blob: 62d6be70fa0023d9d0ac962e0147a725755acc31 [file] [log] [blame]
/*
* Copyright (c) 1999
* Silicon Graphics Computer Systems, Inc.
*
* Copyright (c) 1999
* Boris Fomitchev
*
* This material is provided "as is", with absolutely no warranty expressed
* or implied. Any use is at your own risk.
*
* Permission to use or copy this software for any purpose is hereby granted
* without fee, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*
*/
#include "stlport_prefix.h"
// Trigonometric and hyperbolic functions for complex<float>,
// complex<double>, and complex<long double>
#include <complex>
#include <cfloat>
#include <cmath>
_STLP_BEGIN_NAMESPACE
//----------------------------------------------------------------------
// helpers
#if defined (__sgi)
static const union { unsigned int i; float f; } float_ulimit = { 0x42b2d4fc };
static const float float_limit = float_ulimit.f;
static union {
struct { unsigned int h; unsigned int l; } w;
double d;
} double_ulimit = { 0x408633ce, 0x8fb9f87d };
static const double double_limit = double_ulimit.d;
static union {
struct { unsigned int h[2]; unsigned int l[2]; } w;
long double ld;
} ldouble_ulimit = {0x408633ce, 0x8fb9f87e, 0xbd23b659, 0x4e9bd8b1};
# if !defined (_STLP_NO_LONG_DOUBLE)
# define ldouble_limit ldouble_ulimit.ld
# endif
#else
# if defined (M_LN2) && defined (FLT_MAX_EXP)
static const float float_limit = float(M_LN2 * FLT_MAX_EXP);
static const double double_limit = M_LN2 * DBL_MAX_EXP;
# else
static const float float_limit = ::log(FLT_MAX);
static const double double_limit = ::log(DBL_MAX);
# endif
# if !defined (_STLP_NO_LONG_DOUBLE)
# if defined (M_LN2l)
# define ldouble_limit (M_LN2l * LDBL_MAX_EXP)
# else
# define ldouble_limit ::log(LDBL_MAX)
# endif
# endif
#endif
//----------------------------------------------------------------------
// sin
template <class _Tp>
static complex<_Tp> sinT(const complex<_Tp>& z) {
return complex<_Tp>(::sin(z._M_re) * ::cosh(z._M_im),
::cos(z._M_re) * ::sinh(z._M_im));
}
_STLP_DECLSPEC complex<float> _STLP_CALL sin(const complex<float>& z)
{ return sinT(z); }
_STLP_DECLSPEC complex<double> _STLP_CALL sin(const complex<double>& z)
{ return sinT(z); }
#if !defined (_STLP_NO_LONG_DOUBLE)
_STLP_DECLSPEC complex<long double> _STLP_CALL sin(const complex<long double>& z)
{ return sinT(z); }
#endif
//----------------------------------------------------------------------
// cos
template <class _Tp>
static complex<_Tp> cosT(const complex<_Tp>& z) {
return complex<_Tp>(::cos(z._M_re) * ::cosh(z._M_im),
-::sin(z._M_re) * ::sinh(z._M_im));
}
_STLP_DECLSPEC complex<float> _STLP_CALL cos(const complex<float>& z)
{ return cosT(z); }
_STLP_DECLSPEC complex<double> _STLP_CALL cos(const complex<double>& z)
{ return cosT(z); }
#if !defined (_STLP_NO_LONG_DOUBLE)
_STLP_DECLSPEC complex<long double> _STLP_CALL cos(const complex<long double>& z)
{ return cosT(z); }
#endif
//----------------------------------------------------------------------
// tan
template <class _Tp>
static complex<_Tp> tanT(const complex<_Tp>& z, const _Tp& Tp_limit) {
_Tp re2 = 2.f * z._M_re;
_Tp im2 = 2.f * z._M_im;
if (::abs(im2) > Tp_limit)
return complex<_Tp>(0.f, (im2 > 0 ? 1.f : -1.f));
else {
_Tp den = ::cos(re2) + ::cosh(im2);
return complex<_Tp>(::sin(re2) / den, ::sinh(im2) / den);
}
}
_STLP_DECLSPEC complex<float> _STLP_CALL tan(const complex<float>& z)
{ return tanT(z, float_limit); }
_STLP_DECLSPEC complex<double> _STLP_CALL tan(const complex<double>& z)
{ return tanT(z, double_limit); }
#if !defined (_STLP_NO_LONG_DOUBLE)
_STLP_DECLSPEC complex<long double> _STLP_CALL tan(const complex<long double>& z)
{ return tanT(z, ldouble_limit); }
#endif
//----------------------------------------------------------------------
// sinh
template <class _Tp>
static complex<_Tp> sinhT(const complex<_Tp>& z) {
return complex<_Tp>(::sinh(z._M_re) * ::cos(z._M_im),
::cosh(z._M_re) * ::sin(z._M_im));
}
_STLP_DECLSPEC complex<float> _STLP_CALL sinh(const complex<float>& z)
{ return sinhT(z); }
_STLP_DECLSPEC complex<double> _STLP_CALL sinh(const complex<double>& z)
{ return sinhT(z); }
#if !defined (_STLP_NO_LONG_DOUBLE)
_STLP_DECLSPEC complex<long double> _STLP_CALL sinh(const complex<long double>& z)
{ return sinhT(z); }
#endif
//----------------------------------------------------------------------
// cosh
template <class _Tp>
static complex<_Tp> coshT(const complex<_Tp>& z) {
return complex<_Tp>(::cosh(z._M_re) * ::cos(z._M_im),
::sinh(z._M_re) * ::sin(z._M_im));
}
_STLP_DECLSPEC complex<float> _STLP_CALL cosh(const complex<float>& z)
{ return coshT(z); }
_STLP_DECLSPEC complex<double> _STLP_CALL cosh(const complex<double>& z)
{ return coshT(z); }
#if !defined (_STLP_NO_LONG_DOUBLE)
_STLP_DECLSPEC complex<long double> _STLP_CALL cosh(const complex<long double>& z)
{ return coshT(z); }
#endif
//----------------------------------------------------------------------
// tanh
template <class _Tp>
static complex<_Tp> tanhT(const complex<_Tp>& z, const _Tp& Tp_limit) {
_Tp re2 = 2.f * z._M_re;
_Tp im2 = 2.f * z._M_im;
if (::abs(re2) > Tp_limit)
return complex<_Tp>((re2 > 0 ? 1.f : -1.f), 0.f);
else {
_Tp den = ::cosh(re2) + ::cos(im2);
return complex<_Tp>(::sinh(re2) / den, ::sin(im2) / den);
}
}
_STLP_DECLSPEC complex<float> _STLP_CALL tanh(const complex<float>& z)
{ return tanhT(z, float_limit); }
_STLP_DECLSPEC complex<double> _STLP_CALL tanh(const complex<double>& z)
{ return tanhT(z, double_limit); }
#if !defined (_STLP_NO_LONG_DOUBLE)
_STLP_DECLSPEC complex<long double> _STLP_CALL tanh(const complex<long double>& z)
{ return tanhT(z, ldouble_limit); }
#endif
_STLP_END_NAMESPACE