| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
| * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
| * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
| * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| /* ChangeLog for this library: |
| * |
| * NDK r8d: Add android_setCpu(). |
| * |
| * NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16, |
| * VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt. |
| * |
| * Rewrite the code to parse /proc/self/auxv instead of |
| * the "Features" field in /proc/cpuinfo. |
| * |
| * Dynamically allocate the buffer that hold the content |
| * of /proc/cpuinfo to deal with newer hardware. |
| * |
| * NDK r7c: Fix CPU count computation. The old method only reported the |
| * number of _active_ CPUs when the library was initialized, |
| * which could be less than the real total. |
| * |
| * NDK r5: Handle buggy kernels which report a CPU Architecture number of 7 |
| * for an ARMv6 CPU (see below). |
| * |
| * Handle kernels that only report 'neon', and not 'vfpv3' |
| * (VFPv3 is mandated by the ARM architecture is Neon is implemented) |
| * |
| * Handle kernels that only report 'vfpv3d16', and not 'vfpv3' |
| * |
| * Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in |
| * android_getCpuFamily(). |
| * |
| * NDK r4: Initial release |
| */ |
| #include <sys/system_properties.h> |
| #ifdef __arm__ |
| #include <machine/cpu-features.h> |
| #endif |
| #include <pthread.h> |
| #include "cpu-features.h" |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <fcntl.h> |
| #include <errno.h> |
| |
| static pthread_once_t g_once; |
| static int g_inited; |
| static AndroidCpuFamily g_cpuFamily; |
| static uint64_t g_cpuFeatures; |
| static int g_cpuCount; |
| |
| static const int android_cpufeatures_debug = 0; |
| |
| #ifdef __arm__ |
| # define DEFAULT_CPU_FAMILY ANDROID_CPU_FAMILY_ARM |
| #elif defined __i386__ |
| # define DEFAULT_CPU_FAMILY ANDROID_CPU_FAMILY_X86 |
| #else |
| # define DEFAULT_CPU_FAMILY ANDROID_CPU_FAMILY_UNKNOWN |
| #endif |
| |
| #define D(...) \ |
| do { \ |
| if (android_cpufeatures_debug) { \ |
| printf(__VA_ARGS__); fflush(stdout); \ |
| } \ |
| } while (0) |
| |
| #ifdef __i386__ |
| static __inline__ void x86_cpuid(int func, int values[4]) |
| { |
| int a, b, c, d; |
| /* We need to preserve ebx since we're compiling PIC code */ |
| /* this means we can't use "=b" for the second output register */ |
| __asm__ __volatile__ ( \ |
| "push %%ebx\n" |
| "cpuid\n" \ |
| "mov %%ebx, %1\n" |
| "pop %%ebx\n" |
| : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \ |
| : "a" (func) \ |
| ); |
| values[0] = a; |
| values[1] = b; |
| values[2] = c; |
| values[3] = d; |
| } |
| #endif |
| |
| /* Get the size of a file by reading it until the end. This is needed |
| * because files under /proc do not always return a valid size when |
| * using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed. |
| */ |
| static int |
| get_file_size(const char* pathname) |
| { |
| int fd, ret, result = 0; |
| char buffer[256]; |
| |
| fd = open(pathname, O_RDONLY); |
| if (fd < 0) { |
| D("Can't open %s: %s\n", pathname, strerror(errno)); |
| return -1; |
| } |
| |
| for (;;) { |
| int ret = read(fd, buffer, sizeof buffer); |
| if (ret < 0) { |
| if (errno == EINTR) |
| continue; |
| D("Error while reading %s: %s\n", pathname, strerror(errno)); |
| break; |
| } |
| if (ret == 0) |
| break; |
| |
| result += ret; |
| } |
| close(fd); |
| return result; |
| } |
| |
| /* Read the content of /proc/cpuinfo into a user-provided buffer. |
| * Return the length of the data, or -1 on error. Does *not* |
| * zero-terminate the content. Will not read more |
| * than 'buffsize' bytes. |
| */ |
| static int |
| read_file(const char* pathname, char* buffer, size_t buffsize) |
| { |
| int fd, count; |
| |
| fd = open(pathname, O_RDONLY); |
| if (fd < 0) { |
| D("Could not open %s: %s\n", pathname, strerror(errno)); |
| return -1; |
| } |
| count = 0; |
| while (count < (int)buffsize) { |
| int ret = read(fd, buffer + count, buffsize - count); |
| if (ret < 0) { |
| if (errno == EINTR) |
| continue; |
| D("Error while reading from %s: %s\n", pathname, strerror(errno)); |
| if (count == 0) |
| count = -1; |
| break; |
| } |
| if (ret == 0) |
| break; |
| count += ret; |
| } |
| close(fd); |
| return count; |
| } |
| |
| /* Extract the content of a the first occurence of a given field in |
| * the content of /proc/cpuinfo and return it as a heap-allocated |
| * string that must be freed by the caller. |
| * |
| * Return NULL if not found |
| */ |
| static char* |
| extract_cpuinfo_field(const char* buffer, int buflen, const char* field) |
| { |
| int fieldlen = strlen(field); |
| const char* bufend = buffer + buflen; |
| char* result = NULL; |
| int len, ignore; |
| const char *p, *q; |
| |
| /* Look for first field occurence, and ensures it starts the line. */ |
| p = buffer; |
| for (;;) { |
| p = memmem(p, bufend-p, field, fieldlen); |
| if (p == NULL) |
| goto EXIT; |
| |
| if (p == buffer || p[-1] == '\n') |
| break; |
| |
| p += fieldlen; |
| } |
| |
| /* Skip to the first column followed by a space */ |
| p += fieldlen; |
| p = memchr(p, ':', bufend-p); |
| if (p == NULL || p[1] != ' ') |
| goto EXIT; |
| |
| /* Find the end of the line */ |
| p += 2; |
| q = memchr(p, '\n', bufend-p); |
| if (q == NULL) |
| q = bufend; |
| |
| /* Copy the line into a heap-allocated buffer */ |
| len = q-p; |
| result = malloc(len+1); |
| if (result == NULL) |
| goto EXIT; |
| |
| memcpy(result, p, len); |
| result[len] = '\0'; |
| |
| EXIT: |
| return result; |
| } |
| |
| /* Like strlen(), but for constant string literals */ |
| #define STRLEN_CONST(x) ((sizeof(x)-1) |
| |
| |
| /* Checks that a space-separated list of items contains one given 'item'. |
| * Returns 1 if found, 0 otherwise. |
| */ |
| static int |
| has_list_item(const char* list, const char* item) |
| { |
| const char* p = list; |
| int itemlen = strlen(item); |
| |
| if (list == NULL) |
| return 0; |
| |
| while (*p) { |
| const char* q; |
| |
| /* skip spaces */ |
| while (*p == ' ' || *p == '\t') |
| p++; |
| |
| /* find end of current list item */ |
| q = p; |
| while (*q && *q != ' ' && *q != '\t') |
| q++; |
| |
| if (itemlen == q-p && !memcmp(p, item, itemlen)) |
| return 1; |
| |
| /* skip to next item */ |
| p = q; |
| } |
| return 0; |
| } |
| |
| /* Parse an decimal integer starting from 'input', but not going further |
| * than 'limit'. Return the value into '*result'. |
| * |
| * NOTE: Does not skip over leading spaces, or deal with sign characters. |
| * NOTE: Ignores overflows. |
| * |
| * The function returns NULL in case of error (bad format), or the new |
| * position after the decimal number in case of success (which will always |
| * be <= 'limit'). |
| */ |
| static const char* |
| parse_decimal(const char* input, const char* limit, int* result) |
| { |
| const char* p = input; |
| int val = 0; |
| while (p < limit) { |
| int d = (*p - '0'); |
| if ((unsigned)d >= 10U) |
| break; |
| val = val*10 + d; |
| p++; |
| } |
| if (p == input) |
| return NULL; |
| |
| *result = val; |
| return p; |
| } |
| |
| /* This small data type is used to represent a CPU list / mask, as read |
| * from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt |
| * |
| * For now, we don't expect more than 32 cores on mobile devices, so keep |
| * everything simple. |
| */ |
| typedef struct { |
| uint32_t mask; |
| } CpuList; |
| |
| static __inline__ void |
| cpulist_init(CpuList* list) { |
| list->mask = 0; |
| } |
| |
| static __inline__ void |
| cpulist_and(CpuList* list1, CpuList* list2) { |
| list1->mask &= list2->mask; |
| } |
| |
| static __inline__ void |
| cpulist_set(CpuList* list, int index) { |
| if ((unsigned)index < 32) { |
| list->mask |= (uint32_t)(1U << index); |
| } |
| } |
| |
| static __inline__ int |
| cpulist_count(CpuList* list) { |
| return __builtin_popcount(list->mask); |
| } |
| |
| /* Parse a textual list of cpus and store the result inside a CpuList object. |
| * Input format is the following: |
| * - comma-separated list of items (no spaces) |
| * - each item is either a single decimal number (cpu index), or a range made |
| * of two numbers separated by a single dash (-). Ranges are inclusive. |
| * |
| * Examples: 0 |
| * 2,4-127,128-143 |
| * 0-1 |
| */ |
| static void |
| cpulist_parse(CpuList* list, const char* line, int line_len) |
| { |
| const char* p = line; |
| const char* end = p + line_len; |
| const char* q; |
| |
| /* NOTE: the input line coming from sysfs typically contains a |
| * trailing newline, so take care of it in the code below |
| */ |
| while (p < end && *p != '\n') |
| { |
| int val, start_value, end_value; |
| |
| /* Find the end of current item, and put it into 'q' */ |
| q = memchr(p, ',', end-p); |
| if (q == NULL) { |
| q = end; |
| } |
| |
| /* Get first value */ |
| p = parse_decimal(p, q, &start_value); |
| if (p == NULL) |
| goto BAD_FORMAT; |
| |
| end_value = start_value; |
| |
| /* If we're not at the end of the item, expect a dash and |
| * and integer; extract end value. |
| */ |
| if (p < q && *p == '-') { |
| p = parse_decimal(p+1, q, &end_value); |
| if (p == NULL) |
| goto BAD_FORMAT; |
| } |
| |
| /* Set bits CPU list bits */ |
| for (val = start_value; val <= end_value; val++) { |
| cpulist_set(list, val); |
| } |
| |
| /* Jump to next item */ |
| p = q; |
| if (p < end) |
| p++; |
| } |
| |
| BAD_FORMAT: |
| ; |
| } |
| |
| /* Read a CPU list from one sysfs file */ |
| static void |
| cpulist_read_from(CpuList* list, const char* filename) |
| { |
| char file[64]; |
| int filelen; |
| |
| cpulist_init(list); |
| |
| filelen = read_file(filename, file, sizeof file); |
| if (filelen < 0) { |
| D("Could not read %s: %s\n", filename, strerror(errno)); |
| return; |
| } |
| |
| cpulist_parse(list, file, filelen); |
| } |
| |
| // See <asm/hwcap.h> kernel header. |
| #define HWCAP_VFP (1 << 6) |
| #define HWCAP_IWMMXT (1 << 9) |
| #define HWCAP_NEON (1 << 12) |
| #define HWCAP_VFPv3 (1 << 13) |
| #define HWCAP_VFPv3D16 (1 << 14) |
| #define HWCAP_VFPv4 (1 << 16) |
| #define HWCAP_IDIVA (1 << 17) |
| #define HWCAP_IDIVT (1 << 18) |
| |
| #define AT_HWCAP 16 |
| |
| #if defined(__arm__) |
| /* Compute the ELF HWCAP flags. |
| */ |
| static uint32_t |
| get_elf_hwcap(const char* cpuinfo, int cpuinfo_len) |
| { |
| /* IMPORTANT: |
| * Accessing /proc/self/auxv doesn't work anymore on all |
| * platform versions. More specifically, when running inside |
| * a regular application process, most of /proc/self/ will be |
| * non-readable, including /proc/self/auxv. This doesn't |
| * happen however if the application is debuggable, or when |
| * running under the "shell" UID, which is why this was not |
| * detected appropriately. |
| */ |
| #if 0 |
| uint32_t result = 0; |
| const char filepath[] = "/proc/self/auxv"; |
| int fd = open(filepath, O_RDONLY); |
| if (fd < 0) { |
| D("Could not open %s: %s\n", filepath, strerror(errno)); |
| return 0; |
| } |
| |
| struct { uint32_t tag; uint32_t value; } entry; |
| |
| for (;;) { |
| int ret = read(fd, (char*)&entry, sizeof entry); |
| if (ret < 0) { |
| if (errno == EINTR) |
| continue; |
| D("Error while reading %s: %s\n", filepath, strerror(errno)); |
| break; |
| } |
| // Detect end of list. |
| if (ret == 0 || (entry.tag == 0 && entry.value == 0)) |
| break; |
| if (entry.tag == AT_HWCAP) { |
| result = entry.value; |
| break; |
| } |
| } |
| close(fd); |
| return result; |
| #else |
| // Recreate ELF hwcaps by parsing /proc/cpuinfo Features tag. |
| uint32_t hwcaps = 0; |
| |
| char* cpuFeatures = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Features"); |
| |
| if (cpuFeatures != NULL) { |
| D("Found cpuFeatures = '%s'\n", cpuFeatures); |
| |
| if (has_list_item(cpuFeatures, "vfp")) |
| hwcaps |= HWCAP_VFP; |
| if (has_list_item(cpuFeatures, "vfpv3")) |
| hwcaps |= HWCAP_VFPv3; |
| if (has_list_item(cpuFeatures, "vfpv3d16")) |
| hwcaps |= HWCAP_VFPv3D16; |
| if (has_list_item(cpuFeatures, "vfpv4")) |
| hwcaps |= HWCAP_VFPv4; |
| if (has_list_item(cpuFeatures, "neon")) |
| hwcaps |= HWCAP_NEON; |
| if (has_list_item(cpuFeatures, "idiva")) |
| hwcaps |= HWCAP_IDIVA; |
| if (has_list_item(cpuFeatures, "idivt")) |
| hwcaps |= HWCAP_IDIVT; |
| if (has_list_item(cpuFeatures, "idiv")) |
| hwcaps |= HWCAP_IDIVA | HWCAP_IDIVT; |
| if (has_list_item(cpuFeatures, "iwmmxt")) |
| hwcaps |= HWCAP_IWMMXT; |
| |
| free(cpuFeatures); |
| } |
| return hwcaps; |
| #endif |
| } |
| #endif /* __arm__ */ |
| |
| /* Return the number of cpus present on a given device. |
| * |
| * To handle all weird kernel configurations, we need to compute the |
| * intersection of the 'present' and 'possible' CPU lists and count |
| * the result. |
| */ |
| static int |
| get_cpu_count(void) |
| { |
| CpuList cpus_present[1]; |
| CpuList cpus_possible[1]; |
| |
| cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present"); |
| cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible"); |
| |
| /* Compute the intersection of both sets to get the actual number of |
| * CPU cores that can be used on this device by the kernel. |
| */ |
| cpulist_and(cpus_present, cpus_possible); |
| |
| return cpulist_count(cpus_present); |
| } |
| |
| static void |
| android_cpuInitFamily(void) |
| { |
| #if defined(__ARM_ARCH__) |
| g_cpuFamily = ANDROID_CPU_FAMILY_ARM; |
| #elif defined(__i386__) |
| g_cpuFamily = ANDROID_CPU_FAMILY_X86; |
| #elif defined(_MIPS_ARCH) |
| g_cpuFamily = ANDROID_CPU_FAMILY_MIPS; |
| #else |
| g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN; |
| #endif |
| } |
| |
| static void |
| android_cpuInit(void) |
| { |
| char* cpuinfo = NULL; |
| int cpuinfo_len; |
| |
| android_cpuInitFamily(); |
| |
| g_cpuFeatures = 0; |
| g_cpuCount = 1; |
| g_inited = 1; |
| |
| cpuinfo_len = get_file_size("/proc/cpuinfo"); |
| if (cpuinfo_len < 0) { |
| D("cpuinfo_len cannot be computed!"); |
| return; |
| } |
| cpuinfo = malloc(cpuinfo_len); |
| if (cpuinfo == NULL) { |
| D("cpuinfo buffer could not be allocated"); |
| return; |
| } |
| cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len); |
| D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len, |
| cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo); |
| |
| if (cpuinfo_len < 0) /* should not happen */ { |
| free(cpuinfo); |
| return; |
| } |
| |
| /* Count the CPU cores, the value may be 0 for single-core CPUs */ |
| g_cpuCount = get_cpu_count(); |
| if (g_cpuCount == 0) { |
| g_cpuCount = 1; |
| } |
| |
| D("found cpuCount = %d\n", g_cpuCount); |
| |
| #ifdef __ARM_ARCH__ |
| { |
| char* features = NULL; |
| char* architecture = NULL; |
| |
| /* Extract architecture from the "CPU Architecture" field. |
| * The list is well-known, unlike the the output of |
| * the 'Processor' field which can vary greatly. |
| * |
| * See the definition of the 'proc_arch' array in |
| * $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in |
| * same file. |
| */ |
| char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture"); |
| |
| if (cpuArch != NULL) { |
| char* end; |
| long archNumber; |
| int hasARMv7 = 0; |
| |
| D("found cpuArch = '%s'\n", cpuArch); |
| |
| /* read the initial decimal number, ignore the rest */ |
| archNumber = strtol(cpuArch, &end, 10); |
| |
| /* Here we assume that ARMv8 will be upwards compatible with v7 |
| * in the future. Unfortunately, there is no 'Features' field to |
| * indicate that Thumb-2 is supported. |
| */ |
| if (end > cpuArch && archNumber >= 7) { |
| hasARMv7 = 1; |
| } |
| |
| /* Unfortunately, it seems that certain ARMv6-based CPUs |
| * report an incorrect architecture number of 7! |
| * |
| * See http://code.google.com/p/android/issues/detail?id=10812 |
| * |
| * We try to correct this by looking at the 'elf_format' |
| * field reported by the 'Processor' field, which is of the |
| * form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for |
| * an ARMv6-one. |
| */ |
| if (hasARMv7) { |
| char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len, |
| "Processor"); |
| if (cpuProc != NULL) { |
| D("found cpuProc = '%s'\n", cpuProc); |
| if (has_list_item(cpuProc, "(v6l)")) { |
| D("CPU processor and architecture mismatch!!\n"); |
| hasARMv7 = 0; |
| } |
| free(cpuProc); |
| } |
| } |
| |
| if (hasARMv7) { |
| g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7; |
| } |
| |
| /* The LDREX / STREX instructions are available from ARMv6 */ |
| if (archNumber >= 6) { |
| g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX; |
| } |
| |
| free(cpuArch); |
| } |
| |
| /* Extract the list of CPU features from ELF hwcaps */ |
| uint32_t hwcaps = get_elf_hwcap(cpuinfo, cpuinfo_len); |
| |
| if (hwcaps != 0) { |
| int has_vfp = (hwcaps & HWCAP_VFP); |
| int has_vfpv3 = (hwcaps & HWCAP_VFPv3); |
| int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16); |
| int has_vfpv4 = (hwcaps & HWCAP_VFPv4); |
| int has_neon = (hwcaps & HWCAP_NEON); |
| int has_idiva = (hwcaps & HWCAP_IDIVA); |
| int has_idivt = (hwcaps & HWCAP_IDIVT); |
| int has_iwmmxt = (hwcaps & HWCAP_IWMMXT); |
| |
| // The kernel does a poor job at ensuring consistency when |
| // describing CPU features. So lots of guessing is needed. |
| |
| // 'vfpv4' implies VFPv3|VFP_FMA|FP16 |
| if (has_vfpv4) |
| g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 | |
| ANDROID_CPU_ARM_FEATURE_VFP_FP16 | |
| ANDROID_CPU_ARM_FEATURE_VFP_FMA; |
| |
| // 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC, |
| // a value of 'vfpv3' doesn't necessarily mean that the D32 |
| // feature is present, so be conservative. All CPUs in the |
| // field that support D32 also support NEON, so this should |
| // not be a problem in practice. |
| if (has_vfpv3 || has_vfpv3d16) |
| g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3; |
| |
| // 'vfp' is super ambiguous. Depending on the kernel, it can |
| // either mean VFPv2 or VFPv3. Make it depend on ARMv7. |
| if (has_vfp) { |
| if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7) |
| g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3; |
| else |
| g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2; |
| } |
| |
| // Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA |
| if (has_neon) { |
| g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 | |
| ANDROID_CPU_ARM_FEATURE_NEON | |
| ANDROID_CPU_ARM_FEATURE_VFP_D32; |
| if (has_vfpv4) |
| g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA; |
| } |
| |
| // VFPv3 implies VFPv2 and ARMv7 |
| if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3) |
| g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 | |
| ANDROID_CPU_ARM_FEATURE_ARMv7; |
| |
| // Note that some buggy kernels do not report these even when |
| // the CPU actually support the division instructions. However, |
| // assume that if 'vfpv4' is detected, then the CPU supports |
| // sdiv/udiv properly. |
| if (has_idiva || has_vfpv4) |
| g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM; |
| if (has_idivt || has_vfpv4) |
| g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2; |
| |
| if (has_iwmmxt) |
| g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt; |
| } |
| } |
| #endif /* __ARM_ARCH__ */ |
| |
| #ifdef __i386__ |
| int regs[4]; |
| |
| /* According to http://en.wikipedia.org/wiki/CPUID */ |
| #define VENDOR_INTEL_b 0x756e6547 |
| #define VENDOR_INTEL_c 0x6c65746e |
| #define VENDOR_INTEL_d 0x49656e69 |
| |
| x86_cpuid(0, regs); |
| int vendorIsIntel = (regs[1] == VENDOR_INTEL_b && |
| regs[2] == VENDOR_INTEL_c && |
| regs[3] == VENDOR_INTEL_d); |
| |
| x86_cpuid(1, regs); |
| if ((regs[2] & (1 << 9)) != 0) { |
| g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3; |
| } |
| if ((regs[2] & (1 << 23)) != 0) { |
| g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT; |
| } |
| if (vendorIsIntel && (regs[2] & (1 << 22)) != 0) { |
| g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE; |
| } |
| #endif |
| |
| free(cpuinfo); |
| } |
| |
| |
| AndroidCpuFamily |
| android_getCpuFamily(void) |
| { |
| pthread_once(&g_once, android_cpuInit); |
| return g_cpuFamily; |
| } |
| |
| |
| uint64_t |
| android_getCpuFeatures(void) |
| { |
| pthread_once(&g_once, android_cpuInit); |
| return g_cpuFeatures; |
| } |
| |
| |
| int |
| android_getCpuCount(void) |
| { |
| pthread_once(&g_once, android_cpuInit); |
| return g_cpuCount; |
| } |
| |
| static void |
| android_cpuInitDummy(void) |
| { |
| g_inited = 1; |
| } |
| |
| int |
| android_setCpu(int cpu_count, uint64_t cpu_features) |
| { |
| /* Fail if the library was already initialized. */ |
| if (g_inited) |
| return 0; |
| |
| android_cpuInitFamily(); |
| g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count); |
| g_cpuFeatures = cpu_features; |
| pthread_once(&g_once, android_cpuInitDummy); |
| |
| return 1; |
| } |
| |
| /* |
| * Technical note: Making sense of ARM's FPU architecture versions. |
| * |
| * FPA was ARM's first attempt at an FPU architecture. There is no Android |
| * device that actually uses it since this technology was already obsolete |
| * when the project started. If you see references to FPA instructions |
| * somewhere, you can be sure that this doesn't apply to Android at all. |
| * |
| * FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of |
| * new versions / additions to it. ARM considers this obsolete right now, |
| * and no known Android device implements it either. |
| * |
| * VFPv2 added a few instructions to VFPv1, and is an *optional* extension |
| * supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device |
| * supporting the 'armeabi' ABI doesn't necessarily support these. |
| * |
| * VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used |
| * on ARMv7-A CPUs which implement a FPU. Note that it is also mandated |
| * by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means |
| * that it provides 16 double-precision FPU registers (d0-d15) and 32 |
| * single-precision ones (s0-s31) which happen to be mapped to the same |
| * register banks. |
| * |
| * VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16 |
| * additional double precision registers (d16-d31). Note that there are |
| * still only 32 single precision registers. |
| * |
| * VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision |
| * registers. It is only used on ARMv7-M (i.e. on micro-controllers) which |
| * are not supported by Android. Note that it is not compatible with VFPv2. |
| * |
| * NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32 |
| * depending on context. For example GCC uses it for VFPv3-D32, but |
| * the Linux kernel code uses it for VFPv3-D16 (especially in |
| * /proc/cpuinfo). Always try to use the full designation when |
| * possible. |
| * |
| * NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides |
| * instructions to perform parallel computations on vectors of 8, 16, |
| * 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all |
| * NEON registers are also mapped to the same register banks. |
| * |
| * VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to |
| * perform fused multiply-accumulate on VFP registers, as well as |
| * half-precision (16-bit) conversion operations. |
| * |
| * VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision |
| * registers. |
| * |
| * VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused |
| * multiply-accumulate instructions that work on the NEON registers. |
| * |
| * NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32 |
| * depending on context. |
| * |
| * The following information was determined by scanning the binutils-2.22 |
| * sources: |
| * |
| * Basic VFP instruction subsets: |
| * |
| * #define FPU_VFP_EXT_V1xD 0x08000000 // Base VFP instruction set. |
| * #define FPU_VFP_EXT_V1 0x04000000 // Double-precision insns. |
| * #define FPU_VFP_EXT_V2 0x02000000 // ARM10E VFPr1. |
| * #define FPU_VFP_EXT_V3xD 0x01000000 // VFPv3 single-precision. |
| * #define FPU_VFP_EXT_V3 0x00800000 // VFPv3 double-precision. |
| * #define FPU_NEON_EXT_V1 0x00400000 // Neon (SIMD) insns. |
| * #define FPU_VFP_EXT_D32 0x00200000 // Registers D16-D31. |
| * #define FPU_VFP_EXT_FP16 0x00100000 // Half-precision extensions. |
| * #define FPU_NEON_EXT_FMA 0x00080000 // Neon fused multiply-add |
| * #define FPU_VFP_EXT_FMA 0x00040000 // VFP fused multiply-add |
| * |
| * FPU types (excluding NEON) |
| * |
| * FPU_VFP_V1xD (EXT_V1xD) |
| * | |
| * +--------------------------+ |
| * | | |
| * FPU_VFP_V1 (+EXT_V1) FPU_VFP_V3xD (+EXT_V2+EXT_V3xD) |
| * | | |
| * | | |
| * FPU_VFP_V2 (+EXT_V2) FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA) |
| * | |
| * FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3) |
| * | |
| * +--------------------------+ |
| * | | |
| * FPU_VFP_V3 (+EXT_D32) FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA) |
| * | | |
| * | FPU_VFP_V4 (+EXT_D32) |
| * | |
| * FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA) |
| * |
| * VFP architectures: |
| * |
| * ARCH_VFP_V1xD (EXT_V1xD) |
| * | |
| * +------------------+ |
| * | | |
| * | ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD) |
| * | | |
| * | ARCH_VFP_V3xD_FP16 (+EXT_FP16) |
| * | | |
| * | ARCH_VFP_V4_SP_D16 (+EXT_FMA) |
| * | |
| * ARCH_VFP_V1 (+EXT_V1) |
| * | |
| * ARCH_VFP_V2 (+EXT_V2) |
| * | |
| * ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3) |
| * | |
| * +-------------------+ |
| * | | |
| * | ARCH_VFP_V3D16_FP16 (+EXT_FP16) |
| * | |
| * +-------------------+ |
| * | | |
| * | ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA) |
| * | | |
| * | ARCH_VFP_V4 (+EXT_D32) |
| * | | |
| * | ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA) |
| * | |
| * ARCH_VFP_V3 (+EXT_D32) |
| * | |
| * +-------------------+ |
| * | | |
| * | ARCH_VFP_V3_FP16 (+EXT_FP16) |
| * | |
| * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON) |
| * | |
| * ARCH_NEON_FP16 (+EXT_FP16) |
| * |
| * -fpu=<name> values and their correspondance with FPU architectures above: |
| * |
| * {"vfp", FPU_ARCH_VFP_V2}, |
| * {"vfp9", FPU_ARCH_VFP_V2}, |
| * {"vfp3", FPU_ARCH_VFP_V3}, // For backwards compatbility. |
| * {"vfp10", FPU_ARCH_VFP_V2}, |
| * {"vfp10-r0", FPU_ARCH_VFP_V1}, |
| * {"vfpxd", FPU_ARCH_VFP_V1xD}, |
| * {"vfpv2", FPU_ARCH_VFP_V2}, |
| * {"vfpv3", FPU_ARCH_VFP_V3}, |
| * {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16}, |
| * {"vfpv3-d16", FPU_ARCH_VFP_V3D16}, |
| * {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16}, |
| * {"vfpv3xd", FPU_ARCH_VFP_V3xD}, |
| * {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16}, |
| * {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1}, |
| * {"neon-fp16", FPU_ARCH_NEON_FP16}, |
| * {"vfpv4", FPU_ARCH_VFP_V4}, |
| * {"vfpv4-d16", FPU_ARCH_VFP_V4D16}, |
| * {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16}, |
| * {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4}, |
| * |
| * |
| * Simplified diagram that only includes FPUs supported by Android: |
| * Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI, |
| * all others are optional and must be probed at runtime. |
| * |
| * ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3) |
| * | |
| * +-------------------+ |
| * | | |
| * | ARCH_VFP_V3D16_FP16 (+EXT_FP16) |
| * | |
| * +-------------------+ |
| * | | |
| * | ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA) |
| * | | |
| * | ARCH_VFP_V4 (+EXT_D32) |
| * | | |
| * | ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA) |
| * | |
| * ARCH_VFP_V3 (+EXT_D32) |
| * | |
| * +-------------------+ |
| * | | |
| * | ARCH_VFP_V3_FP16 (+EXT_FP16) |
| * | |
| * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON) |
| * | |
| * ARCH_NEON_FP16 (+EXT_FP16) |
| * |
| */ |