blob: accc01f2d871d9da588281f130a8add9ff3b3eb1 [file] [log] [blame]
<html><body><pre>Android.mk file syntax specification
Introduction:
-------------
This document describes the syntax of Android.mk build file
written to describe your C and C++ source files to the Android
NDK. To understand what follows, it is assumed that you have
read the docs/OVERVIEW.html file that explains their role and
usage.
Overview:
---------
An Android.mk file is written to describe your sources to the
build system. More specifically:
- The file is really a tiny GNU Makefile fragment that will be
parsed one or more times by the build system. As such, you
should try to minimize the variables you declare there and
do not assume that anything is not defined during parsing.
- The file syntax is designed to allow you to group your
sources into 'modules'. A module is one of the following:
- a static library
- a shared library
Only shared libraries will be installed/copied to your
application package. Static libraries can be used to generate
shared libraries though.
You can define one or more modules in each Android.mk file,
and you can use the same source file in several modules.
- The build system handles many details for you. For example, you
don't need to list header files or explicit dependencies between
generated files in your Android.mk. The NDK build system will
compute these automatically for you.
This also means that, when updating to newer releases of the NDK,
you should be able to benefit from new toolchain/platform support
without having to touch your Android.mk files.
Note that the syntax is *very* close to the one used in Android.mk files
distributed with the full open-source Android platform sources. While
the build system implementation that uses them is different, this is
an intentional design decision made to allow reuse of 'external' libraries'
source code easier for application developers.
Simple example:
---------------
Before describing the syntax in details, let's consider the simple
"hello JNI" example, i.e. the files under:
samples/hello-jni
Here, we can see:
- The 'src' directory containing the Java sources for the
sample Android project.
- The 'jni' directory containing the native source for
the sample, i.e. 'jni/hello-jni.c'
This source file implements a simple shared library that
implements a native method that returns a string to the
VM application.
- The 'jni/Android.mk' file that describes the shared library
to the NDK build system. Its content is:
---------- cut here ------------------
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := hello-jni
LOCAL_SRC_FILES := hello-jni.c
include $(BUILD_SHARED_LIBRARY)
---------- cut here ------------------
Now, let's explain these lines:
LOCAL_PATH := $(call my-dir)
An Android.mk file must begin with the definition of the LOCAL_PATH variable.
It is used to locate source files in the development tree. In this example,
the macro function 'my-dir', provided by the build system, is used to return
the path of the current directory (i.e. the directory containing the
Android.mk file itself).
include $(CLEAR_VARS)
The CLEAR_VARS variable is provided by the build system and points to a
special GNU Makefile that will clear many LOCAL_XXX variables for you
(e.g. LOCAL_MODULE, LOCAL_SRC_FILES, LOCAL_STATIC_LIBRARIES, etc...),
with the exception of LOCAL_PATH. This is needed because all build
control files are parsed in a single GNU Make execution context where
all variables are global.
LOCAL_MODULE := hello-jni
The LOCAL_MODULE variable must be defined to identify each module you
describe in your Android.mk. The name must be *unique* and not contain
any spaces. Note that the build system will automatically add proper
prefix and suffix to the corresponding generated file. In other words,
a shared library module named 'foo' will generate 'libfoo.so'.
IMPORTANT NOTE:
If you name your module 'libfoo', the build system will not
add another 'lib' prefix and will generate libfoo.so as well.
This is to support Android.mk files that originate from the
Android platform sources, would you need to use these.
LOCAL_SRC_FILES := hello-jni.c
The LOCAL_SRC_FILES variables must contain a list of C and/or C++ source
files that will be built and assembled into a module. Note that you should
not list header and included files here, because the build system will
compute dependencies automatically for you; just list the source files
that will be passed directly to a compiler, and you should be good.
Note that the default extension for C++ source files is '.cpp'. It is
however possible to specify a different one by defining the variable
LOCAL_CPP_EXTENSION. Don't forget the initial dot (i.e. '.cxx' will
work, but not 'cxx').
include $(BUILD_SHARED_LIBRARY)
The BUILD_SHARED_LIBRARY is a variable provided by the build system that
points to a GNU Makefile script that is in charge of collecting all the
information you defined in LOCAL_XXX variables since the latest
'include $(CLEAR_VARS)' and determine what to build, and how to do it
exactly. There is also BUILD_STATIC_LIBRARY to generate a static library.
There are more complex examples in the samples directories, with commented
Android.mk files that you can look at.
Reference:
----------
This is the list of variables you should either rely on or define in
an Android.mk. You can define other variables for your own usage, but
the NDK build system reserves the following variable names:
- names that begin with LOCAL_ (e.g. LOCAL_MODULE)
- names that begin with PRIVATE_, NDK_ or APP_ (used internally)
- lower-case names (used internally, e.g. 'my-dir')
If you need to define your own convenience variables in an Android.mk
file, we recommend using the MY_ prefix, for a trivial example:
---------- cut here ------------------
MY_SOURCES := foo.c
ifneq ($(MY_CONFIG_BAR),)
MY_SOURCES += bar.c
endif
LOCAL_SRC_FILES += $(MY_SOURCES)
---------- cut here ------------------
So, here we go:
NDK-provided variables:
- - - - - - - - - - - -
These GNU Make variables are defined by the build system before
your Android.mk file is parsed. Note that under certain circumstances
the NDK might parse your Android.mk several times, each with different
definition for some of these variables.
CLEAR_VARS
Points to a build script that undefines nearly all LOCAL_XXX variables
listed in the "Module-description" section below. You must include
the script before starting a new module, e.g.:
include $(CLEAR_VARS)
BUILD_SHARED_LIBRARY
Points to a build script that collects all the information about the
module you provided in LOCAL_XXX variables and determines how to build
a target shared library from the sources you listed. Note that you
must have LOCAL_MODULE and LOCAL_SRC_FILES defined, at a minimum before
including this file. Example usage:
include $(BUILD_SHARED_LIBRARY)
note that this will generate a file named lib$(LOCAL_MODULE).so
BUILD_STATIC_LIBRARY
A variant of BUILD_SHARED_LIBRARY that is used to build a target static
library instead. Static libraries are not copied into your
project/packages but can be used to build shared libraries (see
LOCAL_STATIC_LIBRARIES and LOCAL_WHOLE_STATIC_LIBRARIES described below).
Example usage:
include $(BUILD_STATIC_LIBRARY)
Note that this will generate a file named lib$(LOCAL_MODULE).a
PREBUILT_SHARED_LIBRARY
Points to a build script used to specify a prebuilt shared library.
Unlike BUILD_SHARED_LIBRARY and BUILD_STATIC_LIBRARY, the value
of LOCAL_SRC_FILES must be a single path to a prebuilt shared
library (e.g. foo/libfoo.so), instead of a source file.
You can reference the prebuilt library in another module using
the LOCAL_PREBUILTS variable (see docs/PREBUILTS.html for more
information).
PREBUILT_STATIC_LIBRARY
This is the same as PREBUILT_SHARED_LIBRARY, but for a static library
file instead. See docs/PREBUILTS.html for more.
TARGET_ARCH
Name of the target CPU architecture as it is specified by the
full Android open-source build. This is 'arm' for any ARM-compatible
build, independent of the CPU architecture revision.
TARGET_PLATFORM
Name of the target Android platform when this Android.mk is parsed.
For example, 'android-3' correspond to Android 1.5 system images. For
a complete list of platform names and corresponding Android system
images, read docs/STABLE-APIS.html.
TARGET_ARCH_ABI
Name of the target CPU+ABI when this Android.mk is parsed.
Two values are supported at the moment:
armeabi
For ARMv5TE
armeabi-v7a
NOTE: Up to Android NDK 1.6_r1, this variable was simply defined
as 'arm'. However, the value has been redefined to better
match what is used internally by the Android platform.
For more details about architecture ABIs and corresponding
compatibility issues, please read docs/CPU-ARCH-ABIS.html
Other target ABIs will be introduced in future releases of the NDK
and will have a different name. Note that all ARM-based ABIs will
have 'TARGET_ARCH' defined to 'arm', but may have different
'TARGET_ARCH_ABI'
TARGET_ABI
The concatenation of target platform and ABI, it really is defined
as $(TARGET_PLATFORM)-$(TARGET_ARCH_ABI) and is useful when you want
to test against a specific target system image for a real device.
By default, this will be 'android-3-armeabi'
(Up to Android NDK 1.6_r1, this used to be 'android-3-arm' by default)
NDK-provided function macros:
- - - - - - - - - - - - - - -
The following are GNU Make 'function' macros, and must be evaluated
by using '$(call &lt;function&gt;)'. They return textual information.
my-dir
Returns the path of the last included Makefile, which typically is
the current Android.mk's directory. This is useful to define
LOCAL_PATH at the start of your Android.mk as with:
LOCAL_PATH := $(call my-dir)
IMPORTANT NOTE: Due to the way GNU Make works, this really returns
the path of the *last* *included* *Makefile* during the parsing of
build scripts. Do not call my-dir after including another file.
For example, consider the following example:
LOCAL_PATH := $(call my-dir)
... declare one module
include $(LOCAL_PATH)/foo/Android.mk
LOCAL_PATH := $(call my-dir)
... declare another module
The problem here is that the second call to 'my-dir' will define
LOCAL_PATH to $PATH/foo instead of $PATH, due to the include that
was performed before that.
For this reason, it's better to put additional includes after
everything else in an Android.mk, as in:
LOCAL_PATH := $(call my-dir)
... declare one module
LOCAL_PATH := $(call my-dir)
... declare another module
# extra includes at the end of the Android.mk
include $(LOCAL_PATH)/foo/Android.mk
If this is not convenient, save the value of the first my-dir call
into another variable, for example:
MY_LOCAL_PATH := $(call my-dir)
LOCAL_PATH := $(MY_LOCAL_PATH)
... declare one module
include $(LOCAL_PATH)/foo/Android.mk
LOCAL_PATH := $(MY_LOCAL_PATH)
... declare another module
all-subdir-makefiles
Returns a list of Android.mk located in all sub-directories of
the current 'my-dir' path. For example, consider the following
hierarchy:
sources/foo/Android.mk
sources/foo/lib1/Android.mk
sources/foo/lib2/Android.mk
If sources/foo/Android.mk contains the single line:
include $(call all-subdir-makefiles)
Then it will include automatically sources/foo/lib1/Android.mk and
sources/foo/lib2/Android.mk
This function can be used to provide deep-nested source directory
hierarchies to the build system. Note that by default, the NDK
will only look for files in sources/*/Android.mk
this-makefile
Returns the path of the current Makefile (i.e. where the function
is called).
parent-makefile
Returns the path of the parent Makefile in the inclusion tree,
i.e. the path of the Makefile that included the current one.
grand-parent-makefile
Guess what...
import-module
A function that allows you to find and include the Android.mk
of another module by name. A typical example is:
$(call import-module,&lt;name&gt;)
And this will look for the module tagged &lt;name&gt; in the list of
directories referenced by your NDK_MODULE_PATH environment
variable, and include its Android.mk automatically for you.
Read docs/IMPORT-MODULE.html for more details.
Module-description variables:
- - - - - - - - - - - - - - -
The following variables are used to describe your module to the build
system. You should define some of them between an 'include $(CLEAR_VARS)'
and an 'include $(BUILD_XXXXX)'. As written previously, $(CLEAR_VARS) is
a script that will undefine/clear all of these variables, unless explicitly
noted in their description.
LOCAL_PATH
This variable is used to give the path of the current file.
You MUST define it at the start of your Android.mk, which can
be done with:
LOCAL_PATH := $(call my-dir)
This variable is *not* cleared by $(CLEAR_VARS) so only one
definition per Android.mk is needed (in case you define several
modules in a single file).
LOCAL_MODULE
This is the name of your module. It must be unique among all
module names, and shall not contain any space. You MUST define
it before including any $(BUILD_XXXX) script.
By default, the module name determines the name of generated files,
e.g. lib&lt;foo&gt;.so for a shared library module named &lt;foo&gt;. However
you should only refer to other modules with their 'normal'
name (e.g. &lt;foo&gt;) in your NDK build files (either Android.mk
or Application.mk)
You can override this default with LOCAL_MODULE_FILENAME (see below)
LOCAL_MODULE_FILENAME
This variable is optional, and allows you to redefine the name of
generated files. By default, module &lt;foo&gt; will always generate a
static library named lib&lt;foo&gt;.a or a shared library named lib&lt;foo&gt;.so,
which are standard Unix conventions.
You can override this by defining LOCAL_MODULE_FILENAME, For example:
LOCAL_MODULE := foo-version-1
LOCAL_MODULE_FILENAME := libfoo
NOTE: You should not put a path or file extension in your
LOCAL_MODULE_FILENAME, these will be handled automatically by the
build system.
LOCAL_SRC_FILES
This is a list of source files that will be built for your module.
Only list the files that will be passed to a compiler, since the
build system automatically computes dependencies for you.
Note that source files names are all relative to LOCAL_PATH and
you can use path components, e.g.:
LOCAL_SRC_FILES := foo.c \
toto/bar.c
NOTE: Always use Unix-style forward slashes (/) in build files.
Windows-style back-slashes will not be handled properly.
LOCAL_CPP_EXTENSION
This is an optional variable that can be defined to indicate
the file extension(s) of C++ source files. They must begin with a dot.
The default is '.cpp' but you can change it. For example:
LOCAL_CPP_EXTENSION := .cxx
Since NDK r7, you can list several extensions in this variable, as in:
LOCAL_CPP_EXTENSION := .cxx .cpp .cc
LOCAL_CPP_FEATURES
This is an optional variable that can be defined to indicate
that your code relies on specific C++ features. To indicate that
your code uses RTTI (RunTime Type Information), use the following:
LOCAL_CPP_FEATURES := rtti
To indicate that your code uses C++ exceptions, use:
LOCAL_CPP_FEATURES := exceptions
You can also use both of them with (order is not important):
LOCAL_CPP_FEATURES := rtti features
The effect of this variable is to enable the right compiler/linker
flags when building your modules from sources. For prebuilt binaries,
this also helps declare which features the binary relies on to ensure
the final link works correctly.
It is recommended to use this variable instead of enabling -frtti and
-fexceptions directly in your LOCAL_CPPFLAGS definition.
LOCAL_C_INCLUDES
An optional list of paths, relative to the NDK *root* directory,
which will be appended to the include search path when compiling
all sources (C, C++ and Assembly). For example:
LOCAL_C_INCLUDES := sources/foo
Or even:
LOCAL_C_INCLUDES := $(LOCAL_PATH)/../foo
These are placed before any corresponding inclusion flag in
LOCAL_CFLAGS / LOCAL_CPPFLAGS
The LOCAL_C_INCLUDES path are also used automatically when
launching native debugging with ndk-gdb.
LOCAL_CFLAGS
An optional set of compiler flags that will be passed when building
C *and* C++ source files.
This can be useful to specify additional macro definitions or
compile options.
IMPORTANT: Try not to change the optimization/debugging level in
your Android.mk, this can be handled automatically for
you by specifying the appropriate information in
your Application.mk, and will let the NDK generate
useful data files used during debugging.
NOTE: In android-ndk-1.5_r1, the corresponding flags only applied
to C source files, not C++ ones. This has been corrected to
match the full Android build system behaviour. (You can use
LOCAL_CPPFLAGS to specify flags for C++ sources only now).
It is possible to specify additional include paths with
LOCAL_CFLAGS += -I&lt;path&gt;, however, it is better to use LOCAL_C_INCLUDES
for this, since the paths will then also be used during native
debugging with ndk-gdb.
LOCAL_CXXFLAGS
An alias for LOCAL_CPPFLAGS. Note that use of this flag is obsolete
as it may disappear in future releases of the NDK.
LOCAL_CPPFLAGS
An optional set of compiler flags that will be passed when building
C++ source files *only*. They will appear after the LOCAL_CFLAGS
on the compiler's command-line.
NOTE: In android-ndk-1.5_r1, the corresponding flags applied to
both C and C++ sources. This has been corrected to match the
full Android build system. (You can use LOCAL_CFLAGS to specify
flags for both C and C++ sources now).
LOCAL_STATIC_LIBRARIES
The list of static libraries modules (built with BUILD_STATIC_LIBRARY)
that should be linked to this module. This only makes sense in
shared library modules.
LOCAL_SHARED_LIBRARIES
The list of shared libraries *modules* this module depends on at runtime.
This is necessary at link time and to embed the corresponding information
in the generated file.
LOCAL_WHOLE_STATIC_LIBRARIES
A variant of LOCAL_STATIC_LIBRARIES used to express that the corresponding
library module should be used as "whole archives" to the linker. See the
GNU linker's documentation for the --whole-archive flag.
This is generally useful when there are circular dependencies between
several static libraries. Note that when used to build a shared library,
this will force all object files from your whole static libraries to be
added to the final binary. This is not true when generating executables
though.
LOCAL_LDLIBS
The list of additional linker flags to be used when building your
module. This is useful to pass the name of specific system libraries
with the "-l" prefix. For example, the following will tell the linker
to generate a module that links to /system/lib/libz.so at load time:
LOCAL_LDLIBS := -lz
See docs/STABLE-APIS.html for the list of exposed system libraries you
can linked against with this NDK release.
LOCAL_LDFLAGS
The list of other linker flags to be used when building your module.
For example, the following will use linker ld.bfd on ARM/X86 GCC 4.6/4.7
where ld.gold is the default
LOCAL_LDFLAGS += -fuse-ld=bfd
LOCAL_ALLOW_UNDEFINED_SYMBOLS
By default, any undefined reference encountered when trying to build
a shared library will result in an "undefined symbol" error. This is a
great help to catch bugs in your source code.
However, if for some reason you need to disable this check, set this
variable to 'true'. Note that the corresponding shared library may fail
to load at runtime.
LOCAL_ARM_MODE
By default, ARM target binaries will be generated in 'thumb' mode, where
each instruction are 16-bit wide. You can define this variable to 'arm'
if you want to force the generation of the module's object files in
'arm' (32-bit instructions) mode. E.g.:
LOCAL_ARM_MODE := arm
Note that you can also instruct the build system to only build specific
sources in ARM mode by appending an '.arm' suffix to its source file
name. For example, with:
LOCAL_SRC_FILES := foo.c bar.c.arm
Tells the build system to always compile 'bar.c' in ARM mode, and to
build foo.c according to the value of LOCAL_ARM_MODE.
NOTE: Setting APP_OPTIM to 'debug' in your Application.mk will also force
the generation of ARM binaries as well. This is due to bugs in the
toolchain debugger that don't deal too well with thumb code.
LOCAL_ARM_NEON
Defining this variable to 'true' allows the use of ARM Advanced SIMD
(a.k.a. NEON) GCC intrinsics in your C and C++ sources, as well as
NEON instructions in Assembly files.
You should only define it when targeting the 'armeabi-v7a' ABI that
corresponds to the ARMv7 instruction set. Note that not all ARMv7
based CPUs support the NEON instruction set extensions and that you
should perform runtime detection to be able to use this code at runtime
safely. To learn more about this, please read the documentation at
docs/CPU-ARM-NEON.html and docs/CPU-FEATURES.html.
Alternatively, you can also specify that only specific source files
may be compiled with NEON support by using the '.neon' suffix, as
in:
LOCAL_SRC_FILES = foo.c.neon bar.c zoo.c.arm.neon
In this example, 'foo.c' will be compiled in thumb+neon mode,
'bar.c' will be compiled in 'thumb' mode, and 'zoo.c' will be
compiled in 'arm+neon' mode.
Note that the '.neon' suffix must appear after the '.arm' suffix
if you use both (i.e. foo.c.arm.neon works, but not foo.c.neon.arm !)
LOCAL_DISABLE_NO_EXECUTE
Android NDK r4 added support for the "NX bit" security feature.
It is enabled by default, but you can disable it if you *really*
need to by setting this variable to 'true'.
NOTE: This feature does not modify the ABI and is only enabled on
kernels targeting ARMv6+ CPU devices. Machine code generated
with this feature enabled will run unmodified on devices
running earlier CPU architectures.
For more information, see:
http://en.wikipedia.org/wiki/NX_bit
http://www.gentoo.org/proj/en/hardened/gnu-stack.xml
LOCAL_DISABLE_RELRO
By default, NDK compiled code is built with read-only relocations
and GOT protection. This instructs the runtime linker to mark
certain regions of memory as being read-only after relocation,
making certain security exploits (such as GOT overwrites) harder
to perform.
It is enabled by default, but you can disable it if you *really*
need to by setting this variable to 'true'.
NOTE: These protections are only effective on newer Android devices
("Jelly Bean" and beyond). The code will still run on older
versions (albeit without memory protections).
For more information, see:
http://isisblogs.poly.edu/2011/06/01/relro-relocation-read-only/
http://www.akkadia.org/drepper/nonselsec.pdf (section 6)
LOCAL_EXPORT_CFLAGS
Define this variable to record a set of C/C++ compiler flags that will
be added to the LOCAL_CFLAGS definition of any other module that uses
this one with LOCAL_STATIC_LIBRARIES or LOCAL_SHARED_LIBRARIES.
For example, consider the module 'foo' with the following definition:
include $(CLEAR_VARS)
LOCAL_MODULE := foo
LOCAL_SRC_FILES := foo/foo.c
LOCAL_EXPORT_CFLAGS := -DFOO=1
include $(BUILD_STATIC_LIBRARY)
And another module, named 'bar' that depends on it as:
include $(CLEAR_VARS)
LOCAL_MODULE := bar
LOCAL_SRC_FILES := bar.c
LOCAL_CFLAGS := -DBAR=2
LOCAL_STATIC_LIBRARIES := foo
include $(BUILD_SHARED_LIBRARY)
Then, the flags '-DFOO=1 -DBAR=2' will be passed to the compiler when
building bar.c
Exported flags are prepended to your module's LOCAL_CFLAGS so you can
easily override them. They are also transitive: if 'zoo' depends on
'bar' which depends on 'foo', then 'zoo' will also inherit all flags
exported by 'foo'.
Finally, exported flags are *not* used when building the module that
exports them. In the above example, -DFOO=1 would not be passed to the
compiler when building foo/foo.c.
LOCAL_EXPORT_CPPFLAGS
Same as LOCAL_EXPORT_CFLAGS, but for C++ flags only.
LOCAL_EXPORT_C_INCLUDES
Same as LOCAL_EXPORT_CFLAGS, but for C include paths.
This can be useful if 'bar.c' wants to include headers
that are provided by module 'foo'.
LOCAL_EXPORT_LDLIBS
Same as LOCAL_EXPORT_CFLAGS, but for linker flags. Note that the
imported linker flags will be appended to your module's LOCAL_LDLIBS
though, due to the way Unix linkers work.
This is typically useful when module 'foo' is a static library and has
code that depends on a system library. LOCAL_EXPORT_LDLIBS can then be
used to export the dependency. For example:
include $(CLEAR_VARS)
LOCAL_MODULE := foo
LOCAL_SRC_FILES := foo/foo.c
LOCAL_EXPORT_LDLIBS := -llog
include $(BUILD_STATIC_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := bar
LOCAL_SRC_FILES := bar.c
LOCAL_STATIC_LIBRARIES := foo
include $(BUILD_SHARED_LIBRARY)
There, libbar.so will be built with a -llog at the end of the linker
command to indicate that it depends on the system logging library,
because it depends on 'foo'.
LOCAL_SHORT_COMMANDS
Set this variable to 'true' when your module has a very high number of
sources and/or dependent static or shared libraries. This forces the
build system to use an intermediate list file, and use it with the
library archiver or static linker with the @$(listfile) syntax.
This can be useful on Windows, where the command-line only accepts
a maximum of 8191 characters, which can be too small for complex
projects.
This also impacts the compilation of individual source files, placing
nearly all compiler flags inside list files too.
Note that any other value than 'true' will revert to the default
behaviour. You can also define APP_SHORT_COMMANDS in your
Application.mk to force this behaviour for all modules in your
project.
NOTE: We do not recommend enabling this feature by default, since it
makes the build slower.
LOCAL_FILTER_ASM
Define this variable to a shell command that will be used to filter
the assembly files from, or generated from, your LOCAL_SRC_FILES.
When it is defined, the following happens:
- Any C or C++ source file is generated into a temporary assembly
file (instead of being compiled into an object file).
- Any temporary assembly file, and any assembly file listed in
LOCAL_SRC_FILES is sent through the LOCAL_FILTER_ASM command
to generate _another_ temporary assembly file.
- These filtered assembly files are compiled into object file.
In other words, If you have:
LOCAL_SRC_FILES := foo.c bar.S
LOCAL_FILTER_ASM := myasmfilter
foo.c --1--&gt; $OBJS_DIR/foo.S.original --2--&gt; $OBJS_DIR/foo.S --3--&gt; $OBJS_DIR/foo.o
bar.S --2--&gt; $OBJS_DIR/bar.S --3--&gt; $OBJS_DIR/bar.o
Were "1" corresponds to the compiler, "2" to the filter, and "3" to the
assembler. The filter must be a standalone shell command that takes the
name of the input file as its first argument, and the name of the output
file as the second one, as in:
myasmfilter $OBJS_DIR/foo.S.original $OBJS_DIR/foo.S
myasmfilter bar.S $OBJS_DIR/bar.S
</pre></body></html>