnableFlg)
m_preCaptureListenerISP(shot_ext);
ALOGV("### Isp DQbuf done(%d) count (%d), SCP(%d) SCC(%d) dis_bypass(%d) dnr_bypass(%d) shot_size(%d)",
index,
shot_ext->shot.ctl.request.frameCount,
shot_ext->request_scp,
shot_ext->request_scc,
shot_ext->dis_bypass,
shot_ext->dnr_bypass, sizeof(camera2_shot));
ALOGV("(%s): DM aa(%d) aemode(%d) awb(%d) afmode(%d)", __FUNCTION__,
(int)(shot_ext->shot.dm.aa.mode), (int)(shot_ext->shot.dm.aa.aeMode),
(int)(shot_ext->shot.dm.aa.awbMode),
(int)(shot_ext->shot.dm.aa.afMode));
#ifndef ENABLE_FRAME_SYNC
m_currentOutputStreams = shot_ext->shot.ctl.request.outputStreams[0];
#endif
if (!shot_ext->fd_bypass) {
/* FD orientation axis transformation */
for (int i=0; i < CAMERA2_MAX_FACES; i++) {
if (shot_ext->shot.dm.stats.faceRectangles[i][0] > 0)
shot_ext->shot.dm.stats.faceRectangles[i][0] = (m_camera2->m_curCameraInfo->sensorW
* shot_ext->shot.dm.stats.faceRectangles[i][0])
/ m_streamThreads[0].get()->m_parameters.width;
if (shot_ext->shot.dm.stats.faceRectangles[i][1] > 0)
shot_ext->shot.dm.stats.faceRectangles[i][1] = (m_camera2->m_curCameraInfo->sensorH
* shot_ext->shot.dm.stats.faceRectangles[i][1])
/ m_streamThreads[0].get()->m_parameters.height;
if (shot_ext->shot.dm.stats.faceRectangles[i][2] > 0)
shot_ext->shot.dm.stats.faceRectangles[i][2] = (m_camera2->m_curCameraInfo->sensorW
* shot_ext->shot.dm.stats.faceRectangles[i][2])
/ m_streamThreads[0].get()->m_parameters.width;
if (shot_ext->shot.dm.stats.faceRectangles[i][3] > 0)
shot_ext->shot.dm.stats.faceRectangles[i][3] = (m_camera2->m_curCameraInfo->sensorH
* shot_ext->shot.dm.stats.faceRectangles[i][3])
/ m_streamThreads[0].get()->m_parameters.height;
}
}
// aeState control
if (shot_ext->shot.ctl.aa.sceneMode != AA_SCENE_MODE_NIGHT)
m_preCaptureAeState(shot_ext);
// At scene mode face priority
if (shot_ext->shot.dm.aa.afMode == AA_AFMODE_CONTINUOUS_PICTURE_FACE)
shot_ext->shot.dm.aa.afMode = AA_AFMODE_CONTINUOUS_PICTURE;
if (matchedFrameCnt != -1 && m_nightCaptureCnt == 0 && (m_ctlInfo.flash.m_flashCnt < IS_FLASH_STATE_CAPTURE)) {
m_requestManager->ApplyDynamicMetadata(shot_ext);
}
if (current_scc != shot_ext->request_scc) {
ALOGD("(%s): scc frame drop1 request_scc(%d to %d)",
__FUNCTION__, current_scc, shot_ext->request_scc);
m_requestManager->NotifyStreamOutput(shot_ext->shot.ctl.request.frameCount);
}
if (shot_ext->request_scc) {
ALOGV("send SIGNAL_STREAM_DATA_COMING (SCC)");
if (shot_ext->shot.ctl.request.outputStreams[0] & STREAM_MASK_JPEG) {
if (m_ctlInfo.flash.m_flashCnt < IS_FLASH_STATE_CAPTURE)
memcpy(&m_jpegMetadata, (void*)(m_requestManager->GetInternalShotExtByFrameCnt(shot_ext->shot.ctl.request.frameCount)),
sizeof(struct camera2_shot_ext));
else
memcpy(&m_jpegMetadata, (void*)shot_ext, sizeof(struct camera2_shot_ext));
}
m_streamThreads[1]->SetSignal(SIGNAL_STREAM_DATA_COMING);
}
if (current_scp != shot_ext->request_scp) {
ALOGD("(%s): scp frame drop1 request_scp(%d to %d)",
__FUNCTION__, current_scp, shot_ext->request_scp);
m_requestManager->NotifyStreamOutput(shot_ext->shot.ctl.request.frameCount);
}
if (shot_ext->request_scp) {
ALOGV("send SIGNAL_STREAM_DATA_COMING (SCP)");
m_streamThreads[0]->SetSignal(SIGNAL_STREAM_DATA_COMING);
}
ALOGV("(%s): SCP_CLOSING check sensor(%d) scc(%d) scp(%d) ", __FUNCTION__,
shot_ext->request_sensor, shot_ext->request_scc, shot_ext->request_scp);
if (shot_ext->request_scc + shot_ext->request_scp + shot_ext->request_sensor == 0) {
ALOGV("(%s): SCP_CLOSING check OK ", __FUNCTION__);
m_scp_closed = true;
}
else
m_scp_closed = false;
OnAfNotification(shot_ext->shot.dm.aa.afState);
OnPrecaptureMeteringNotificationISP();
} else {
memcpy(&shot_ext->shot.ctl, &m_camera_info.dummy_shot.shot.ctl, sizeof(struct camera2_ctl));
shot_ext->shot.ctl.request.frameCount = 0xfffffffe;
shot_ext->request_sensor = 1;
shot_ext->dis_bypass = 1;
shot_ext->dnr_bypass = 1;
shot_ext->fd_bypass = 1;
shot_ext->drc_bypass = 1;
shot_ext->request_scc = 0;
shot_ext->request_scp = 0;
if (m_wideAspect) {
shot_ext->setfile = ISS_SUB_SCENARIO_VIDEO;
} else {
shot_ext->setfile = ISS_SUB_SCENARIO_STILL;
}
shot_ext->shot.ctl.aa.sceneMode = (enum aa_scene_mode)m_lastSceneMode;
if (shot_ext->shot.ctl.aa.sceneMode == AA_SCENE_MODE_NIGHT_CAPTURE || shot_ext->shot.ctl.aa.sceneMode == AA_SCENE_MODE_NIGHT) {
shot_ext->shot.ctl.aa.aeTargetFpsRange[0] = 8;
shot_ext->shot.ctl.aa.aeTargetFpsRange[1] = 30;
}
shot_ext->shot.ctl.aa.aeflashMode = AA_FLASHMODE_OFF;
shot_ext->shot.ctl.flash.flashMode = CAM2_FLASH_MODE_OFF;
ALOGV("### isp QBUF start (bubble)");
ALOGV("bubble: queued aa(%d) aemode(%d) awb(%d) afmode(%d) trigger(%d)",
(int)(shot_ext->shot.ctl.aa.mode), (int)(shot_ext->shot.ctl.aa.aeMode),
(int)(shot_ext->shot.ctl.aa.awbMode), (int)(shot_ext->shot.ctl.aa.afMode),
(int)(shot_ext->shot.ctl.aa.afTrigger));
cam_int_qbuf(&(m_camera_info.isp), index);
ALOGV("### isp DQBUF start (bubble)");
index_isp = cam_int_dqbuf(&(m_camera_info.isp));
shot_ext = (struct camera2_shot_ext *)(m_camera_info.isp.buffer[index_isp].virt.extP[1]);
ALOGV("bubble: DM aa(%d) aemode(%d) awb(%d) afmode(%d)",
(int)(shot_ext->shot.dm.aa.mode), (int)(shot_ext->shot.dm.aa.aeMode),
(int)(shot_ext->shot.dm.aa.awbMode),
(int)(shot_ext->shot.dm.aa.afMode));
OnAfNotification(shot_ext->shot.dm.aa.afState);
}
index = m_requestManager->popSensorQ();
if(index < 0){
ALOGE("sensorQ is empty");
return;
}
processingReqIndex = m_requestManager->MarkProcessingRequest(&(m_camera_info.sensor.buffer[index]));
shot_ext = (struct camera2_shot_ext *)(m_camera_info.sensor.buffer[index].virt.extP[1]);
if (m_scp_closing || m_scp_closed) {
ALOGD("(%s): SCP_CLOSING(%d) SCP_CLOSED(%d)", __FUNCTION__, m_scp_closing, m_scp_closed);
shot_ext->request_scc = 0;
shot_ext->request_scp = 0;
shot_ext->request_sensor = 0;
}
cam_int_qbuf(&(m_camera_info.sensor), index);
ALOGV("Sensor Qbuf done(%d)", index);
if (!m_scp_closing
&& ((matchedFrameCnt == -1) || (processingReqIndex == -1))){
ALOGV("make bubble shot: matchedFramcnt(%d) processingReqIndex(%d)",
matchedFrameCnt, processingReqIndex);
selfThread->SetSignal(SIGNAL_SENSOR_START_REQ_PROCESSING);
}
}
return;
}
void ExynosCameraHWInterface2::m_streamBufferInit(SignalDrivenThread *self)
{
uint32_t currentSignal = self->GetProcessingSignal();
StreamThread * selfThread = ((StreamThread*)self);
stream_parameters_t *selfStreamParms = &(selfThread->m_parameters);
node_info_t *currentNode = selfStreamParms->node;
substream_parameters_t *subParms;
buffer_handle_t * buf = NULL;
status_t res;
void *virtAddr[3];
int i, j;
int index;
nsecs_t timestamp;
if (!(selfThread->m_isBufferInit))
{
for ( i=0 ; i < selfStreamParms->numSvcBuffers; i++) {
res = selfStreamParms->streamOps->dequeue_buffer(selfStreamParms->streamOps, &buf);
if (res != NO_ERROR || buf == NULL) {
ALOGE("ERR(%s): Init: unable to dequeue buffer : %d",__FUNCTION__ , res);
return;
}
ALOGV("DEBUG(%s): got buf(%x) version(%d), numFds(%d), numInts(%d)", __FUNCTION__, (uint32_t)(*buf),
((native_handle_t*)(*buf))->version, ((native_handle_t*)(*buf))->numFds, ((native_handle_t*)(*buf))->numInts);
index = selfThread->findBufferIndex(buf);
if (index == -1) {
ALOGE("ERR(%s): could not find buffer index", __FUNCTION__);
}
else {
ALOGV("DEBUG(%s): found buffer index[%d] - status(%d)",
__FUNCTION__, index, selfStreamParms->svcBufStatus[index]);
if (selfStreamParms->svcBufStatus[index]== REQUIRES_DQ_FROM_SVC)
selfStreamParms->svcBufStatus[index] = ON_DRIVER;
else if (selfStreamParms->svcBufStatus[index]== ON_SERVICE)
selfStreamParms->svcBufStatus[index] = ON_HAL;
else {
ALOGV("DBG(%s): buffer status abnormal (%d) "
, __FUNCTION__, selfStreamParms->svcBufStatus[index]);
}
selfStreamParms->numSvcBufsInHal++;
}
selfStreamParms->bufIndex = 0;
}
selfThread->m_isBufferInit = true;
}
for (int i = 0 ; i < NUM_MAX_SUBSTREAM ; i++) {
if (selfThread->m_attachedSubStreams[i].streamId == -1)
continue;
subParms = &m_subStreams[selfThread->m_attachedSubStreams[i].streamId];
if (subParms->type && subParms->needBufferInit) {
ALOGV("(%s): [subStream] (id:%d) Buffer Initialization numsvcbuf(%d)",
__FUNCTION__, selfThread->m_attachedSubStreams[i].streamId, subParms->numSvcBuffers);
int checkingIndex = 0;
bool found = false;
for ( i = 0 ; i < subParms->numSvcBuffers; i++) {
res = subParms->streamOps->dequeue_buffer(subParms->streamOps, &buf);
if (res != NO_ERROR || buf == NULL) {
ALOGE("ERR(%s): Init: unable to dequeue buffer : %d",__FUNCTION__ , res);
return;
}
subParms->numSvcBufsInHal++;
ALOGV("DEBUG(%s): [subStream] got buf(%x) bufInHal(%d) version(%d), numFds(%d), numInts(%d)", __FUNCTION__, (uint32_t)(*buf),
subParms->numSvcBufsInHal, ((native_handle_t*)(*buf))->version, ((native_handle_t*)(*buf))->numFds, ((native_handle_t*)(*buf))->numInts);
if (m_grallocHal->lock(m_grallocHal, *buf,
subParms->usage, 0, 0,
subParms->width, subParms->height, virtAddr) != 0) {
ALOGE("ERR(%s): could not obtain gralloc buffer", __FUNCTION__);
}
else {
ALOGV("DEBUG(%s): [subStream] locked img buf plane0(%x) plane1(%x) plane2(%x)",
__FUNCTION__, (unsigned int)virtAddr[0], (unsigned int)virtAddr[1], (unsigned int)virtAddr[2]);
}
found = false;
for (checkingIndex = 0; checkingIndex < subParms->numSvcBuffers ; checkingIndex++) {
if (subParms->svcBufHandle[checkingIndex] == *buf ) {
found = true;
break;
}
}
ALOGV("DEBUG(%s): [subStream] found(%d) - index[%d]", __FUNCTION__, found, checkingIndex);
if (!found) break;
index = checkingIndex;
if (index == -1) {
ALOGV("ERR(%s): could not find buffer index", __FUNCTION__);
}
else {
ALOGV("DEBUG(%s): found buffer index[%d] - status(%d)",
__FUNCTION__, index, subParms->svcBufStatus[index]);
if (subParms->svcBufStatus[index]== ON_SERVICE)
subParms->svcBufStatus[index] = ON_HAL;
else {
ALOGV("DBG(%s): buffer status abnormal (%d) "
, __FUNCTION__, subParms->svcBufStatus[index]);
}
if (*buf != subParms->svcBufHandle[index])
ALOGV("DBG(%s): different buf_handle index ", __FUNCTION__);
else
ALOGV("DEBUG(%s): same buf_handle index", __FUNCTION__);
}
subParms->svcBufIndex = 0;
}
if (subParms->type == SUBSTREAM_TYPE_JPEG) {
m_resizeBuf.size.extS[0] = ALIGN(subParms->width, 16) * ALIGN(subParms->height, 16) * 2;
m_resizeBuf.size.extS[1] = 0;
m_resizeBuf.size.extS[2] = 0;
if (allocCameraMemory(m_ionCameraClient, &m_resizeBuf, 1) == -1) {
ALOGE("ERR(%s): Failed to allocate resize buf", __FUNCTION__);
}
}
if (subParms->type == SUBSTREAM_TYPE_PRVCB) {
m_getAlignedYUVSize(HAL_PIXEL_FORMAT_2_V4L2_PIX(subParms->internalFormat), subParms->width,
subParms->height, &m_previewCbBuf);
if (allocCameraMemory(m_ionCameraClient, &m_previewCbBuf, subParms->internalPlanes) == -1) {
ALOGE("ERR(%s): Failed to allocate prvcb buf", __FUNCTION__);
}
}
subParms->needBufferInit= false;
}
}
}
void ExynosCameraHWInterface2::m_streamThreadInitialize(SignalDrivenThread * self)
{
StreamThread * selfThread = ((StreamThread*)self);
ALOGV("DEBUG(%s): ", __FUNCTION__ );
memset(&(selfThread->m_parameters), 0, sizeof(stream_parameters_t));
selfThread->m_isBufferInit = false;
for (int i = 0 ; i < NUM_MAX_SUBSTREAM ; i++) {
selfThread->m_attachedSubStreams[i].streamId = -1;
selfThread->m_attachedSubStreams[i].priority = 0;
}
return;
}
int ExynosCameraHWInterface2::m_runSubStreamFunc(StreamThread *selfThread, ExynosBuffer *srcImageBuf,
int stream_id, nsecs_t frameTimeStamp)
{
substream_parameters_t *subParms = &m_subStreams[stream_id];
switch (stream_id) {
case STREAM_ID_JPEG:
return m_jpegCreator(selfThread, srcImageBuf, frameTimeStamp);
case STREAM_ID_RECORD:
return m_recordCreator(selfThread, srcImageBuf, frameTimeStamp);
case STREAM_ID_PRVCB:
return m_prvcbCreator(selfThread, srcImageBuf, frameTimeStamp);
default:
return 0;
}
}
void ExynosCameraHWInterface2::m_streamFunc_direct(SignalDrivenThread *self)
{
uint32_t currentSignal = self->GetProcessingSignal();
StreamThread * selfThread = ((StreamThread*)self);
stream_parameters_t *selfStreamParms = &(selfThread->m_parameters);
node_info_t *currentNode = selfStreamParms->node;
int i = 0;
nsecs_t frameTimeStamp;
if (currentSignal & SIGNAL_THREAD_RELEASE) {
CAM_LOGD("(%s): [%d] START SIGNAL_THREAD_RELEASE", __FUNCTION__, selfThread->m_index);
if (selfThread->m_isBufferInit) {
if (!(currentNode->fd == m_camera_info.capture.fd && m_camera_info.capture.status == false)) {
ALOGV("(%s): [%d] calling streamoff (fd:%d)", __FUNCTION__,
selfThread->m_index, currentNode->fd);
if (cam_int_streamoff(currentNode) < 0 ) {
ALOGE("ERR(%s): stream off fail", __FUNCTION__);
}
ALOGV("(%s): [%d] streamoff done and calling reqbuf 0 (fd:%d)", __FUNCTION__,
selfThread->m_index, currentNode->fd);
currentNode->buffers = 0;
cam_int_reqbufs(currentNode);
ALOGV("(%s): [%d] reqbuf 0 DONE (fd:%d)", __FUNCTION__,
selfThread->m_index, currentNode->fd);
}
}
#ifdef ENABLE_FRAME_SYNC
// free metabuffers
for (i = 0; i < NUM_MAX_CAMERA_BUFFERS; i++)
if (selfStreamParms->metaBuffers[i].fd.extFd[0] != 0) {
freeCameraMemory(&(selfStreamParms->metaBuffers[i]), 1);
selfStreamParms->metaBuffers[i].fd.extFd[0] = 0;
selfStreamParms->metaBuffers[i].size.extS[0] = 0;
}
#endif
selfThread->m_isBufferInit = false;
selfThread->m_releasing = false;
selfThread->m_activated = false;
ALOGV("(%s): [%d] END SIGNAL_THREAD_RELEASE", __FUNCTION__, selfThread->m_index);
return;
}
if (currentSignal & SIGNAL_STREAM_REPROCESSING_START) {
status_t res;
buffer_handle_t * buf = NULL;
bool found = false;
ALOGV("(%s): streamthread[%d] START SIGNAL_STREAM_REPROCESSING_START",
__FUNCTION__, selfThread->m_index);
res = m_reprocessOps->acquire_buffer(m_reprocessOps, &buf);
if (res != NO_ERROR || buf == NULL) {
ALOGE("ERR(%s): [reprocess] unable to acquire_buffer : %d",__FUNCTION__ , res);
return;
}
const private_handle_t *priv_handle = reinterpret_cast<const private_handle_t *>(*buf);
int checkingIndex = 0;
for (checkingIndex = 0; checkingIndex < selfStreamParms->numSvcBuffers ; checkingIndex++) {
if (priv_handle->fd == selfStreamParms->svcBuffers[checkingIndex].fd.extFd[0] ) {
found = true;
break;
}
}
ALOGV("DEBUG(%s): dequeued buf %x => found(%d) index(%d) ",
__FUNCTION__, (unsigned int)buf, found, checkingIndex);
if (!found) return;
for (int i = 0 ; i < NUM_MAX_SUBSTREAM ; i++) {
if (selfThread->m_attachedSubStreams[i].streamId == -1)
continue;
#ifdef ENABLE_FRAME_SYNC
frameTimeStamp = m_requestManager->GetTimestampByFrameCnt(m_reprocessingFrameCnt);
m_requestManager->NotifyStreamOutput(m_reprocessingFrameCnt);
#else
frameTimeStamp = m_requestManager->GetTimestamp(m_requestManager->GetFrameIndex());
#endif
if (m_currentReprocessOutStreams & (1<<selfThread->m_attachedSubStreams[i].streamId))
m_runSubStreamFunc(selfThread, &(selfStreamParms->svcBuffers[checkingIndex]),
selfThread->m_attachedSubStreams[i].streamId, frameTimeStamp);
}
res = m_reprocessOps->release_buffer(m_reprocessOps, buf);
if (res != NO_ERROR) {
ALOGE("ERR(%s): [reprocess] unable to release_buffer : %d",__FUNCTION__ , res);
return;
}
ALOGV("(%s): streamthread[%d] END SIGNAL_STREAM_REPROCESSING_START",
__FUNCTION__,selfThread->m_index);
return;
}
if (currentSignal & SIGNAL_STREAM_DATA_COMING) {
buffer_handle_t * buf = NULL;
status_t res = 0;
int i, j;
int index;
nsecs_t timestamp;
#ifdef ENABLE_FRAME_SYNC
camera2_stream *frame;
uint8_t currentOutputStreams;
bool directOutputEnabled = false;
#endif
int numOfUndqbuf = 0;
ALOGV("(%s): streamthread[%d] START SIGNAL_STREAM_DATA_COMING", __FUNCTION__,selfThread->m_index);
m_streamBufferInit(self);
do {
ALOGV("DEBUG(%s): streamthread[%d] type(%d) DQBUF START ",__FUNCTION__,
selfThread->m_index, selfThread->streamType);
#ifdef ENABLE_FRAME_SYNC
selfStreamParms->bufIndex = cam_int_dqbuf(currentNode, selfStreamParms->planes + selfStreamParms->metaPlanes);
frame = (struct camera2_stream *)(selfStreamParms->metaBuffers[selfStreamParms->bufIndex].virt.extP[0]);
frameTimeStamp = m_requestManager->GetTimestampByFrameCnt(frame->rcount);
currentOutputStreams = m_requestManager->GetOutputStreamByFrameCnt(frame->rcount);
ALOGV("frame count streamthread[%d] : %d, outputStream(%x)", selfThread->m_index, frame->rcount, currentOutputStreams);
if (((currentOutputStreams & STREAM_MASK_PREVIEW) && selfThread->m_index == 0)||
((currentOutputStreams & STREAM_MASK_ZSL) && selfThread->m_index == 1)) {
directOutputEnabled = true;
}
if (!directOutputEnabled) {
if (!m_nightCaptureFrameCnt)
m_requestManager->NotifyStreamOutput(frame->rcount);
}
#else
selfStreamParms->bufIndex = cam_int_dqbuf(currentNode);
frameTimeStamp = m_requestManager->GetTimestamp(m_requestManager->GetFrameIndex())
#endif
ALOGV("DEBUG(%s): streamthread[%d] DQBUF done index(%d) sigcnt(%d)",__FUNCTION__,
selfThread->m_index, selfStreamParms->bufIndex, m_scpOutputSignalCnt);
if (selfStreamParms->svcBufStatus[selfStreamParms->bufIndex] != ON_DRIVER)
ALOGV("DBG(%s): DQed buffer status abnormal (%d) ",
__FUNCTION__, selfStreamParms->svcBufStatus[selfStreamParms->bufIndex]);
selfStreamParms->svcBufStatus[selfStreamParms->bufIndex] = ON_HAL;
for (int i = 0 ; i < NUM_MAX_SUBSTREAM ; i++) {
if (selfThread->m_attachedSubStreams[i].streamId == -1)
continue;
#ifdef ENABLE_FRAME_SYNC
if (currentOutputStreams & (1<<selfThread->m_attachedSubStreams[i].streamId)) {
m_runSubStreamFunc(selfThread, &(selfStreamParms->svcBuffers[selfStreamParms->bufIndex]),
selfThread->m_attachedSubStreams[i].streamId, frameTimeStamp);
}
#else
if (m_currentOutputStreams & (1<<selfThread->m_attachedSubStreams[i].streamId)) {
m_runSubStreamFunc(selfThread, &(selfStreamParms->svcBuffers[selfStreamParms->bufIndex]),
selfThread->m_attachedSubStreams[i].streamId, frameTimeStamp);
}
#endif
}
if (m_requestManager->GetSkipCnt() <= 0) {
#ifdef ENABLE_FRAME_SYNC
if ((currentOutputStreams & STREAM_MASK_PREVIEW) && selfThread->m_index == 0) {
ALOGV("** Display Preview(frameCnt:%d)", frame->rcount);
res = selfStreamParms->streamOps->enqueue_buffer(selfStreamParms->streamOps,
frameTimeStamp,
&(selfStreamParms->svcBufHandle[selfStreamParms->bufIndex]));
}
else if ((currentOutputStreams & STREAM_MASK_ZSL) && selfThread->m_index == 1) {
ALOGV("** SCC output (frameCnt:%d)", frame->rcount);
res = selfStreamParms->streamOps->enqueue_buffer(selfStreamParms->streamOps,
frameTimeStamp,
&(selfStreamParms->svcBufHandle[selfStreamParms->bufIndex]));
}
else {
res = selfStreamParms->streamOps->cancel_buffer(selfStreamParms->streamOps,
&(selfStreamParms->svcBufHandle[selfStreamParms->bufIndex]));
ALOGV("DEBUG(%s): streamthread[%d] cancel_buffer to svc done res(%d)", __FUNCTION__, selfThread->m_index, res);
}
#else
if ((m_currentOutputStreams & STREAM_MASK_PREVIEW) && selfThread->m_index == 0) {
ALOGV("** Display Preview(frameCnt:%d)", m_requestManager->GetFrameIndex());
res = selfStreamParms->streamOps->enqueue_buffer(selfStreamParms->streamOps,
frameTimeStamp,
&(selfStreamParms->svcBufHandle[selfStreamParms->bufIndex]));
}
else if ((m_currentOutputStreams & STREAM_MASK_ZSL) && selfThread->m_index == 1) {
ALOGV("** SCC output (frameCnt:%d), last(%d)", m_requestManager->GetFrameIndex());
res = selfStreamParms->streamOps->enqueue_buffer(selfStreamParms->streamOps,
frameTimeStamp,
&(selfStreamParms->svcBufHandle[selfStreamParms->bufIndex]));
}
#endif
ALOGV("DEBUG(%s): streamthread[%d] enqueue_buffer to svc done res(%d)", __FUNCTION__, selfThread->m_index, res);
}
else {
res = selfStreamParms->streamOps->cancel_buffer(selfStreamParms->streamOps,
&(selfStreamParms->svcBufHandle[selfStreamParms->bufIndex]));
ALOGV("DEBUG(%s): streamthread[%d] cancel_buffer to svc done res(%d)", __FUNCTION__, selfThread->m_index, res);
}
#ifdef ENABLE_FRAME_SYNC
if (directOutputEnabled) {
if (!m_nightCaptureFrameCnt)
m_requestManager->NotifyStreamOutput(frame->rcount);
}
#endif
if (res == 0) {
selfStreamParms->svcBufStatus[selfStreamParms->bufIndex] = ON_SERVICE;
selfStreamParms->numSvcBufsInHal--;
}
else {
selfStreamParms->svcBufStatus[selfStreamParms->bufIndex] = ON_HAL;
}
}
while(0);
while ((selfStreamParms->numSvcBufsInHal - (selfStreamParms->numSvcBuffers - NUM_SCP_BUFFERS))
< selfStreamParms->minUndequedBuffer) {
res = selfStreamParms->streamOps->dequeue_buffer(selfStreamParms->streamOps, &buf);
if (res != NO_ERROR || buf == NULL) {
ALOGV("DEBUG(%s): streamthread[%d] dequeue_buffer fail res(%d) numInHal(%d)",__FUNCTION__ , selfThread->m_index, res, selfStreamParms->numSvcBufsInHal);
break;
}
selfStreamParms->numSvcBufsInHal++;
ALOGV("DEBUG(%s): streamthread[%d] got buf(%x) numInHal(%d) version(%d), numFds(%d), numInts(%d)", __FUNCTION__,
selfThread->m_index, (uint32_t)(*buf), selfStreamParms->numSvcBufsInHal,
((native_handle_t*)(*buf))->version, ((native_handle_t*)(*buf))->numFds, ((native_handle_t*)(*buf))->numInts);
const private_handle_t *priv_handle = reinterpret_cast<const private_handle_t *>(*buf);
bool found = false;
int checkingIndex = 0;
for (checkingIndex = 0; checkingIndex < selfStreamParms->numSvcBuffers ; checkingIndex++) {
if (priv_handle->fd == selfStreamParms->svcBuffers[checkingIndex].fd.extFd[0] ) {
found = true;
break;
}
}
if (!found) break;
selfStreamParms->bufIndex = checkingIndex;
if (selfStreamParms->bufIndex < selfStreamParms->numHwBuffers) {
uint32_t plane_index = 0;
ExynosBuffer* currentBuf = &(selfStreamParms->svcBuffers[selfStreamParms->bufIndex]);
struct v4l2_buffer v4l2_buf;
struct v4l2_plane planes[VIDEO_MAX_PLANES];
v4l2_buf.m.planes = planes;
v4l2_buf.type = currentNode->type;
v4l2_buf.memory = currentNode->memory;
v4l2_buf.index = selfStreamParms->bufIndex;
v4l2_buf.length = currentNode->planes;
v4l2_buf.m.planes[0].m.fd = priv_handle->fd;
v4l2_buf.m.planes[2].m.fd = priv_handle->fd1;
v4l2_buf.m.planes[1].m.fd = priv_handle->fd2;
for (plane_index=0 ; plane_index < v4l2_buf.length ; plane_index++) {
v4l2_buf.m.planes[plane_index].length = currentBuf->size.extS[plane_index];
}
#ifdef ENABLE_FRAME_SYNC
/* add plane for metadata*/
v4l2_buf.length += selfStreamParms->metaPlanes;
v4l2_buf.m.planes[v4l2_buf.length-1].m.fd = selfStreamParms->metaBuffers[selfStreamParms->bufIndex].fd.extFd[0];
v4l2_buf.m.planes[v4l2_buf.length-1].length = selfStreamParms->metaBuffers[selfStreamParms->bufIndex].size.extS[0];
#endif
if (exynos_v4l2_qbuf(currentNode->fd, &v4l2_buf) < 0) {
ALOGE("ERR(%s): streamthread[%d] exynos_v4l2_qbuf() fail",
__FUNCTION__, selfThread->m_index);
return;
}
selfStreamParms->svcBufStatus[selfStreamParms->bufIndex] = ON_DRIVER;
ALOGV("DEBUG(%s): streamthread[%d] QBUF done index(%d)",
__FUNCTION__, selfThread->m_index, selfStreamParms->bufIndex);
}
}
ALOGV("(%s): streamthread[%d] END SIGNAL_STREAM_DATA_COMING", __FUNCTION__,selfThread->m_index);
}
return;
}
void ExynosCameraHWInterface2::m_streamFunc_indirect(SignalDrivenThread *self)
{
uint32_t currentSignal = self->GetProcessingSignal();
StreamThread * selfThread = ((StreamThread*)self);
stream_parameters_t *selfStreamParms = &(selfThread->m_parameters);
node_info_t *currentNode = selfStreamParms->node;
if (currentSignal & SIGNAL_THREAD_RELEASE) {
CAM_LOGV("(%s): [%d] START SIGNAL_THREAD_RELEASE", __FUNCTION__, selfThread->m_index);
if (selfThread->m_isBufferInit) {
if (currentNode->fd == m_camera_info.capture.fd) {
if (m_camera_info.capture.status == true) {
ALOGV("DEBUG(%s): calling streamthread[%d] streamoff (fd:%d)", __FUNCTION__,
selfThread->m_index, currentNode->fd);
if (cam_int_streamoff(currentNode) < 0 ){
ALOGE("ERR(%s): stream off fail", __FUNCTION__);
} else {
m_camera_info.capture.status = false;
}
}
} else {
ALOGV("DEBUG(%s): calling streamthread[%d] streamoff (fd:%d)", __FUNCTION__,
selfThread->m_index, currentNode->fd);
if (cam_int_streamoff(currentNode) < 0 ){
ALOGE("ERR(%s): stream off fail", __FUNCTION__);
}
}
ALOGV("DEBUG(%s): calling streamthread[%d] streamoff done", __FUNCTION__, selfThread->m_index);
ALOGV("DEBUG(%s): calling streamthread[%d] reqbuf 0 (fd:%d)", __FUNCTION__,
selfThread->m_index, currentNode->fd);
currentNode->buffers = 0;
cam_int_reqbufs(currentNode);
ALOGV("DEBUG(%s): calling streamthread[%d] reqbuf 0 DONE(fd:%d)", __FUNCTION__,
selfThread->m_index, currentNode->fd);
}
selfThread->m_isBufferInit = false;
selfThread->m_releasing = false;
selfThread->m_activated = false;
ALOGV("(%s): [%d] END SIGNAL_THREAD_RELEASE", __FUNCTION__, selfThread->m_index);
return;
}
if (currentSignal & SIGNAL_STREAM_DATA_COMING) {
#ifdef ENABLE_FRAME_SYNC
camera2_stream *frame;
uint8_t currentOutputStreams;
#endif
nsecs_t frameTimeStamp;
ALOGV("DEBUG(%s): streamthread[%d] processing SIGNAL_STREAM_DATA_COMING",
__FUNCTION__,selfThread->m_index);
m_streamBufferInit(self);
ALOGV("DEBUG(%s): streamthread[%d] DQBUF START", __FUNCTION__, selfThread->m_index);
selfStreamParms->bufIndex = cam_int_dqbuf(currentNode);
ALOGV("DEBUG(%s): streamthread[%d] DQBUF done index(%d)",__FUNCTION__,
selfThread->m_index, selfStreamParms->bufIndex);
#ifdef ENABLE_FRAME_SYNC
frame = (struct camera2_stream *)(currentNode->buffer[selfStreamParms->bufIndex].virt.extP[selfStreamParms->planes -1]);
frameTimeStamp = m_requestManager->GetTimestampByFrameCnt(frame->rcount);
currentOutputStreams = m_requestManager->GetOutputStreamByFrameCnt(frame->rcount);
ALOGV("frame count(SCC) : %d outputStream(%x)", frame->rcount, currentOutputStreams);
#else
frameTimeStamp = m_requestManager->GetTimestamp(m_requestManager->GetFrameIndex());
#endif
for (int i = 0 ; i < NUM_MAX_SUBSTREAM ; i++) {
if (selfThread->m_attachedSubStreams[i].streamId == -1)
continue;
#ifdef ENABLE_FRAME_SYNC
if (currentOutputStreams & (1<<selfThread->m_attachedSubStreams[i].streamId)) {
m_requestManager->NotifyStreamOutput(frame->rcount);
m_runSubStreamFunc(selfThread, &(currentNode->buffer[selfStreamParms->bufIndex]),
selfThread->m_attachedSubStreams[i].streamId, frameTimeStamp);
}
#else
if (m_currentOutputStreams & (1<<selfThread->m_attachedSubStreams[i].streamId)) {
m_runSubStreamFunc(selfThread, &(currentNode->buffer[selfStreamParms->bufIndex]),
selfThread->m_attachedSubStreams[i].streamId, frameTimeStamp);
}
#endif
}
cam_int_qbuf(currentNode, selfStreamParms->bufIndex);
ALOGV("DEBUG(%s): streamthread[%d] QBUF DONE", __FUNCTION__, selfThread->m_index);
ALOGV("DEBUG(%s): streamthread[%d] processing SIGNAL_STREAM_DATA_COMING DONE",
__FUNCTION__, selfThread->m_index);
}
return;
}
void ExynosCameraHWInterface2::m_streamThreadFunc(SignalDrivenThread * self)
{
uint32_t currentSignal = self->GetProcessingSignal();
StreamThread * selfThread = ((StreamThread*)self);
stream_parameters_t *selfStreamParms = &(selfThread->m_parameters);
node_info_t *currentNode = selfStreamParms->node;
ALOGV("DEBUG(%s): m_streamThreadFunc[%d] (%x)", __FUNCTION__, selfThread->m_index, currentSignal);
// Do something in Child thread handler
// Should change function to class that inherited StreamThread class to support dynamic stream allocation
if (selfThread->streamType == STREAM_TYPE_DIRECT) {
m_streamFunc_direct(self);
} else if (selfThread->streamType == STREAM_TYPE_INDIRECT) {
m_streamFunc_indirect(self);
}
return;
}
int ExynosCameraHWInterface2::m_jpegCreator(StreamThread *selfThread, ExynosBuffer *srcImageBuf, nsecs_t frameTimeStamp)
{
Mutex::Autolock lock(m_jpegEncoderLock);
stream_parameters_t *selfStreamParms = &(selfThread->m_parameters);
substream_parameters_t *subParms = &m_subStreams[STREAM_ID_JPEG];
status_t res;
ExynosRect jpegRect;
bool found = false;
int srcW, srcH, srcCropX, srcCropY;
int pictureW, pictureH, pictureFramesize = 0;
int pictureFormat;
int cropX, cropY, cropW, cropH = 0;
ExynosBuffer resizeBufInfo;
ExynosRect m_jpegPictureRect;
buffer_handle_t * buf = NULL;
camera2_jpeg_blob * jpegBlob = NULL;
int jpegBufSize = 0;
ALOGV("DEBUG(%s): index(%d)",__FUNCTION__, subParms->svcBufIndex);
for (int i = 0 ; subParms->numSvcBuffers ; i++) {
if (subParms->svcBufStatus[subParms->svcBufIndex] == ON_HAL) {
found = true;
break;
}
subParms->svcBufIndex++;
if (subParms->svcBufIndex >= subParms->numSvcBuffers)
subParms->svcBufIndex = 0;
}
if (!found) {
ALOGE("(%s): cannot find free svc buffer", __FUNCTION__);
subParms->svcBufIndex++;
return 1;
}
m_jpegEncodingCount++;
m_getRatioSize(selfStreamParms->width, selfStreamParms->height,
m_streamThreads[0]->m_parameters.width, m_streamThreads[0]->m_parameters.height,
&srcCropX, &srcCropY,
&srcW, &srcH,
0);
m_jpegPictureRect.w = subParms->width;
m_jpegPictureRect.h = subParms->height;
ALOGV("DEBUG(%s):w = %d, h = %d, w = %d, h = %d",
__FUNCTION__, selfStreamParms->width, selfStreamParms->height,
m_jpegPictureRect.w, m_jpegPictureRect.h);
m_getRatioSize(srcW, srcH,
m_jpegPictureRect.w, m_jpegPictureRect.h,
&cropX, &cropY,
&pictureW, &pictureH,
0);
pictureFormat = V4L2_PIX_FMT_YUYV;
pictureFramesize = FRAME_SIZE(V4L2_PIX_2_HAL_PIXEL_FORMAT(pictureFormat), pictureW, pictureH);
if (m_exynosPictureCSC) {
float zoom_w = 0, zoom_h = 0;
if (m_zoomRatio == 0)
m_zoomRatio = 1;
if (m_jpegPictureRect.w >= m_jpegPictureRect.h) {
zoom_w = pictureW / m_zoomRatio;
zoom_h = zoom_w * m_jpegPictureRect.h / m_jpegPictureRect.w;
} else {
zoom_h = pictureH / m_zoomRatio;
zoom_w = zoom_h * m_jpegPictureRect.w / m_jpegPictureRect.h;
}
cropX = (srcW - zoom_w) / 2;
cropY = (srcH - zoom_h) / 2;
cropW = zoom_w;
cropH = zoom_h;
ALOGV("DEBUG(%s):cropX = %d, cropY = %d, cropW = %d, cropH = %d",
__FUNCTION__, cropX, cropY, cropW, cropH);
csc_set_src_format(m_exynosPictureCSC,
ALIGN(srcW, 16), ALIGN(srcH, 16),
cropX, cropY, cropW, cropH,
V4L2_PIX_2_HAL_PIXEL_FORMAT(pictureFormat),
0);
csc_set_dst_format(m_exynosPictureCSC,
m_jpegPictureRect.w, m_jpegPictureRect.h,
0, 0, m_jpegPictureRect.w, m_jpegPictureRect.h,
V4L2_PIX_2_HAL_PIXEL_FORMAT(V4L2_PIX_FMT_NV16),
0);
for (int i = 0 ; i < 3 ; i++)
ALOGV("DEBUG(%s): m_pictureBuf.fd.extFd[%d]=%d ",
__FUNCTION__, i, srcImageBuf->fd.extFd[i]);
csc_set_src_buffer(m_exynosPictureCSC,
(void **)&srcImageBuf->fd.fd);
csc_set_dst_buffer(m_exynosPictureCSC,
(void **)&m_resizeBuf.fd.fd);
for (int i = 0 ; i < 3 ; i++)
ALOGV("DEBUG(%s): m_resizeBuf.virt.extP[%d]=%d m_resizeBuf.size.extS[%d]=%d",
__FUNCTION__, i, m_resizeBuf.fd.extFd[i], i, m_resizeBuf.size.extS[i]);
if (csc_convert(m_exynosPictureCSC) != 0)
ALOGE("ERR(%s): csc_convert() fail", __FUNCTION__);
}
else {
ALOGE("ERR(%s): m_exynosPictureCSC == NULL", __FUNCTION__);
}
resizeBufInfo = m_resizeBuf;
m_getAlignedYUVSize(V4L2_PIX_FMT_NV16, m_jpegPictureRect.w, m_jpegPictureRect.h, &m_resizeBuf);
for (int i = 1; i < 3; i++) {
if (m_resizeBuf.size.extS[i] != 0)
m_resizeBuf.fd.extFd[i] = m_resizeBuf.fd.extFd[i-1] + m_resizeBuf.size.extS[i-1];
ALOGV("(%s): m_resizeBuf.size.extS[%d] = %d", __FUNCTION__, i, m_resizeBuf.size.extS[i]);
}
jpegRect.w = m_jpegPictureRect.w;
jpegRect.h = m_jpegPictureRect.h;
jpegRect.colorFormat = V4L2_PIX_FMT_NV16;
for (int j = 0 ; j < 3 ; j++)
ALOGV("DEBUG(%s): dest buf node fd.extFd[%d]=%d size=%d virt=%x ",
__FUNCTION__, j, subParms->svcBuffers[subParms->svcBufIndex].fd.extFd[j],
(unsigned int)subParms->svcBuffers[subParms->svcBufIndex].size.extS[j],
(unsigned int)subParms->svcBuffers[subParms->svcBufIndex].virt.extP[j]);
jpegBufSize = subParms->svcBuffers[subParms->svcBufIndex].size.extS[0];
if (yuv2Jpeg(&m_resizeBuf, &subParms->svcBuffers[subParms->svcBufIndex], &jpegRect) == false) {
ALOGE("ERR(%s):yuv2Jpeg() fail", __FUNCTION__);
} else {
m_resizeBuf = resizeBufInfo;
int jpegSize = subParms->svcBuffers[subParms->svcBufIndex].size.s;
ALOGD("(%s): (%d x %d) jpegbuf size(%d) encoded size(%d)", __FUNCTION__,
m_jpegPictureRect.w, m_jpegPictureRect.h, jpegBufSize, jpegSize);
char * jpegBuffer = (char*)(subParms->svcBuffers[subParms->svcBufIndex].virt.extP[0]);
jpegBlob = (camera2_jpeg_blob*)(&jpegBuffer[jpegBufSize - sizeof(camera2_jpeg_blob)]);
if (jpegBuffer[jpegSize-1] == 0)
jpegSize--;
jpegBlob->jpeg_size = jpegSize;
jpegBlob->jpeg_blob_id = CAMERA2_JPEG_BLOB_ID;
}
subParms->svcBuffers[subParms->svcBufIndex].size.extS[0] = jpegBufSize;
res = subParms->streamOps->enqueue_buffer(subParms->streamOps, frameTimeStamp, &(subParms->svcBufHandle[subParms->svcBufIndex]));
ALOGV("DEBUG(%s): streamthread[%d] enqueue_buffer index(%d) to svc done res(%d)",
__FUNCTION__, selfThread->m_index, subParms->svcBufIndex, res);
if (res == 0) {
subParms->svcBufStatus[subParms->svcBufIndex] = ON_SERVICE;
subParms->numSvcBufsInHal--;
}
else {
subParms->svcBufStatus[subParms->svcBufIndex] = ON_HAL;
}
while (subParms->numSvcBufsInHal <= subParms->minUndequedBuffer)
{
bool found = false;
int checkingIndex = 0;
ALOGV("DEBUG(%s): jpeg currentBuf#(%d)", __FUNCTION__ , subParms->numSvcBufsInHal);
res = subParms->streamOps->dequeue_buffer(subParms->streamOps, &buf);
if (res != NO_ERROR || buf == NULL) {
ALOGV("DEBUG(%s): jpeg stream(%d) dequeue_buffer fail res(%d)",__FUNCTION__ , selfThread->m_index, res);
break;
}
const private_handle_t *priv_handle = reinterpret_cast<const private_handle_t *>(*buf);
subParms->numSvcBufsInHal ++;
ALOGV("DEBUG(%s): jpeg got buf(%x) numBufInHal(%d) version(%d), numFds(%d), numInts(%d)", __FUNCTION__, (uint32_t)(*buf),
subParms->numSvcBufsInHal, ((native_handle_t*)(*buf))->version, ((native_handle_t*)(*buf))->numFds, ((native_handle_t*)(*buf))->numInts);
for (checkingIndex = 0; checkingIndex < subParms->numSvcBuffers ; checkingIndex++) {
if (priv_handle->fd == subParms->svcBuffers[checkingIndex].fd.extFd[0] ) {
found = true;
break;
}
}
ALOGV("DEBUG(%s): jpeg dequeueed_buffer found index(%d)", __FUNCTION__, found);
if (!found) {
break;
}
subParms->svcBufIndex = checkingIndex;
if (subParms->svcBufStatus[subParms->svcBufIndex] == ON_SERVICE) {
subParms->svcBufStatus[subParms->svcBufIndex] = ON_HAL;
}
else {
ALOGV("DEBUG(%s): jpeg bufstatus abnormal [%d] status = %d", __FUNCTION__,
subParms->svcBufIndex, subParms->svcBufStatus[subParms->svcBufIndex]);
}
}
m_jpegEncodingCount--;
return 0;
}
int ExynosCameraHWInterface2::m_recordCreator(StreamThread *selfThread, ExynosBuffer *srcImageBuf, nsecs_t frameTimeStamp)
{
stream_parameters_t *selfStreamParms = &(selfThread->m_parameters);
substream_parameters_t *subParms = &m_subStreams[STREAM_ID_RECORD];
status_t res;
ExynosRect jpegRect;
bool found = false;
int cropX, cropY, cropW, cropH = 0;
buffer_handle_t * buf = NULL;
ALOGV("DEBUG(%s): index(%d)",__FUNCTION__, subParms->svcBufIndex);
for (int i = 0 ; subParms->numSvcBuffers ; i++) {
if (subParms->svcBufStatus[subParms->svcBufIndex] == ON_HAL) {
found = true;
break;
}
subParms->svcBufIndex++;
if (subParms->svcBufIndex >= subParms->numSvcBuffers)
subParms->svcBufIndex = 0;
}
if (!found) {
ALOGE("(%s): cannot find free svc buffer", __FUNCTION__);
subParms->svcBufIndex++;
return 1;
}
if (m_exynosVideoCSC) {
int videoW = subParms->width, videoH = subParms->height;
int cropX, cropY, cropW, cropH = 0;
int previewW = selfStreamParms->width, previewH = selfStreamParms->height;
m_getRatioSize(previewW, previewH,
videoW, videoH,
&cropX, &cropY,
&cropW, &cropH,
0);
ALOGV("DEBUG(%s):cropX = %d, cropY = %d, cropW = %d, cropH = %d",
__FUNCTION__, cropX, cropY, cropW, cropH);
csc_set_src_format(m_exynosVideoCSC,
ALIGN(previewW, 32), previewH,
cropX, cropY, cropW, cropH,
selfStreamParms->format,
0);
csc_set_dst_format(m_exynosVideoCSC,
videoW, videoH,
0, 0, videoW, videoH,
subParms->format,
1);
csc_set_src_buffer(m_exynosVideoCSC,
(void **)&srcImageBuf->fd.fd);
csc_set_dst_buffer(m_exynosVideoCSC,
(void **)(&(subParms->svcBuffers[subParms->svcBufIndex].fd.fd)));
if (csc_convert(m_exynosVideoCSC) != 0) {
ALOGE("ERR(%s):csc_convert() fail", __FUNCTION__);
}
else {
ALOGV("(%s):csc_convert() SUCCESS", __FUNCTION__);
}
}
else {
ALOGE("ERR(%s):m_exynosVideoCSC == NULL", __FUNCTION__);
}
res = subParms->streamOps->enqueue_buffer(subParms->streamOps, frameTimeStamp, &(subParms->svcBufHandle[subParms->svcBufIndex]));
ALOGV("DEBUG(%s): streamthread[%d] enqueue_buffer index(%d) to svc done res(%d)",
__FUNCTION__, selfThread->m_index, subParms->svcBufIndex, res);
if (res == 0) {
subParms->svcBufStatus[subParms->svcBufIndex] = ON_SERVICE;
subParms->numSvcBufsInHal--;
}
else {
subParms->svcBufStatus[subParms->svcBufIndex] = ON_HAL;
}
while (subParms->numSvcBufsInHal <= subParms->minUndequedBuffer)
{
bool found = false;
int checkingIndex = 0;
ALOGV("DEBUG(%s): record currentBuf#(%d)", __FUNCTION__ , subParms->numSvcBufsInHal);
res = subParms->streamOps->dequeue_buffer(subParms->streamOps, &buf);
if (res != NO_ERROR || buf == NULL) {
ALOGV("DEBUG(%s): record stream(%d) dequeue_buffer fail res(%d)",__FUNCTION__ , selfThread->m_index, res);
break;
}
const private_handle_t *priv_handle = reinterpret_cast<const private_handle_t *>(*buf);
subParms->numSvcBufsInHal ++;
ALOGV("DEBUG(%s): record got buf(%x) numBufInHal(%d) version(%d), numFds(%d), numInts(%d)", __FUNCTION__, (uint32_t)(*buf),
subParms->numSvcBufsInHal, ((native_handle_t*)(*buf))->version, ((native_handle_t*)(*buf))->numFds, ((native_handle_t*)(*buf))->numInts);
for (checkingIndex = 0; checkingIndex < subParms->numSvcBuffers ; checkingIndex++) {
if (priv_handle->fd == subParms->svcBuffers[checkingIndex].fd.extFd[0] ) {
found = true;
break;
}
}
ALOGV("DEBUG(%s): record dequeueed_buffer found(%d) index = %d", __FUNCTION__, found, checkingIndex);
if (!found) {
break;
}
subParms->svcBufIndex = checkingIndex;
if (subParms->svcBufStatus[subParms->svcBufIndex] == ON_SERVICE) {
subParms->svcBufStatus[subParms->svcBufIndex] = ON_HAL;
}
else {
ALOGV("DEBUG(%s): record bufstatus abnormal [%d] status = %d", __FUNCTION__,
subParms->svcBufIndex, subParms->svcBufStatus[subParms->svcBufIndex]);
}
}
return 0;
}
int ExynosCameraHWInterface2::m_prvcbCreator(StreamThread *selfThread, ExynosBuffer *srcImageBuf, nsecs_t frameTimeStamp)
{
stream_parameters_t *selfStreamParms = &(selfThread->m_parameters);
substream_parameters_t *subParms = &m_subStreams[STREAM_ID_PRVCB];
status_t res;
bool found = false;
int cropX, cropY, cropW, cropH = 0;
buffer_handle_t * buf = NULL;
ALOGV("DEBUG(%s): index(%d)",__FUNCTION__, subParms->svcBufIndex);
for (int i = 0 ; subParms->numSvcBuffers ; i++) {
if (subParms->svcBufStatus[subParms->svcBufIndex] == ON_HAL) {
found = true;
break;
}
subParms->svcBufIndex++;
if (subParms->svcBufIndex >= subParms->numSvcBuffers)
subParms->svcBufIndex = 0;
}
if (!found) {
ALOGE("(%s): cannot find free svc buffer", __FUNCTION__);
subParms->svcBufIndex++;
return 1;
}
if (subParms->format == HAL_PIXEL_FORMAT_YCrCb_420_SP) {
if (m_exynosVideoCSC) {
int previewCbW = subParms->width, previewCbH = subParms->height;
int cropX, cropY, cropW, cropH = 0;
int previewW = selfStreamParms->width, previewH = selfStreamParms->height;
m_getRatioSize(previewW, previewH,
previewCbW, previewCbH,
&cropX, &cropY,
&cropW, &cropH,
0);
ALOGV("DEBUG(%s):cropX = %d, cropY = %d, cropW = %d, cropH = %d",
__FUNCTION__, cropX, cropY, cropW, cropH);
csc_set_src_format(m_exynosVideoCSC,
ALIGN(previewW, 32), previewH,
cropX, cropY, cropW, cropH,
selfStreamParms->format,
0);
csc_set_dst_format(m_exynosVideoCSC,
previewCbW, previewCbH,
0, 0, previewCbW, previewCbH,
subParms->internalFormat,
1);
csc_set_src_buffer(m_exynosVideoCSC,
(void **)&srcImageBuf->fd.fd);
csc_set_dst_buffer(m_exynosVideoCSC,
(void **)(&(m_previewCbBuf.fd.fd)));
if (csc_convert(m_exynosVideoCSC) != 0) {
ALOGE("ERR(%s):previewcb csc_convert() fail", __FUNCTION__);
}
else {
ALOGV("(%s):previewcb csc_convert() SUCCESS", __FUNCTION__);
}
if (previewCbW == ALIGN(previewCbW, 16)) {
memcpy(subParms->svcBuffers[subParms->svcBufIndex].virt.extP[0],
m_previewCbBuf.virt.extP[0], previewCbW * previewCbH);
memcpy(subParms->svcBuffers[subParms->svcBufIndex].virt.extP[0] + previewCbW * previewCbH,
m_previewCbBuf.virt.extP[1], previewCbW * previewCbH / 2 );
}
else {
// TODO : copy line by line ?
}
}
else {
ALOGE("ERR(%s):m_exynosVideoCSC == NULL", __FUNCTION__);
}
}
else if (subParms->format == HAL_PIXEL_FORMAT_YV12) {
int previewCbW = subParms->width, previewCbH = subParms->height;
int stride = ALIGN(previewCbW, 16);
int uv_stride = ALIGN(previewCbW/2, 16);
int c_stride = ALIGN(stride / 2, 16);
if (previewCbW == ALIGN(previewCbW, 32)) {
memcpy(subParms->svcBuffers[subParms->svcBufIndex].virt.extP[0],
srcImageBuf->virt.extP[0], stride * previewCbH);
memcpy(subParms->svcBuffers[subParms->svcBufIndex].virt.extP[0] + stride * previewCbH,
srcImageBuf->virt.extP[1], c_stride * previewCbH / 2 );
memcpy(subParms->svcBuffers[subParms->svcBufIndex].virt.extP[0] + (stride * previewCbH) + (c_stride * previewCbH / 2),
srcImageBuf->virt.extP[2], c_stride * previewCbH / 2 );
} else {
char * dstAddr = (char *)(subParms->svcBuffers[subParms->svcBufIndex].virt.extP[0]);
char * srcAddr = (char *)(srcImageBuf->virt.extP[0]);
for (int i = 0 ; i < previewCbH ; i++) {
memcpy(dstAddr, srcAddr, previewCbW);
dstAddr += stride;
srcAddr += ALIGN(stride, 32);
}
dstAddr = (char *)(subParms->svcBuffers[subParms->svcBufIndex].virt.extP[0] + stride * previewCbH);
srcAddr = (char *)(srcImageBuf->virt.extP[1]);
for (int i = 0 ; i < previewCbH/2 ; i++) {
memcpy(dstAddr, srcAddr, previewCbW/2);
dstAddr += c_stride;
srcAddr += uv_stride;
}
srcAddr = (char *)(srcImageBuf->virt.extP[2]);
for (int i = 0 ; i < previewCbH/2 ; i++) {
memcpy(dstAddr, srcAddr, previewCbW/2);
dstAddr += c_stride;
srcAddr += uv_stride;
}
}
}
res = subParms->streamOps->enqueue_buffer(subParms->streamOps, frameTimeStamp, &(subParms->svcBufHandle[subParms->svcBufIndex]));
ALOGV("DEBUG(%s): streamthread[%d] enqueue_buffer index(%d) to svc done res(%d)",
__FUNCTION__, selfThread->m_index, subParms->svcBufIndex, res);
if (res == 0) {
subParms->svcBufStatus[subParms->svcBufIndex] = ON_SERVICE;
subParms->numSvcBufsInHal--;
}
else {
subParms->svcBufStatus[subParms->svcBufIndex] = ON_HAL;
}
while (subParms->numSvcBufsInHal <= subParms->minUndequedBuffer)
{
bool found = false;
int checkingIndex = 0;
ALOGV("DEBUG(%s): prvcb currentBuf#(%d)", __FUNCTION__ , subParms->numSvcBufsInHal);
res = subParms->streamOps->dequeue_buffer(subParms->streamOps, &buf);
if (res != NO_ERROR || buf == NULL) {
ALOGV("DEBUG(%s): prvcb stream(%d) dequeue_buffer fail res(%d)",__FUNCTION__ , selfThread->m_index, res);
break;
}
const private_handle_t *priv_handle = reinterpret_cast<const private_handle_t *>(*buf);
subParms->numSvcBufsInHal ++;
ALOGV("DEBUG(%s): prvcb got buf(%x) numBufInHal(%d) version(%d), numFds(%d), numInts(%d)", __FUNCTION__, (uint32_t)(*buf),
subParms->numSvcBufsInHal, ((native_handle_t*)(*buf))->version, ((native_handle_t*)(*buf))->numFds, ((native_handle_t*)(*buf))->numInts);
for (checkingIndex = 0; checkingIndex < subParms->numSvcBuffers ; checkingIndex++) {
if (priv_handle->fd == subParms->svcBuffers[checkingIndex].fd.extFd[0] ) {
found = true;
break;
}
}
ALOGV("DEBUG(%s): prvcb dequeueed_buffer found(%d) index = %d", __FUNCTION__, found, checkingIndex);
if (!found) {
break;
}
subParms->svcBufIndex = checkingIndex;
if (subParms->svcBufStatus[subParms->svcBufIndex] == ON_SERVICE) {
subParms->svcBufStatus[subParms->svcBufIndex] = ON_HAL;
}
else {
ALOGV("DEBUG(%s): prvcb bufstatus abnormal [%d] status = %d", __FUNCTION__,
subParms->svcBufIndex, subParms->svcBufStatus[subParms->svcBufIndex]);
}
}
return 0;
}
bool ExynosCameraHWInterface2::m_checkThumbnailSize(int w, int h)
{
int sizeOfSupportList;
//REAR Camera
if(this->getCameraId() == 0) {
sizeOfSupportList = sizeof(SUPPORT_THUMBNAIL_REAR_SIZE) / (sizeof(int)*2);
for(int i = 0; i < sizeOfSupportList; i++) {
if((SUPPORT_THUMBNAIL_REAR_SIZE[i][0] == w) &&(SUPPORT_THUMBNAIL_REAR_SIZE[i][1] == h))
return true;
}
}
else {
sizeOfSupportList = sizeof(SUPPORT_THUMBNAIL_FRONT_SIZE) / (sizeof(int)*2);
for(int i = 0; i < sizeOfSupportList; i++) {
if((SUPPORT_THUMBNAIL_FRONT_SIZE[i][0] == w) &&(SUPPORT_THUMBNAIL_FRONT_SIZE[i][1] == h))
return true;
}
}
return false;
}
bool ExynosCameraHWInterface2::yuv2Jpeg(ExynosBuffer *yuvBuf,
ExynosBuffer *jpegBuf,
ExynosRect *rect)
{
unsigned char *addr;
ExynosJpegEncoderForCamera jpegEnc;
bool ret = false;
int res = 0;
unsigned int *yuvSize = yuvBuf->size.extS;
if (jpegEnc.create()) {
ALOGE("ERR(%s):jpegEnc.create() fail", __FUNCTION__);
goto jpeg_encode_done;
}
if (jpegEnc.setQuality(m_jpegMetadata.shot.ctl.jpeg.quality)) {
ALOGE("ERR(%s):jpegEnc.setQuality() fail", __FUNCTION__);
goto jpeg_encode_done;
}
if (jpegEnc.setSize(rect->w, rect->h)) {
ALOGE("ERR(%s):jpegEnc.setSize() fail", __FUNCTION__);
goto jpeg_encode_done;
}
ALOGV("%s : width = %d , height = %d\n", __FUNCTION__, rect->w, rect->h);
if (jpegEnc.setColorFormat(rect->colorFormat)) {
ALOGE("ERR(%s):jpegEnc.setColorFormat() fail", __FUNCTION__);
goto jpeg_encode_done;
}
if (jpegEnc.setJpegFormat(V4L2_PIX_FMT_JPEG_422)) {
ALOGE("ERR(%s):jpegEnc.setJpegFormat() fail", __FUNCTION__);
goto jpeg_encode_done;
}
if((m_jpegMetadata.shot.ctl.jpeg.thumbnailSize[0] != 0) && (m_jpegMetadata.shot.ctl.jpeg.thumbnailSize[1] != 0)) {
mExifInfo.enableThumb = true;
if(!m_checkThumbnailSize(m_jpegMetadata.shot.ctl.jpeg.thumbnailSize[0], m_jpegMetadata.shot.ctl.jpeg.thumbnailSize[1])) {
// in the case of unsupported parameter, disable thumbnail
mExifInfo.enableThumb = false;
} else {
m_thumbNailW = m_jpegMetadata.shot.ctl.jpeg.thumbnailSize[0];
m_thumbNailH = m_jpegMetadata.shot.ctl.jpeg.thumbnailSize[1];
}
ALOGV("(%s) m_thumbNailW = %d, m_thumbNailH = %d", __FUNCTION__, m_thumbNailW, m_thumbNailH);
} else {
mExifInfo.enableThumb = false;
}
if (jpegEnc.setThumbnailSize(m_thumbNailW, m_thumbNailH)) {
ALOGE("ERR(%s):jpegEnc.setThumbnailSize(%d, %d) fail", __FUNCTION__, m_thumbNailH, m_thumbNailH);
goto jpeg_encode_done;
}
ALOGV("(%s):jpegEnc.setThumbnailSize(%d, %d) ", __FUNCTION__, m_thumbNailW, m_thumbNailW);
if (jpegEnc.setThumbnailQuality(m_jpegMetadata.shot.ctl.jpeg.thumbnailQuality)) {
ALOGE("ERR(%s):jpegEnc.setThumbnailQuality fail", __FUNCTION__);
goto jpeg_encode_done;
}
m_setExifChangedAttribute(&mExifInfo, rect, &m_jpegMetadata);
ALOGV("DEBUG(%s):calling jpegEnc.setInBuf() yuvSize(%d)", __FUNCTION__, *yuvSize);
if (jpegEnc.setInBuf((int *)&(yuvBuf->fd.fd), &(yuvBuf->virt.p), (int *)yuvSize)) {
ALOGE("ERR(%s):jpegEnc.setInBuf() fail", __FUNCTION__);
goto jpeg_encode_done;
}
if (jpegEnc.setOutBuf(jpegBuf->fd.fd, jpegBuf->virt.p, jpegBuf->size.extS[0] + jpegBuf->size.extS[1] + jpegBuf->size.extS[2])) {
ALOGE("ERR(%s):jpegEnc.setOutBuf() fail", __FUNCTION__);
goto jpeg_encode_done;
}
if (jpegEnc.updateConfig()) {
ALOGE("ERR(%s):jpegEnc.updateConfig() fail", __FUNCTION__);
goto jpeg_encode_done;
}
if (res = jpegEnc.encode((int *)&jpegBuf->size.s, &mExifInfo)) {
ALOGE("ERR(%s):jpegEnc.encode() fail ret(%d)", __FUNCTION__, res);
goto jpeg_encode_done;
}
ret = true;
jpeg_encode_done:
if (jpegEnc.flagCreate() == true)
jpegEnc.destroy();
return ret;
}
void ExynosCameraHWInterface2::OnPrecaptureMeteringTriggerStart(int id)
{
m_ctlInfo.flash.m_precaptureTriggerId = id;
m_ctlInfo.ae.aeStateNoti = AE_STATE_INACTIVE;
if ((m_ctlInfo.flash.i_flashMode >= AA_AEMODE_ON_AUTO_FLASH) && (m_cameraId == 0)) {
// flash is required
switch (m_ctlInfo.flash.m_flashCnt) {
case IS_FLASH_STATE_AUTO_DONE:
case IS_FLASH_STATE_AUTO_OFF:
// Flash capture sequence, AF flash was executed before
break;
default:
// Full flash sequence
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_ON;
m_ctlInfo.flash.m_flashEnableFlg = true;
m_ctlInfo.flash.m_flashTimeOut = 0;
}
} else {
// Skip pre-capture in case of non-flash.
ALOGV("[PreCap] Flash OFF mode ");
m_ctlInfo.flash.m_flashEnableFlg = false;
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_NONE;
}
ALOGV("[PreCap] OnPrecaptureMeteringTriggerStart (ID %d) (flag : %d) (cnt : %d)", id, m_ctlInfo.flash.m_flashEnableFlg, m_ctlInfo.flash.m_flashCnt);
OnPrecaptureMeteringNotificationSensor();
}
void ExynosCameraHWInterface2::OnAfTrigger(int id)
{
m_afTriggerId = id;
switch (m_afMode) {
case AA_AFMODE_AUTO:
case AA_AFMODE_MACRO:
case AA_AFMODE_MANUAL:
ALOGV("[AF] OnAfTrigger - AUTO,MACRO,OFF (Mode %d) ", m_afMode);
// If flash is enable, Flash operation is executed before triggering AF
if ((m_ctlInfo.flash.i_flashMode >= AA_AEMODE_ON_AUTO_FLASH)
&& (m_ctlInfo.flash.m_flashEnableFlg == false)
&& (m_cameraId == 0)) {
ALOGV("[Flash] AF Flash start with Mode (%d)", m_afMode);
m_ctlInfo.flash.m_flashEnableFlg = true;
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_ON;
m_ctlInfo.flash.m_flashDecisionResult = false;
m_ctlInfo.flash.m_afFlashDoneFlg = true;
}
OnAfTriggerAutoMacro(id);
break;
case AA_AFMODE_CONTINUOUS_VIDEO:
ALOGV("[AF] OnAfTrigger - AA_AFMODE_CONTINUOUS_VIDEO (Mode %d) ", m_afMode);
OnAfTriggerCAFVideo(id);
break;
case AA_AFMODE_CONTINUOUS_PICTURE:
ALOGV("[AF] OnAfTrigger - AA_AFMODE_CONTINUOUS_PICTURE (Mode %d) ", m_afMode);
OnAfTriggerCAFPicture(id);
break;
case AA_AFMODE_OFF:
default:
break;
}
}
void ExynosCameraHWInterface2::OnAfTriggerAutoMacro(int id)
{
int nextState = NO_TRANSITION;
switch (m_afState) {
case HAL_AFSTATE_INACTIVE:
case HAL_AFSTATE_PASSIVE_FOCUSED:
case HAL_AFSTATE_SCANNING:
nextState = HAL_AFSTATE_NEEDS_COMMAND;
m_IsAfTriggerRequired = true;
break;
case HAL_AFSTATE_NEEDS_COMMAND:
nextState = NO_TRANSITION;
break;
case HAL_AFSTATE_STARTED:
nextState = NO_TRANSITION;
break;
case HAL_AFSTATE_LOCKED:
nextState = HAL_AFSTATE_NEEDS_COMMAND;
m_IsAfTriggerRequired = true;
break;
case HAL_AFSTATE_FAILED:
nextState = HAL_AFSTATE_NEEDS_COMMAND;
m_IsAfTriggerRequired = true;
break;
default:
break;
}
ALOGV("(%s): State (%d) -> (%d)", __FUNCTION__, m_afState, nextState);
if (nextState != NO_TRANSITION)
m_afState = nextState;
}
void ExynosCameraHWInterface2::OnAfTriggerCAFPicture(int id)
{
int nextState = NO_TRANSITION;
switch (m_afState) {
case HAL_AFSTATE_INACTIVE:
nextState = HAL_AFSTATE_FAILED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED);
break;
case HAL_AFSTATE_NEEDS_COMMAND:
// not used
break;
case HAL_AFSTATE_STARTED:
nextState = HAL_AFSTATE_NEEDS_DETERMINATION;
m_AfHwStateFailed = false;
break;
case HAL_AFSTATE_SCANNING:
nextState = HAL_AFSTATE_NEEDS_DETERMINATION;
m_AfHwStateFailed = false;
// If flash is enable, Flash operation is executed before triggering AF
if ((m_ctlInfo.flash.i_flashMode >= AA_AEMODE_ON_AUTO_FLASH)
&& (m_ctlInfo.flash.m_flashEnableFlg == false)
&& (m_cameraId == 0)) {
ALOGV("[AF Flash] AF Flash start with Mode (%d) state (%d) id (%d)", m_afMode, m_afState, id);
m_ctlInfo.flash.m_flashEnableFlg = true;
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_ON;
m_ctlInfo.flash.m_flashDecisionResult = false;
m_ctlInfo.flash.m_afFlashDoneFlg = true;
}
break;
case HAL_AFSTATE_NEEDS_DETERMINATION:
nextState = NO_TRANSITION;
break;
case HAL_AFSTATE_PASSIVE_FOCUSED:
m_IsAfLockRequired = true;
if (m_AfHwStateFailed) {
ALOGE("(%s): [CAF] LAST : fail", __FUNCTION__);
SetAfStateForService(ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED);
nextState = HAL_AFSTATE_FAILED;
}
else {
ALOGV("(%s): [CAF] LAST : success", __FUNCTION__);
SetAfStateForService(ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED);
nextState = HAL_AFSTATE_LOCKED;
}
m_AfHwStateFailed = false;
break;
case HAL_AFSTATE_LOCKED:
nextState = NO_TRANSITION;
break;
case HAL_AFSTATE_FAILED:
nextState = NO_TRANSITION;
break;
default:
break;
}
ALOGV("(%s): State (%d) -> (%d)", __FUNCTION__, m_afState, nextState);
if (nextState != NO_TRANSITION)
m_afState = nextState;
}
void ExynosCameraHWInterface2::OnAfTriggerCAFVideo(int id)
{
int nextState = NO_TRANSITION;
switch (m_afState) {
case HAL_AFSTATE_INACTIVE:
nextState = HAL_AFSTATE_FAILED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED);
break;
case HAL_AFSTATE_NEEDS_COMMAND:
// not used
break;
case HAL_AFSTATE_STARTED:
m_IsAfLockRequired = true;
nextState = HAL_AFSTATE_FAILED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED);
break;
case HAL_AFSTATE_SCANNING:
m_IsAfLockRequired = true;
nextState = HAL_AFSTATE_FAILED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED);
break;
case HAL_AFSTATE_NEEDS_DETERMINATION:
// not used
break;
case HAL_AFSTATE_PASSIVE_FOCUSED:
m_IsAfLockRequired = true;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED);
nextState = HAL_AFSTATE_LOCKED;
break;
case HAL_AFSTATE_LOCKED:
nextState = NO_TRANSITION;
break;
case HAL_AFSTATE_FAILED:
nextState = NO_TRANSITION;
break;
default:
break;
}
ALOGV("(%s): State (%d) -> (%d)", __FUNCTION__, m_afState, nextState);
if (nextState != NO_TRANSITION)
m_afState = nextState;
}
void ExynosCameraHWInterface2::OnPrecaptureMeteringNotificationSensor()
{
if (m_ctlInfo.flash.m_precaptureTriggerId > 0) {
// Just noti of pre-capture start
if (m_ctlInfo.ae.aeStateNoti != AE_STATE_PRECAPTURE) {
m_notifyCb(CAMERA2_MSG_AUTOEXPOSURE,
ANDROID_CONTROL_AE_STATE_PRECAPTURE,
m_ctlInfo.flash.m_precaptureTriggerId, 0, m_callbackCookie);
ALOGV("(%s) ANDROID_CONTROL_AE_STATE_PRECAPTURE (%d)", __FUNCTION__, m_ctlInfo.flash.m_flashCnt);
m_notifyCb(CAMERA2_MSG_AUTOWB,
ANDROID_CONTROL_AWB_STATE_CONVERGED,
m_ctlInfo.flash.m_precaptureTriggerId, 0, m_callbackCookie);
m_ctlInfo.ae.aeStateNoti = AE_STATE_PRECAPTURE;
}
}
}
void ExynosCameraHWInterface2::OnPrecaptureMeteringNotificationISP()
{
if (m_ctlInfo.flash.m_precaptureTriggerId > 0) {
if (m_ctlInfo.flash.m_flashEnableFlg) {
// flash case
switch (m_ctlInfo.flash.m_flashCnt) {
case IS_FLASH_STATE_AUTO_DONE:
case IS_FLASH_STATE_AUTO_OFF:
if (m_ctlInfo.ae.aeStateNoti == AE_STATE_PRECAPTURE) {
// End notification
m_notifyCb(CAMERA2_MSG_AUTOEXPOSURE,
ANDROID_CONTROL_AE_STATE_CONVERGED,
m_ctlInfo.flash.m_precaptureTriggerId, 0, m_callbackCookie);
ALOGV("(%s) ANDROID_CONTROL_AE_STATE_CONVERGED (%d)", __FUNCTION__, m_ctlInfo.flash.m_flashCnt);
m_notifyCb(CAMERA2_MSG_AUTOWB,
ANDROID_CONTROL_AWB_STATE_CONVERGED,
m_ctlInfo.flash.m_precaptureTriggerId, 0, m_callbackCookie);
m_ctlInfo.flash.m_precaptureTriggerId = 0;
} else {
m_notifyCb(CAMERA2_MSG_AUTOEXPOSURE,
ANDROID_CONTROL_AE_STATE_PRECAPTURE,
m_ctlInfo.flash.m_precaptureTriggerId, 0, m_callbackCookie);
ALOGV("(%s) ANDROID_CONTROL_AE_STATE_PRECAPTURE (%d)", __FUNCTION__, m_ctlInfo.flash.m_flashCnt);
m_notifyCb(CAMERA2_MSG_AUTOWB,
ANDROID_CONTROL_AWB_STATE_CONVERGED,
m_ctlInfo.flash.m_precaptureTriggerId, 0, m_callbackCookie);
m_ctlInfo.ae.aeStateNoti = AE_STATE_PRECAPTURE;
}
break;
case IS_FLASH_STATE_CAPTURE:
case IS_FLASH_STATE_CAPTURE_WAIT:
case IS_FLASH_STATE_CAPTURE_JPEG:
case IS_FLASH_STATE_CAPTURE_END:
ALOGV("(%s) INVALID flash state count. (%d)", __FUNCTION__, (int)m_ctlInfo.flash.m_flashCnt);
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_AUTO_DONE;
m_notifyCb(CAMERA2_MSG_AUTOEXPOSURE,
ANDROID_CONTROL_AE_STATE_CONVERGED,
m_ctlInfo.flash.m_precaptureTriggerId, 0, m_callbackCookie);
m_notifyCb(CAMERA2_MSG_AUTOWB,
ANDROID_CONTROL_AWB_STATE_CONVERGED,
m_ctlInfo.flash.m_precaptureTriggerId, 0, m_callbackCookie);
m_ctlInfo.flash.m_precaptureTriggerId = 0;
break;
}
} else {
// non-flash case
if (m_ctlInfo.ae.aeStateNoti == AE_STATE_PRECAPTURE) {
m_notifyCb(CAMERA2_MSG_AUTOEXPOSURE,
ANDROID_CONTROL_AE_STATE_CONVERGED,
m_ctlInfo.flash.m_precaptureTriggerId, 0, m_callbackCookie);
ALOGV("(%s) ANDROID_CONTROL_AE_STATE_CONVERGED (%d)", __FUNCTION__, m_ctlInfo.flash.m_flashCnt);
m_notifyCb(CAMERA2_MSG_AUTOWB,
ANDROID_CONTROL_AWB_STATE_CONVERGED,
m_ctlInfo.flash.m_precaptureTriggerId, 0, m_callbackCookie);
m_ctlInfo.flash.m_precaptureTriggerId = 0;
}
}
}
}
void ExynosCameraHWInterface2::OnAfNotification(enum aa_afstate noti)
{
switch (m_afMode) {
case AA_AFMODE_AUTO:
case AA_AFMODE_MACRO:
OnAfNotificationAutoMacro(noti);
break;
case AA_AFMODE_CONTINUOUS_VIDEO:
OnAfNotificationCAFVideo(noti);
break;
case AA_AFMODE_CONTINUOUS_PICTURE:
OnAfNotificationCAFPicture(noti);
break;
case AA_AFMODE_OFF:
default:
break;
}
}
void ExynosCameraHWInterface2::OnAfNotificationAutoMacro(enum aa_afstate noti)
{
int nextState = NO_TRANSITION;
bool bWrongTransition = false;
if (m_afState == HAL_AFSTATE_INACTIVE || m_afState == HAL_AFSTATE_NEEDS_COMMAND) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
case AA_AFSTATE_ACTIVE_SCAN:
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
case AA_AFSTATE_AF_FAILED_FOCUS:
default:
nextState = NO_TRANSITION;
break;
}
}
else if (m_afState == HAL_AFSTATE_STARTED) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_ACTIVE_SCAN:
nextState = HAL_AFSTATE_SCANNING;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN);
break;
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_AF_FAILED_FOCUS:
nextState = NO_TRANSITION;
break;
default:
bWrongTransition = true;
break;
}
}
else if (m_afState == HAL_AFSTATE_SCANNING) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
bWrongTransition = true;
break;
case AA_AFSTATE_ACTIVE_SCAN:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
// If Flash mode is enable, after AF execute pre-capture metering
if (m_ctlInfo.flash.m_flashEnableFlg && m_ctlInfo.flash.m_afFlashDoneFlg) {
switch (m_ctlInfo.flash.m_flashCnt) {
case IS_FLASH_STATE_ON_DONE:
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_AUTO_AE_AWB_LOCK;
nextState = NO_TRANSITION;
break;
case IS_FLASH_STATE_AUTO_DONE:
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_AUTO_OFF;
nextState = HAL_AFSTATE_LOCKED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED);
break;
default:
nextState = NO_TRANSITION;
}
} else {
nextState = HAL_AFSTATE_LOCKED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED);
}
break;
case AA_AFSTATE_AF_FAILED_FOCUS:
// If Flash mode is enable, after AF execute pre-capture metering
if (m_ctlInfo.flash.m_flashEnableFlg && m_ctlInfo.flash.m_afFlashDoneFlg) {
switch (m_ctlInfo.flash.m_flashCnt) {
case IS_FLASH_STATE_ON_DONE:
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_AUTO_AE_AWB_LOCK;
nextState = NO_TRANSITION;
break;
case IS_FLASH_STATE_AUTO_DONE:
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_AUTO_OFF;
nextState = HAL_AFSTATE_FAILED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED);
break;
default:
nextState = NO_TRANSITION;
}
} else {
nextState = HAL_AFSTATE_FAILED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED);
}
break;
default:
bWrongTransition = true;
break;
}
}
else if (m_afState == HAL_AFSTATE_LOCKED) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
case AA_AFSTATE_ACTIVE_SCAN:
bWrongTransition = true;
break;
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_AF_FAILED_FOCUS:
default:
bWrongTransition = true;
break;
}
}
else if (m_afState == HAL_AFSTATE_FAILED) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
case AA_AFSTATE_ACTIVE_SCAN:
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
bWrongTransition = true;
break;
case AA_AFSTATE_AF_FAILED_FOCUS:
nextState = NO_TRANSITION;
break;
default:
bWrongTransition = true;
break;
}
}
if (bWrongTransition) {
ALOGV("(%s): Wrong Transition state(%d) noti(%d)", __FUNCTION__, m_afState, noti);
return;
}
ALOGV("(%s): State (%d) -> (%d) by (%d)", __FUNCTION__, m_afState, nextState, noti);
if (nextState != NO_TRANSITION)
m_afState = nextState;
}
void ExynosCameraHWInterface2::OnAfNotificationCAFPicture(enum aa_afstate noti)
{
int nextState = NO_TRANSITION;
bool bWrongTransition = false;
if (m_afState == HAL_AFSTATE_INACTIVE) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
case AA_AFSTATE_ACTIVE_SCAN:
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
case AA_AFSTATE_AF_FAILED_FOCUS:
default:
nextState = NO_TRANSITION;
break;
}
// Check AF notification after triggering
if (m_ctlInfo.af.m_afTriggerTimeOut > 0) {
if (m_ctlInfo.af.m_afTriggerTimeOut > 5) {
ALOGE("(%s) AF notification error - try to re-trigger mode (%)", __FUNCTION__, m_afMode);
SetAfMode(AA_AFMODE_OFF);
SetAfMode(m_afMode);
m_ctlInfo.af.m_afTriggerTimeOut = 0;
} else {
m_ctlInfo.af.m_afTriggerTimeOut++;
}
}
}
else if (m_afState == HAL_AFSTATE_STARTED) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_ACTIVE_SCAN:
nextState = HAL_AFSTATE_SCANNING;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN);
m_ctlInfo.af.m_afTriggerTimeOut = 0;
break;
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
nextState = HAL_AFSTATE_PASSIVE_FOCUSED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED);
m_ctlInfo.af.m_afTriggerTimeOut = 0;
break;
case AA_AFSTATE_AF_FAILED_FOCUS:
//nextState = HAL_AFSTATE_FAILED;
//SetAfStateForService(ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED);
nextState = NO_TRANSITION;
break;
default:
bWrongTransition = true;
break;
}
}
else if (m_afState == HAL_AFSTATE_SCANNING) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_ACTIVE_SCAN:
nextState = NO_TRANSITION;
m_AfHwStateFailed = false;
break;
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
nextState = HAL_AFSTATE_PASSIVE_FOCUSED;
m_AfHwStateFailed = false;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED);
break;
case AA_AFSTATE_AF_FAILED_FOCUS:
nextState = HAL_AFSTATE_PASSIVE_FOCUSED;
m_AfHwStateFailed = true;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED);
break;
default:
bWrongTransition = true;
break;
}
}
else if (m_afState == HAL_AFSTATE_PASSIVE_FOCUSED) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_ACTIVE_SCAN:
nextState = HAL_AFSTATE_SCANNING;
m_AfHwStateFailed = false;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN);
break;
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
nextState = NO_TRANSITION;
m_AfHwStateFailed = false;
break;
case AA_AFSTATE_AF_FAILED_FOCUS:
nextState = NO_TRANSITION;
m_AfHwStateFailed = true;
break;
default:
bWrongTransition = true;
break;
}
}
else if (m_afState == HAL_AFSTATE_NEEDS_DETERMINATION) {
//Skip notification in case of flash, wait the end of flash on
if (m_ctlInfo.flash.m_flashEnableFlg && m_ctlInfo.flash.m_afFlashDoneFlg) {
if (m_ctlInfo.flash.m_flashCnt < IS_FLASH_STATE_ON_DONE)
return;
}
switch (noti) {
case AA_AFSTATE_INACTIVE:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_ACTIVE_SCAN:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
// If Flash mode is enable, after AF execute pre-capture metering
if (m_ctlInfo.flash.m_flashEnableFlg && m_ctlInfo.flash.m_afFlashDoneFlg) {
switch (m_ctlInfo.flash.m_flashCnt) {
case IS_FLASH_STATE_ON_DONE:
ALOGV("[AF Flash] AUTO start with Mode (%d) state (%d) noti (%d)", m_afMode, m_afState, (int)noti);
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_AUTO_AE_AWB_LOCK;
nextState = NO_TRANSITION;
break;
case IS_FLASH_STATE_AUTO_DONE:
ALOGV("[AF Flash] AUTO end with Mode (%d) state (%d) noti (%d)", m_afMode, m_afState, (int)noti);
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_AUTO_OFF;
m_IsAfLockRequired = true;
nextState = HAL_AFSTATE_LOCKED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED);
break;
default:
nextState = NO_TRANSITION;
}
} else {
m_IsAfLockRequired = true;
nextState = HAL_AFSTATE_LOCKED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED);
}
break;
case AA_AFSTATE_AF_FAILED_FOCUS:
// If Flash mode is enable, after AF execute pre-capture metering
if (m_ctlInfo.flash.m_flashEnableFlg && m_ctlInfo.flash.m_afFlashDoneFlg) {
switch (m_ctlInfo.flash.m_flashCnt) {
case IS_FLASH_STATE_ON_DONE:
ALOGV("[AF Flash] AUTO start with Mode (%d) state (%d) noti (%d)", m_afMode, m_afState, (int)noti);
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_AUTO_AE_AWB_LOCK;
nextState = NO_TRANSITION;
break;
case IS_FLASH_STATE_AUTO_DONE:
ALOGV("[AF Flash] AUTO end with Mode (%d) state (%d) noti (%d)", m_afMode, m_afState, (int)noti);
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_AUTO_OFF;
m_IsAfLockRequired = true;
nextState = HAL_AFSTATE_FAILED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED);
break;
default:
nextState = NO_TRANSITION;
}
} else {
m_IsAfLockRequired = true;
nextState = HAL_AFSTATE_FAILED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED);
}
break;
default:
bWrongTransition = true;
break;
}
}
else if (m_afState == HAL_AFSTATE_LOCKED) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_ACTIVE_SCAN:
bWrongTransition = true;
break;
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_AF_FAILED_FOCUS:
default:
bWrongTransition = true;
break;
}
}
else if (m_afState == HAL_AFSTATE_FAILED) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
bWrongTransition = true;
break;
case AA_AFSTATE_ACTIVE_SCAN:
nextState = HAL_AFSTATE_SCANNING;
break;
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
bWrongTransition = true;
break;
case AA_AFSTATE_AF_FAILED_FOCUS:
nextState = NO_TRANSITION;
break;
default:
bWrongTransition = true;
break;
}
}
if (bWrongTransition) {
ALOGV("(%s): Wrong Transition state(%d) noti(%d)", __FUNCTION__, m_afState, noti);
return;
}
ALOGV("(%s): State (%d) -> (%d) by (%d)", __FUNCTION__, m_afState, nextState, noti);
if (nextState != NO_TRANSITION)
m_afState = nextState;
}
void ExynosCameraHWInterface2::OnAfNotificationCAFVideo(enum aa_afstate noti)
{
int nextState = NO_TRANSITION;
bool bWrongTransition = false;
if (m_afState == HAL_AFSTATE_INACTIVE) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
case AA_AFSTATE_ACTIVE_SCAN:
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
case AA_AFSTATE_AF_FAILED_FOCUS:
default:
nextState = NO_TRANSITION;
break;
}
}
else if (m_afState == HAL_AFSTATE_STARTED) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_ACTIVE_SCAN:
nextState = HAL_AFSTATE_SCANNING;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN);
break;
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
nextState = HAL_AFSTATE_PASSIVE_FOCUSED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED);
break;
case AA_AFSTATE_AF_FAILED_FOCUS:
nextState = HAL_AFSTATE_FAILED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED);
break;
default:
bWrongTransition = true;
break;
}
}
else if (m_afState == HAL_AFSTATE_SCANNING) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
bWrongTransition = true;
break;
case AA_AFSTATE_ACTIVE_SCAN:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
nextState = HAL_AFSTATE_PASSIVE_FOCUSED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED);
break;
case AA_AFSTATE_AF_FAILED_FOCUS:
nextState = NO_TRANSITION;
break;
default:
bWrongTransition = true;
break;
}
}
else if (m_afState == HAL_AFSTATE_PASSIVE_FOCUSED) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
bWrongTransition = true;
break;
case AA_AFSTATE_ACTIVE_SCAN:
nextState = HAL_AFSTATE_SCANNING;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN);
break;
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_AF_FAILED_FOCUS:
nextState = HAL_AFSTATE_FAILED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED);
// TODO : needs NO_TRANSITION ?
break;
default:
bWrongTransition = true;
break;
}
}
else if (m_afState == HAL_AFSTATE_NEEDS_DETERMINATION) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
bWrongTransition = true;
break;
case AA_AFSTATE_ACTIVE_SCAN:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
m_IsAfLockRequired = true;
nextState = HAL_AFSTATE_LOCKED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED);
break;
case AA_AFSTATE_AF_FAILED_FOCUS:
nextState = HAL_AFSTATE_FAILED;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED);
break;
default:
bWrongTransition = true;
break;
}
}
else if (m_afState == HAL_AFSTATE_LOCKED) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_ACTIVE_SCAN:
bWrongTransition = true;
break;
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
nextState = NO_TRANSITION;
break;
case AA_AFSTATE_AF_FAILED_FOCUS:
default:
bWrongTransition = true;
break;
}
}
else if (m_afState == HAL_AFSTATE_FAILED) {
switch (noti) {
case AA_AFSTATE_INACTIVE:
case AA_AFSTATE_ACTIVE_SCAN:
case AA_AFSTATE_AF_ACQUIRED_FOCUS:
bWrongTransition = true;
break;
case AA_AFSTATE_AF_FAILED_FOCUS:
nextState = NO_TRANSITION;
break;
default:
bWrongTransition = true;
break;
}
}
if (bWrongTransition) {
ALOGV("(%s): Wrong Transition state(%d) noti(%d)", __FUNCTION__, m_afState, noti);
return;
}
ALOGV("(%s): State (%d) -> (%d) by (%d)", __FUNCTION__, m_afState, nextState, noti);
if (nextState != NO_TRANSITION)
m_afState = nextState;
}
void ExynosCameraHWInterface2::OnAfCancel(int id)
{
m_afTriggerId = id;
switch (m_afMode) {
case AA_AFMODE_AUTO:
case AA_AFMODE_MACRO:
case AA_AFMODE_OFF:
case AA_AFMODE_MANUAL:
OnAfCancelAutoMacro(id);
break;
case AA_AFMODE_CONTINUOUS_VIDEO:
OnAfCancelCAFVideo(id);
break;
case AA_AFMODE_CONTINUOUS_PICTURE:
OnAfCancelCAFPicture(id);
break;
default:
break;
}
}
void ExynosCameraHWInterface2::OnAfCancelAutoMacro(int id)
{
int nextState = NO_TRANSITION;
if (m_ctlInfo.flash.m_flashEnableFlg && m_ctlInfo.flash.m_afFlashDoneFlg) {
m_ctlInfo.flash.m_flashCnt = IS_FLASH_STATE_AUTO_OFF;
}
switch (m_afState) {
case HAL_AFSTATE_INACTIVE:
nextState = NO_TRANSITION;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_INACTIVE);
break;
case HAL_AFSTATE_NEEDS_COMMAND:
case HAL_AFSTATE_STARTED:
case HAL_AFSTATE_SCANNING:
case HAL_AFSTATE_LOCKED:
case HAL_AFSTATE_FAILED:
SetAfMode(AA_AFMODE_OFF);
SetAfStateForService(ANDROID_CONTROL_AF_STATE_INACTIVE);
nextState = HAL_AFSTATE_INACTIVE;
break;
default:
break;
}
ALOGV("(%s): State (%d) -> (%d)", __FUNCTION__, m_afState, nextState);
if (nextState != NO_TRANSITION)
m_afState = nextState;
}
void ExynosCameraHWInterface2::OnAfCancelCAFPicture(int id)
{
int nextState = NO_TRANSITION;
switch (m_afState) {
case HAL_AFSTATE_INACTIVE:
nextState = NO_TRANSITION;
break;
case HAL_AFSTATE_NEEDS_COMMAND:
case HAL_AFSTATE_STARTED:
case HAL_AFSTATE_SCANNING:
case HAL_AFSTATE_LOCKED:
case HAL_AFSTATE_FAILED:
case HAL_AFSTATE_NEEDS_DETERMINATION:
case HAL_AFSTATE_PASSIVE_FOCUSED:
SetAfMode(AA_AFMODE_OFF);
SetAfStateForService(ANDROID_CONTROL_AF_STATE_INACTIVE);
SetAfMode(AA_AFMODE_CONTINUOUS_PICTURE);
nextState = HAL_AFSTATE_INACTIVE;
break;
default:
break;
}
ALOGV("(%s): State (%d) -> (%d)", __FUNCTION__, m_afState, nextState);
if (nextState != NO_TRANSITION)
m_afState = nextState;
}
void ExynosCameraHWInterface2::OnAfCancelCAFVideo(int id)
{
int nextState = NO_TRANSITION;
switch (m_afState) {
case HAL_AFSTATE_INACTIVE:
nextState = NO_TRANSITION;
break;
case HAL_AFSTATE_NEEDS_COMMAND:
case HAL_AFSTATE_STARTED:
case HAL_AFSTATE_SCANNING:
case HAL_AFSTATE_LOCKED:
case HAL_AFSTATE_FAILED:
case HAL_AFSTATE_NEEDS_DETERMINATION:
case HAL_AFSTATE_PASSIVE_FOCUSED:
SetAfMode(AA_AFMODE_OFF);
SetAfStateForService(ANDROID_CONTROL_AF_STATE_INACTIVE);
SetAfMode(AA_AFMODE_CONTINUOUS_VIDEO);
nextState = HAL_AFSTATE_INACTIVE;
break;
default:
break;
}
ALOGV("(%s): State (%d) -> (%d)", __FUNCTION__, m_afState, nextState);
if (nextState != NO_TRANSITION)
m_afState = nextState;
}
void ExynosCameraHWInterface2::SetAfStateForService(int newState)
{
if (m_serviceAfState != newState || newState == 0)
m_notifyCb(CAMERA2_MSG_AUTOFOCUS, newState, m_afTriggerId, 0, m_callbackCookie);
m_serviceAfState = newState;
}
int ExynosCameraHWInterface2::GetAfStateForService()
{
return m_serviceAfState;
}
void ExynosCameraHWInterface2::SetAfMode(enum aa_afmode afMode)
{
if (m_afMode != afMode) {
if (m_IsAfModeUpdateRequired && m_afMode != AA_AFMODE_OFF) {
m_afMode2 = afMode;
ALOGV("(%s): pending(%d) and new(%d)", __FUNCTION__, m_afMode, afMode);
}
else {
ALOGV("(%s): current(%d) new(%d)", __FUNCTION__, m_afMode, afMode);
m_IsAfModeUpdateRequired = true;
m_afMode = afMode;
SetAfStateForService(ANDROID_CONTROL_AF_STATE_INACTIVE);
m_afState = HAL_AFSTATE_INACTIVE;
}
}
}
void ExynosCameraHWInterface2::m_setExifFixedAttribute(void)
{
char property[PROPERTY_VALUE_MAX];
//2 0th IFD TIFF Tags
//3 Maker
property_get("ro.product.brand", property, EXIF_DEF_MAKER);
strncpy((char *)mExifInfo.maker, property,
sizeof(mExifInfo.maker) - 1);
mExifInfo.maker[sizeof(mExifInfo.maker) - 1] = '\0';
//3 Model
property_get("ro.product.model", property, EXIF_DEF_MODEL);
strncpy((char *)mExifInfo.model, property,
sizeof(mExifInfo.model) - 1);
mExifInfo.model[sizeof(mExifInfo.model) - 1] = '\0';
//3 Software
property_get("ro.build.id", property, EXIF_DEF_SOFTWARE);
strncpy((char *)mExifInfo.software, property,
sizeof(mExifInfo.software) - 1);
mExifInfo.software[sizeof(mExifInfo.software) - 1] = '\0';
//3 YCbCr Positioning
mExifInfo.ycbcr_positioning = EXIF_DEF_YCBCR_POSITIONING;
//2 0th IFD Exif Private Tags
//3 F Number
mExifInfo.fnumber.num = (uint32_t)(m_camera2->m_curCameraInfo->fnumber * EXIF_DEF_FNUMBER_DEN);
mExifInfo.fnumber.den = EXIF_DEF_FNUMBER_DEN;
//3 Exposure Program
mExifInfo.exposure_program = EXIF_DEF_EXPOSURE_PROGRAM;
//3 Exif Version
memcpy(mExifInfo.exif_version, EXIF_DEF_EXIF_VERSION, sizeof(mExifInfo.exif_version));
//3 Aperture
double av = APEX_FNUM_TO_APERTURE((double)mExifInfo.fnumber.num/mExifInfo.fnumber.den);
mExifInfo.aperture.num = (uint32_t)(av*EXIF_DEF_APEX_DEN);
mExifInfo.aperture.den = EXIF_DEF_APEX_DEN;
//3 Maximum lens aperture
mExifInfo.max_aperture.num = mExifInfo.aperture.num;
mExifInfo.max_aperture.den = mExifInfo.aperture.den;
//3 Lens Focal Length
mExifInfo.focal_length.num = (uint32_t)(m_camera2->m_curCameraInfo->focalLength * 100);
mExifInfo.focal_length.den = EXIF_DEF_FOCAL_LEN_DEN;
//3 User Comments
strcpy((char *)mExifInfo.user_comment, EXIF_DEF_USERCOMMENTS);
//3 Color Space information
mExifInfo.color_space = EXIF_DEF_COLOR_SPACE;
//3 Exposure Mode
mExifInfo.exposure_mode = EXIF_DEF_EXPOSURE_MODE;
//2 0th IFD GPS Info Tags
unsigned char gps_version[4] = { 0x02, 0x02, 0x00, 0x00 };
memcpy(mExifInfo.gps_version_id, gps_version, sizeof(gps_version));
//2 1th IFD TIFF Tags
mExifInfo.compression_scheme = EXIF_DEF_COMPRESSION;
mExifInfo.x_resolution.num = EXIF_DEF_RESOLUTION_NUM;
mExifInfo.x_resolution.den = EXIF_DEF_RESOLUTION_DEN;
mExifInfo.y_resolution.num = EXIF_DEF_RESOLUTION_NUM;
mExifInfo.y_resolution.den = EXIF_DEF_RESOLUTION_DEN;
mExifInfo.resolution_unit = EXIF_DEF_RESOLUTION_UNIT;
}
void ExynosCameraHWInterface2::m_setExifChangedAttribute(exif_attribute_t *exifInfo, ExynosRect *rect,
camera2_shot_ext *currentEntry)
{
camera2_dm *dm = &(currentEntry->shot.dm);
camera2_ctl *ctl = &(currentEntry->shot.ctl);
ALOGV("(%s): framecnt(%d) exp(%lld) iso(%d)", __FUNCTION__, ctl->request.frameCount, dm->sensor.exposureTime,dm->aa.isoValue );
if (!ctl->request.frameCount)
return;
//2 0th IFD TIFF Tags
//3 Width
exifInfo->width = rect->w;
//3 Height
exifInfo->height = rect->h;
//3 Orientation
switch (ctl->jpeg.orientation) {
case 90:
exifInfo->orientation = EXIF_ORIENTATION_90;
break;
case 180:
exifInfo->orientation = EXIF_ORIENTATION_180;
break;
case 270:
exifInfo->orientation = EXIF_ORIENTATION_270;
break;
case 0:
default:
exifInfo->orientation = EXIF_ORIENTATION_UP;
break;
}
//3 Date time
time_t rawtime;
struct tm *timeinfo;
time(&rawtime);
timeinfo = localtime(&rawtime);
strftime((char *)exifInfo->date_time, 20, "%Y:%m:%d %H:%M:%S", timeinfo);
//2 0th IFD Exif Private Tags
//3 Exposure Time
int shutterSpeed = (dm->sensor.exposureTime/1000);
// To display exposure time just above 500ms as 1/2sec, not 1 sec.
if (shutterSpeed > 500000)
shutterSpeed -= 100000;
if (shutterSpeed < 0) {
shutterSpeed = 100;
}
exifInfo->exposure_time.num = 1;
// x us -> 1/x s */
//exifInfo->exposure_time.den = (uint32_t)(1000000 / shutterSpeed);
exifInfo->exposure_time.den = (uint32_t)((double)1000000 / shutterSpeed);
//3 ISO Speed Rating
exifInfo->iso_speed_rating = dm->aa.isoValue;
uint32_t av, tv, bv, sv, ev;
av = APEX_FNUM_TO_APERTURE((double)exifInfo->fnumber.num / exifInfo->fnumber.den);
tv = APEX_EXPOSURE_TO_SHUTTER((double)exifInfo->exposure_time.num / exifInfo->exposure_time.den);
sv = APEX_ISO_TO_FILMSENSITIVITY(exifInfo->iso_speed_rating);
bv = av + tv - sv;
ev = av + tv;
//ALOGD("Shutter speed=%d us, iso=%d", shutterSpeed, exifInfo->iso_speed_rating);
ALOGV("AV=%d, TV=%d, SV=%d", av, tv, sv);
//3 Shutter Speed
exifInfo->shutter_speed.num = tv * EXIF_DEF_APEX_DEN;
exifInfo->shutter_speed.den = EXIF_DEF_APEX_DEN;
//3 Brightness
exifInfo->brightness.num = bv*EXIF_DEF_APEX_DEN;
exifInfo->brightness.den = EXIF_DEF_APEX_DEN;
//3 Exposure Bias
if (ctl->aa.sceneMode== AA_SCENE_MODE_BEACH||
ctl->aa.sceneMode== AA_SCENE_MODE_SNOW) {
exifInfo->exposure_bias.num = EXIF_DEF_APEX_DEN;
exifInfo->exposure_bias.den = EXIF_DEF_APEX_DEN;
} else {
exifInfo->exposure_bias.num = 0;
exifInfo->exposure_bias.den = 0;
}
//3 Metering Mode
/*switch (m_curCameraInfo->metering) {
case METERING_MODE_CENTER:
exifInfo->metering_mode = EXIF_METERING_CENTER;
break;
case METERING_MODE_MATRIX:
exifInfo->metering_mode = EXIF_METERING_MULTISPOT;
break;
case METERING_MODE_SPOT:
exifInfo->metering_mode = EXIF_METERING_SPOT;
break;
case METERING_MODE_AVERAGE:
default:
exifInfo->metering_mode = EXIF_METERING_AVERAGE;
break;
}*/
exifInfo->metering_mode = EXIF_METERING_CENTER;
//3 Flash
if (m_ctlInfo.flash.m_flashDecisionResult)
exifInfo->flash = 1;
else
exifInfo->flash = EXIF_DEF_FLASH;
//3 White Balance
if (currentEntry->awb_mode_dm == AA_AWBMODE_WB_AUTO)
exifInfo->white_balance = EXIF_WB_AUTO;
else
exifInfo->white_balance = EXIF_WB_MANUAL;
//3 Scene Capture Type
switch (ctl->aa.sceneMode) {
case AA_SCENE_MODE_PORTRAIT:
exifInfo->scene_capture_type = EXIF_SCENE_PORTRAIT;
break;
case AA_SCENE_MODE_LANDSCAPE:
exifInfo->scene_capture_type = EXIF_SCENE_LANDSCAPE;
break;
case AA_SCENE_MODE_NIGHT_PORTRAIT:
exifInfo->scene_capture_type = EXIF_SCENE_NIGHT;
break;
default:
exifInfo->scene_capture_type = EXIF_SCENE_STANDARD;
break;
}
//2 0th IFD GPS Info Tags
if (ctl->jpeg.gpsCoordinates[0] != 0 && ctl->jpeg.gpsCoordinates[1] != 0) {
if (ctl->jpeg.gpsCoordinates[0] > 0)
strcpy((char *)exifInfo->gps_latitude_ref, "N");
else
strcpy((char *)exifInfo->gps_latitude_ref, "S");
if (ctl->jpeg.gpsCoordinates[1] > 0)
strcpy((char *)exifInfo->gps_longitude_ref, "E");
else
strcpy((char *)exifInfo->gps_longitude_ref, "W");
if (ctl->jpeg.gpsCoordinates[2] > 0)
exifInfo->gps_altitude_ref = 0;
else
exifInfo->gps_altitude_ref = 1;
double latitude = fabs(ctl->jpeg.gpsCoordinates[0]);
double longitude = fabs(ctl->jpeg.gpsCoordinates[1]);
double altitude = fabs(ctl->jpeg.gpsCoordinates[2]);
exifInfo->gps_latitude[0].num = (uint32_t)latitude;
exifInfo->gps_latitude[0].den = 1;
exifInfo->gps_latitude[1].num = (uint32_t)((latitude - exifInfo->gps_latitude[0].num) * 60);
exifInfo->gps_latitude[1].den = 1;
exifInfo->gps_latitude[2].num = (uint32_t)round((((latitude - exifInfo->gps_latitude[0].num) * 60)
- exifInfo->gps_latitude[1].num) * 60);
exifInfo->gps_latitude[2].den = 1;
exifInfo->gps_longitude[0].num = (uint32_t)longitude;
exifInfo->gps_longitude[0].den = 1;
exifInfo->gps_longitude[1].num = (uint32_t)((longitude - exifInfo->gps_longitude[0].num) * 60);
exifInfo->gps_longitude[1].den = 1;
exifInfo->gps_longitude[2].num = (uint32_t)round((((longitude - exifInfo->gps_longitude[0].num) * 60)
- exifInfo->gps_longitude[1].num) * 60);
exifInfo->gps_longitude[2].den = 1;
exifInfo->gps_altitude.num = (uint32_t)round(altitude);
exifInfo->gps_altitude.den = 1;
struct tm tm_data;
long timestamp;
timestamp = (long)ctl->jpeg.gpsTimestamp;
gmtime_r(&timestamp, &tm_data);
exifInfo->gps_timestamp[0].num = tm_data.tm_hour;
exifInfo->gps_timestamp[0].den = 1;
exifInfo->gps_timestamp[1].num = tm_data.tm_min;
exifInfo->gps_timestamp[1].den = 1;
exifInfo->gps_timestamp[2].num = tm_data.tm_sec;
exifInfo->gps_timestamp[2].den = 1;
snprintf((char*)exifInfo->gps_datestamp, sizeof(exifInfo->gps_datestamp),
"%04d:%02d:%02d", tm_data.tm_year + 1900, tm_data.tm_mon + 1, tm_data.tm_mday);
memset(exifInfo->gps_processing_method, 0, 100);
memcpy(exifInfo->gps_processing_method, currentEntry->gpsProcessingMethod, 32);
exifInfo->enableGps = true;
} else {
exifInfo->enableGps = false;
}
//2 1th IFD TIFF Tags
exifInfo->widthThumb = ctl->jpeg.thumbnailSize[0];
exifInfo->heightThumb = ctl->jpeg.thumbnailSize[1];
}
ExynosCameraHWInterface2::MainThread::~MainThread()
{
ALOGV("(%s):", __FUNCTION__);
}
void ExynosCameraHWInterface2::MainThread::release()
{
ALOGV("(%s):", __func__);
SetSignal(SIGNAL_THREAD_RELEASE);
}
ExynosCameraHWInterface2::SensorThread::~SensorThread()
{
ALOGV("(%s):", __FUNCTION__);
}
void ExynosCameraHWInterface2::SensorThread::release()
{
ALOGV("(%s):", __func__);
SetSignal(SIGNAL_THREAD_RELEASE);
}
ExynosCameraHWInterface2::StreamThread::~StreamThread()
{
ALOGV("(%s):", __FUNCTION__);
}
void ExynosCameraHWInterface2::StreamThread::setParameter(stream_parameters_t * new_parameters)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
memcpy(&m_parameters, new_parameters, sizeof(stream_parameters_t));
}
void ExynosCameraHWInterface2::StreamThread::release()
{
ALOGV("(%s):", __func__);
SetSignal(SIGNAL_THREAD_RELEASE);
}
int ExynosCameraHWInterface2::StreamThread::findBufferIndex(void * bufAddr)
{
int index;
for (index = 0 ; index < m_parameters.numSvcBuffers ; index++) {
if (m_parameters.svcBuffers[index].virt.extP[0] == bufAddr)
return index;
}
return -1;
}
int ExynosCameraHWInterface2::StreamThread::findBufferIndex(buffer_handle_t * bufHandle)
{
int index;
for (index = 0 ; index < m_parameters.numSvcBuffers ; index++) {
if (m_parameters.svcBufHandle[index] == *bufHandle)
return index;
}
return -1;
}
status_t ExynosCameraHWInterface2::StreamThread::attachSubStream(int stream_id, int priority)
{
ALOGV("(%s): substream_id(%d)", __FUNCTION__, stream_id);
int index, vacantIndex;
bool vacancy = false;
for (index = 0 ; index < NUM_MAX_SUBSTREAM ; index++) {
if (!vacancy && m_attachedSubStreams[index].streamId == -1) {
vacancy = true;
vacantIndex = index;
} else if (m_attachedSubStreams[index].streamId == stream_id) {
return BAD_VALUE;
}
}
if (!vacancy)
return NO_MEMORY;
m_attachedSubStreams[vacantIndex].streamId = stream_id;
m_attachedSubStreams[vacantIndex].priority = priority;
m_numRegisteredStream++;
return NO_ERROR;
}
status_t ExynosCameraHWInterface2::StreamThread::detachSubStream(int stream_id)
{
ALOGV("(%s): substream_id(%d)", __FUNCTION__, stream_id);
int index;
bool found = false;
for (index = 0 ; index < NUM_MAX_SUBSTREAM ; index++) {
if (m_attachedSubStreams[index].streamId == stream_id) {
found = true;
break;
}
}
if (!found)
return BAD_VALUE;
m_attachedSubStreams[index].streamId = -1;
m_attachedSubStreams[index].priority = 0;
m_numRegisteredStream--;
return NO_ERROR;
}
int ExynosCameraHWInterface2::createIonClient(ion_client ionClient)
{
if (ionClient == 0) {
ionClient = ion_client_create();
if (ionClient < 0) {
ALOGE("[%s]src ion client create failed, value = %d\n", __FUNCTION__, ionClient);
return 0;
}
}
return ionClient;
}
int ExynosCameraHWInterface2::deleteIonClient(ion_client ionClient)
{
if (ionClient != 0) {
if (ionClient > 0) {
ion_client_destroy(ionClient);
}
ionClient = 0;
}
return ionClient;
}
int ExynosCameraHWInterface2::allocCameraMemory(ion_client ionClient, ExynosBuffer *buf, int iMemoryNum)
{
return allocCameraMemory(ionClient, buf, iMemoryNum, 0);
}
int ExynosCameraHWInterface2::allocCameraMemory(ion_client ionClient, ExynosBuffer *buf, int iMemoryNum, int cacheFlag)
{
int ret = 0;
int i = 0;
int flag = 0;
if (ionClient == 0) {
ALOGE("[%s] ionClient is zero (%d)\n", __FUNCTION__, ionClient);
return -1;
}
for (i = 0 ; i < iMemoryNum ; i++) {
if (buf->size.extS[i] == 0) {
break;
}
if (1 << i & cacheFlag)
flag = ION_FLAG_CACHED | ION_FLAG_CACHED_NEEDS_SYNC;
else
flag = 0;
buf->fd.extFd[i] = ion_alloc(ionClient, \
buf->size.extS[i], 0, ION_HEAP_EXYNOS_MASK, flag);
if ((buf->fd.extFd[i] == -1) ||(buf->fd.extFd[i] == 0)) {
ALOGE("[%s]ion_alloc(%d) failed\n", __FUNCTION__, buf->size.extS[i]);
buf->fd.extFd[i] = -1;
freeCameraMemory(buf, iMemoryNum);
return -1;
}
buf->virt.extP[i] = (char *)ion_map(buf->fd.extFd[i], \
buf->size.extS[i], 0);
if ((buf->virt.extP[i] == (char *)MAP_FAILED) || (buf->virt.extP[i] == NULL)) {
ALOGE("[%s]src ion map failed(%d)\n", __FUNCTION__, buf->size.extS[i]);
buf->virt.extP[i] = (char *)MAP_FAILED;
freeCameraMemory(buf, iMemoryNum);
return -1;
}
ALOGV("allocCameraMem : [%d][0x%08x] size(%d) flag(%d)", i, (unsigned int)(buf->virt.extP[i]), buf->size.extS[i], flag);
}
return ret;
}
void ExynosCameraHWInterface2::freeCameraMemory(ExynosBuffer *buf, int iMemoryNum)
{
int i = 0 ;
int ret = 0;
for (i=0;i<iMemoryNum;i++) {
if (buf->fd.extFd[i] != -1) {
if (buf->virt.extP[i] != (char *)MAP_FAILED) {
ret = ion_unmap(buf->virt.extP[i], buf->size.extS[i]);
if (ret < 0)
ALOGE("ERR(%s)", __FUNCTION__);
}
ion_free(buf->fd.extFd[i]);
ALOGV("freeCameraMemory : [%d][0x%08x] size(%d)", i, (unsigned int)(buf->virt.extP[i]), buf->size.extS[i]);
}
buf->fd.extFd[i] = -1;
buf->virt.extP[i] = (char *)MAP_FAILED;
buf->size.extS[i] = 0;
}
}
void ExynosCameraHWInterface2::initCameraMemory(ExynosBuffer *buf, int iMemoryNum)
{
int i =0 ;
for (i=0;i<iMemoryNum;i++) {
buf->virt.extP[i] = (char *)MAP_FAILED;
buf->fd.extFd[i] = -1;
buf->size.extS[i] = 0;
}
}
static camera2_device_t *g_cam2_device = NULL;
static bool g_camera_vaild = false;
static Mutex g_camera_mutex;
ExynosCamera2 * g_camera2[2] = { NULL, NULL };
static int HAL2_camera_device_close(struct hw_device_t* device)
{
Mutex::Autolock lock(g_camera_mutex);
ALOGD("(%s): ENTER", __FUNCTION__);
if (device) {
camera2_device_t *cam_device = (camera2_device_t *)device;
ALOGV("cam_device(0x%08x):", (unsigned int)cam_device);
ALOGV("g_cam2_device(0x%08x):", (unsigned int)g_cam2_device);
delete static_cast<ExynosCameraHWInterface2 *>(cam_device->priv);
free(cam_device);
g_camera_vaild = false;
g_cam2_device = NULL;
}
ALOGD("(%s): EXIT", __FUNCTION__);
return 0;
}
static inline ExynosCameraHWInterface2 *obj(const struct camera2_device *dev)
{
return reinterpret_cast<ExynosCameraHWInterface2 *>(dev->priv);
}
static int HAL2_device_set_request_queue_src_ops(const struct camera2_device *dev,
const camera2_request_queue_src_ops_t *request_src_ops)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
return obj(dev)->setRequestQueueSrcOps(request_src_ops);
}
static int HAL2_device_notify_request_queue_not_empty(const struct camera2_device *dev)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
return obj(dev)->notifyRequestQueueNotEmpty();
}
static int HAL2_device_set_frame_queue_dst_ops(const struct camera2_device *dev,
const camera2_frame_queue_dst_ops_t *frame_dst_ops)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
return obj(dev)->setFrameQueueDstOps(frame_dst_ops);
}
static int HAL2_device_get_in_progress_count(const struct camera2_device *dev)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
return obj(dev)->getInProgressCount();
}
static int HAL2_device_flush_captures_in_progress(const struct camera2_device *dev)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
return obj(dev)->flushCapturesInProgress();
}
static int HAL2_device_construct_default_request(const struct camera2_device *dev,
int request_template, camera_metadata_t **request)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
return obj(dev)->constructDefaultRequest(request_template, request);
}
static int HAL2_device_allocate_stream(
const struct camera2_device *dev,
// inputs
uint32_t width,
uint32_t height,
int format,
const camera2_stream_ops_t *stream_ops,
// outputs
uint32_t *stream_id,
uint32_t *format_actual,
uint32_t *usage,
uint32_t *max_buffers)
{
ALOGV("(%s): ", __FUNCTION__);
return obj(dev)->allocateStream(width, height, format, stream_ops,
stream_id, format_actual, usage, max_buffers);
}
static int HAL2_device_register_stream_buffers(const struct camera2_device *dev,
uint32_t stream_id,
int num_buffers,
buffer_handle_t *buffers)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
return obj(dev)->registerStreamBuffers(stream_id, num_buffers, buffers);
}
static int HAL2_device_release_stream(
const struct camera2_device *dev,
uint32_t stream_id)
{
ALOGV("DEBUG(%s)(id: %d):", __FUNCTION__, stream_id);
if (!g_camera_vaild)
return 0;
return obj(dev)->releaseStream(stream_id);
}
static int HAL2_device_allocate_reprocess_stream(
const struct camera2_device *dev,
uint32_t width,
uint32_t height,
uint32_t format,
const camera2_stream_in_ops_t *reprocess_stream_ops,
// outputs
uint32_t *stream_id,
uint32_t *consumer_usage,
uint32_t *max_buffers)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
return obj(dev)->allocateReprocessStream(width, height, format, reprocess_stream_ops,
stream_id, consumer_usage, max_buffers);
}
static int HAL2_device_allocate_reprocess_stream_from_stream(
const struct camera2_device *dev,
uint32_t output_stream_id,
const camera2_stream_in_ops_t *reprocess_stream_ops,
// outputs
uint32_t *stream_id)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
return obj(dev)->allocateReprocessStreamFromStream(output_stream_id,
reprocess_stream_ops, stream_id);
}
static int HAL2_device_release_reprocess_stream(
const struct camera2_device *dev,
uint32_t stream_id)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
return obj(dev)->releaseReprocessStream(stream_id);
}
static int HAL2_device_trigger_action(const struct camera2_device *dev,
uint32_t trigger_id,
int ext1,
int ext2)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
if (!g_camera_vaild)
return 0;
return obj(dev)->triggerAction(trigger_id, ext1, ext2);
}
static int HAL2_device_set_notify_callback(const struct camera2_device *dev,
camera2_notify_callback notify_cb,
void *user)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
return obj(dev)->setNotifyCallback(notify_cb, user);
}
static int HAL2_device_get_metadata_vendor_tag_ops(const struct camera2_device*dev,
vendor_tag_query_ops_t **ops)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
return obj(dev)->getMetadataVendorTagOps(ops);
}
static int HAL2_device_dump(const struct camera2_device *dev, int fd)
{
ALOGV("DEBUG(%s):", __FUNCTION__);
return obj(dev)->dump(fd);
}
static int HAL2_getNumberOfCameras()
{
ALOGV("(%s): returning 2", __FUNCTION__);
return 2;
}
static int HAL2_getCameraInfo(int cameraId, struct camera_info *info)
{
ALOGV("DEBUG(%s): cameraID: %d", __FUNCTION__, cameraId);
static camera_metadata_t * mCameraInfo[2] = {NULL, NULL};
status_t res;
if (cameraId == 0) {
info->facing = CAMERA_FACING_BACK;
if (!g_camera2[0])
g_camera2[0] = new ExynosCamera2(0);
}
else if (cameraId == 1) {
info->facing = CAMERA_FACING_FRONT;
if (!g_camera2[1])
g_camera2[1] = new ExynosCamera2(1);
}
else
return BAD_VALUE;
info->orientation = 0;
info->device_version = HARDWARE_DEVICE_API_VERSION(2, 0);
if (mCameraInfo[cameraId] == NULL) {
res = g_camera2[cameraId]->constructStaticInfo(&(mCameraInfo[cameraId]), cameraId, true);
if (res != OK) {
ALOGE("%s: Unable to allocate static info: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
res = g_camera2[cameraId]->constructStaticInfo(&(mCameraInfo[cameraId]), cameraId, false);
if (res != OK) {
ALOGE("%s: Unable to fill in static info: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
}
info->static_camera_characteristics = mCameraInfo[cameraId];
return NO_ERROR;
}
#define SET_METHOD(m) m : HAL2_device_##m
static camera2_device_ops_t camera2_device_ops = {
SET_METHOD(set_request_queue_src_ops),
SET_METHOD(notify_request_queue_not_empty),
SET_METHOD(set_frame_queue_dst_ops),
SET_METHOD(get_in_progress_count),
SET_METHOD(flush_captures_in_progress),
SET_METHOD(construct_default_request),
SET_METHOD(allocate_stream),
SET_METHOD(register_stream_buffers),
SET_METHOD(release_stream),
SET_METHOD(allocate_reprocess_stream),
SET_METHOD(allocate_reprocess_stream_from_stream),
SET_METHOD(release_reprocess_stream),
SET_METHOD(trigger_action),
SET_METHOD(set_notify_callback),
SET_METHOD(get_metadata_vendor_tag_ops),
SET_METHOD(dump),
};
#undef SET_METHOD
static int HAL2_camera_device_open(const struct hw_module_t* module,
const char *id,
struct hw_device_t** device)
{
int cameraId = atoi(id);
int openInvalid = 0;
Mutex::Autolock lock(g_camera_mutex);
if (g_camera_vaild) {
ALOGE("ERR(%s): Can't open, other camera is in use", __FUNCTION__);
return -EBUSY;
}
g_camera_vaild = false;
ALOGD("\n\n>>> I'm Samsung's CameraHAL_2(ID:%d) <<<\n\n", cameraId);
if (cameraId < 0 || cameraId >= HAL2_getNumberOfCameras()) {
ALOGE("ERR(%s):Invalid camera ID %s", __FUNCTION__, id);
return -EINVAL;
}
ALOGD("g_cam2_device : 0x%08x", (unsigned int)g_cam2_device);
if (g_cam2_device) {
if (obj(g_cam2_device)->getCameraId() == cameraId) {
ALOGD("DEBUG(%s):returning existing camera ID %s", __FUNCTION__, id);
goto done;
} else {
ALOGD("(%s): START waiting for cam device free", __FUNCTION__);
while (g_cam2_device)
usleep(SIG_WAITING_TICK);
ALOGD("(%s): END waiting for cam device free", __FUNCTION__);
}
}
g_cam2_device = (camera2_device_t *)malloc(sizeof(camera2_device_t));
ALOGV("g_cam2_device : 0x%08x", (unsigned int)g_cam2_device);
if (!g_cam2_device)
return -ENOMEM;
g_cam2_device->common.tag = HARDWARE_DEVICE_TAG;
g_cam2_device->common.version = CAMERA_DEVICE_API_VERSION_2_0;
g_cam2_device->common.module = const_cast<hw_module_t *>(module);
g_cam2_device->common.close = HAL2_camera_device_close;
g_cam2_device->ops = &camera2_device_ops;
ALOGV("DEBUG(%s):open camera2 %s", __FUNCTION__, id);
g_cam2_device->priv = new ExynosCameraHWInterface2(cameraId, g_cam2_device, g_camera2[cameraId], &openInvalid);
if (!openInvalid) {
ALOGE("DEBUG(%s): ExynosCameraHWInterface2 creation failed", __FUNCTION__);
return -ENODEV;
}
done:
*device = (hw_device_t *)g_cam2_device;
ALOGV("DEBUG(%s):opened camera2 %s (%p)", __FUNCTION__, id, *device);
g_camera_vaild = true;
return 0;
}
static hw_module_methods_t camera_module_methods = {
open : HAL2_camera_device_open
};
extern "C" {
struct camera_module HAL_MODULE_INFO_SYM = {
common : {
tag : HARDWARE_MODULE_TAG,
module_api_version : CAMERA_MODULE_API_VERSION_2_0,
hal_api_version : HARDWARE_HAL_API_VERSION,
id : CAMERA_HARDWARE_MODULE_ID,
name : "Exynos Camera HAL2",
author : "Samsung Corporation",
methods : &camera_module_methods,
dso: NULL,
reserved: {0},
},
get_number_of_cameras : HAL2_getNumberOfCameras,
get_camera_info : HAL2_getCameraInfo
};
}
}; // namespace android