blob: 36f8064c7cb040d6cc1880789d89a0ae5fce10f2 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <jni.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "db_utilities_camera.h"
#include "mosaic/ImageUtils.h"
#include "mosaic_renderer/FrameBuffer.h"
#include "mosaic_renderer/WarpRenderer.h"
#include "mosaic_renderer/SurfaceTextureRenderer.h"
#include "mosaic_renderer/YVURenderer.h"
#include "mosaic/Log.h"
#define LOG_TAG "MosaicRenderer"
#include "mosaic_renderer_jni.h"
// Texture handle
GLuint gSurfaceTextureID[1];
bool gWarpImage = true;
// Low-Res input image frame in YUVA format for preview rendering and processing
// and high-res YUVA input image for processing.
unsigned char* gPreviewImage[NR];
// Low-Res & high-res preview image width
int gPreviewImageWidth[NR];
// Low-Res & high-res preview image height
int gPreviewImageHeight[NR];
// Semaphore to protect simultaneous read/writes from gPreviewImage
sem_t gPreviewImage_semaphore;
// Off-screen preview FBO width (large enough to store the entire
// preview mosaic). FBO is frame buffer object.
int gPreviewFBOWidth;
// Off-screen preview FBO height (large enough to store the entire
// preview mosaic).
int gPreviewFBOHeight;
// gK is the transformation to map the canonical {-1,1} vertex coordinate system
// to the {0,gPreviewImageWidth[LR]} input image frame coordinate system before
// applying the given affine transformation trs. gKm is the corresponding
// transformation for going to the {0,gPreviewFBOWidth}.
double gK[9];
double gKinv[9];
double gKm[9];
double gKminv[9];
// Shader to copy input SurfaceTexture into and RGBA FBO. The two shaders
// render to the textures with dimensions corresponding to the low-res and
// high-res image frames.
SurfaceTextureRenderer gSurfTexRenderer[NR];
// Off-screen FBOs to store the low-res and high-res RGBA copied out from
// the SurfaceTexture by the gSurfTexRenderers.
FrameBuffer gBufferInput[NR];
// Shader to convert RGBA textures into YVU textures for processing
YVURenderer gYVURenderer[NR];
// Off-screen FBOs to store the low-res and high-res YVU textures for processing
FrameBuffer gBufferInputYVU[NR];
// Shader to translate the flip-flop FBO - gBuffer[1-current] -> gBuffer[current]
WarpRenderer gWarper1;
// Shader to add warped current frame to the flip-flop FBO - gBuffer[current]
WarpRenderer gWarper2;
// Off-screen FBOs (flip-flop) to store the result of gWarper1 & gWarper2
FrameBuffer gBuffer[2];
// Shader to warp and render the preview FBO to the screen
WarpRenderer gPreview;
// Index of the gBuffer FBO gWarper1 is going to write into
int gCurrentFBOIndex = 0;
// 3x3 Matrices holding the transformation of this frame (gThisH1t) and of
// the last frame (gLastH1t) w.r.t the first frame.
double gThisH1t[9];
double gLastH1t[9];
// Variables to represent the fixed position of the top-left corner of the
// current frame in the previewFBO
double gCenterOffsetX = 0.0f;
double gCenterOffsetY = 0.0f;
// X-Offset of the viewfinder (current frame) w.r.t
// (gCenterOffsetX, gCenterOffsetY). This offset varies with time and is
// used to pan the viewfinder across the UI layout.
double gPanOffset = 0.0f;
// Variables tracking the translation value for the current frame and the
// last frame (both w.r.t the first frame). The difference between these
// values is used to control the panning speed of the viewfinder display
// on the UI screen.
double gThisTx = 0.0f;
double gLastTx = 0.0f;
// These are the scale factors used by the gPreview shader to ensure that
// the image frame is correctly scaled to the full UI layout height while
// maintaining its aspect ratio
double gUILayoutScalingX = 1.0f;
double gUILayoutScalingY = 1.0f;
// Whether the view that we will render preview FBO onto is in landscape or portrait
// orientation.
bool gIsLandscapeOrientation = true;
// State of the viewfinder. Set to false when the viewfinder hits the UI edge.
bool gPanViewfinder = true;
// Affine transformation in GL 4x4 format (column-major) to warp the
// last frame mosaic into the current frame coordinate system.
GLfloat g_dAffinetransGL[16];
double g_dAffinetrans[16];
// Affine transformation in GL 4x4 format (column-major) to translate the
// preview FBO across the screen (viewfinder panning).
GLfloat g_dAffinetransPanGL[16];
double g_dAffinetransPan[16];
// XY translation in GL 4x4 format (column-major) to center the current
// preview mosaic in the preview FBO
GLfloat g_dTranslationToFBOCenterGL[16];
double g_dTranslationToFBOCenter[16];
// GL 4x4 Identity transformation
GLfloat g_dAffinetransIdentGL[] = {
1., 0., 0., 0.,
0., 1., 0., 0.,
0., 0., 1., 0.,
0., 0., 0., 1.};
// GL 4x4 Rotation transformation (column-majored): 90 degree
GLfloat g_dAffinetransRotation90GL[] = {
0., 1., 0., 0.,
-1., 0., 0., 0.,
0., 0., 1., 0.,
0., 0., 0., 1.};
// 3x3 Rotation transformation (row-majored): 90 degree
double gRotation90[] = {
0., -1., 0.,
1., 0., 0.,
0., 0., 1.,};
float g_dIdent3x3[] = {
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0};
const int GL_TEXTURE_EXTERNAL_OES_ENUM = 0x8D65;
static void printGLString(const char *name, GLenum s) {
const char *v = (const char *) glGetString(s);
LOGI("GL %s = %s", name, v);
}
void checkFramebufferStatus(const char* name) {
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status == 0) {
LOGE("Checking completeness of Framebuffer:%s", name);
checkGlError("checkFramebufferStatus (is the target \"GL_FRAMEBUFFER\"?)");
} else if (status != GL_FRAMEBUFFER_COMPLETE) {
const char* msg = "not listed";
switch (status) {
case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: msg = "attachment"; break;
case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS: msg = "dimensions"; break;
case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: msg = "missing attachment"; break;
case GL_FRAMEBUFFER_UNSUPPORTED: msg = "unsupported"; break;
}
LOGE("Framebuffer: %s is INCOMPLETE: %s, %x", name, msg, status);
}
}
// @return false if there was an error
bool checkGLErrorDetail(const char* file, int line, const char* op) {
GLint error = glGetError();
const char* err_msg = "NOT_LISTED";
if (error != 0) {
switch (error) {
case GL_INVALID_VALUE: err_msg = "NOT_LISTED_YET"; break;
case GL_INVALID_OPERATION: err_msg = "INVALID_OPERATION"; break;
case GL_INVALID_ENUM: err_msg = "INVALID_ENUM"; break;
}
LOGE("Error after %s(). glError: %s (0x%x) in line %d of %s", op, err_msg, error, line, file);
return false;
}
return true;
}
void bindSurfaceTexture(GLuint texId)
{
glBindTexture(GL_TEXTURE_EXTERNAL_OES_ENUM, texId);
// Can't do mipmapping with camera source
glTexParameterf(GL_TEXTURE_EXTERNAL_OES_ENUM, GL_TEXTURE_MIN_FILTER,
GL_LINEAR);
glTexParameterf(GL_TEXTURE_EXTERNAL_OES_ENUM, GL_TEXTURE_MAG_FILTER,
GL_LINEAR);
// Clamp to edge is the only option
glTexParameteri(GL_TEXTURE_EXTERNAL_OES_ENUM, GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_EXTERNAL_OES_ENUM, GL_TEXTURE_WRAP_T,
GL_CLAMP_TO_EDGE);
}
void ClearPreviewImage(int mID)
{
unsigned char* ptr = gPreviewImage[mID];
for(int j = 0, i = 0;
j < gPreviewImageWidth[mID] * gPreviewImageHeight[mID] * 4;
j += 4)
{
ptr[i++] = 0;
ptr[i++] = 0;
ptr[i++] = 0;
ptr[i++] = 255;
}
}
void ConvertAffine3x3toGL4x4(double *matGL44, double *mat33)
{
matGL44[0] = mat33[0];
matGL44[1] = mat33[3];
matGL44[2] = 0.0;
matGL44[3] = mat33[6];
matGL44[4] = mat33[1];
matGL44[5] = mat33[4];
matGL44[6] = 0.0;
matGL44[7] = mat33[7];
matGL44[8] = 0;
matGL44[9] = 0;
matGL44[10] = 1.0;
matGL44[11] = 0.0;
matGL44[12] = mat33[2];
matGL44[13] = mat33[5];
matGL44[14] = 0.0;
matGL44[15] = mat33[8];
}
bool continuePanningFBO(double panOffset) {
double normalizedScreenLimitLeft = -1.0 + VIEWPORT_BORDER_FACTOR_HORZ * 2.0;
double normalizedScreenLimitRight = 1.0 - VIEWPORT_BORDER_FACTOR_HORZ * 2.0;
double normalizedXPositionOnScreenLeft;
double normalizedXPositionOnScreenRight;
// Compute the position of the current frame in the screen coordinate system
if (gIsLandscapeOrientation) {
normalizedXPositionOnScreenLeft = (2.0 *
(gCenterOffsetX + panOffset) / gPreviewFBOWidth - 1.0) *
gUILayoutScalingX;
normalizedXPositionOnScreenRight = (2.0 *
((gCenterOffsetX + panOffset) + gPreviewImageWidth[HR]) /
gPreviewFBOWidth - 1.0) * gUILayoutScalingX;
} else {
normalizedXPositionOnScreenLeft = (2.0 *
(gCenterOffsetX + panOffset) / gPreviewFBOWidth - 1.0) *
gUILayoutScalingY;
normalizedXPositionOnScreenRight = (2.0 *
((gCenterOffsetX + panOffset) + gPreviewImageWidth[HR]) /
gPreviewFBOWidth - 1.0) * gUILayoutScalingY;
}
// Stop the viewfinder panning if we hit the maximum border allowed for
// this UI layout
if (normalizedXPositionOnScreenRight > normalizedScreenLimitRight ||
normalizedXPositionOnScreenLeft < normalizedScreenLimitLeft) {
return false;
} else {
return true;
}
}
// This function computes fills the 4x4 matrices g_dAffinetrans,
// and g_dAffinetransPan using the specified 3x3 affine
// transformation between the first captured frame and the current frame.
// The computed g_dAffinetrans is such that it warps the preview mosaic in
// the last frame's coordinate system into the coordinate system of the
// current frame. Thus, applying this transformation will create the current
// frame mosaic but with the current frame missing. This frame will then be
// pasted in by gWarper2 after translating it by g_dTranslationToFBOCenter.
// The computed g_dAffinetransPan is such that it offsets the computed preview
// mosaic horizontally to make the viewfinder pan within the UI layout.
void UpdateWarpTransformation(float *trs)
{
double H[9], Hp[9], Htemp1[9], Htemp2[9], T[9];
for(int i = 0; i < 9; i++)
{
gThisH1t[i] = trs[i];
}
// Alignment is done based on low-res data.
// To render the preview mosaic, the translation of the high-res mosaic is estimated to
// H2L_FACTOR x low-res-based tranlation.
gThisH1t[2] *= H2L_FACTOR;
gThisH1t[5] *= H2L_FACTOR;
db_Identity3x3(T);
T[2] = -gCenterOffsetX;
T[5] = -gCenterOffsetY;
// H = ( inv(gThisH1t) * gLastH1t ) * T
db_Identity3x3(Htemp1);
db_Identity3x3(Htemp2);
db_Identity3x3(H);
db_InvertAffineTransform(Htemp1, gThisH1t);
db_Multiply3x3_3x3(Htemp2, Htemp1, gLastH1t);
db_Multiply3x3_3x3(H, Htemp2, T);
for(int i = 0; i < 9; i++)
{
gLastH1t[i] = gThisH1t[i];
}
// Move the origin such that the frame is centered in the previewFBO
// i.e. H = inv(T) * H
H[2] += gCenterOffsetX;
H[5] += gCenterOffsetY;
// Hp = inv(Km) * H * Km
// Km moves the coordinate system from openGL to image pixels so
// that the alignment transform H can be applied to them.
// inv(Km) moves the coordinate system back to openGL normalized
// coordinates so that the shader can correctly render it.
db_Identity3x3(Htemp1);
db_Multiply3x3_3x3(Htemp1, H, gKm);
db_Multiply3x3_3x3(Hp, gKminv, Htemp1);
ConvertAffine3x3toGL4x4(g_dAffinetrans, Hp);
////////////////////////////////////////////////
////// Compute g_dAffinetransPan now... //////
////////////////////////////////////////////////
gThisTx = trs[2];
if(gPanViewfinder)
{
gPanOffset += (gThisTx - gLastTx) * VIEWFINDER_PAN_FACTOR_HORZ;
}
gLastTx = gThisTx;
gPanViewfinder = continuePanningFBO(gPanOffset);
db_Identity3x3(H);
H[2] = gPanOffset;
// Hp = inv(Km) * H * Km
db_Identity3x3(Htemp1);
db_Multiply3x3_3x3(Htemp1, H, gKm);
db_Multiply3x3_3x3(Hp, gKminv, Htemp1);
if (gIsLandscapeOrientation) {
ConvertAffine3x3toGL4x4(g_dAffinetransPan, Hp);
} else {
// rotate Hp by 90 degress.
db_Multiply3x3_3x3(Htemp1, gRotation90, Hp);
ConvertAffine3x3toGL4x4(g_dAffinetransPan, Htemp1);
}
}
void AllocateTextureMemory(int widthHR, int heightHR, int widthLR, int heightLR)
{
gPreviewImageWidth[HR] = widthHR;
gPreviewImageHeight[HR] = heightHR;
gPreviewImageWidth[LR] = widthLR;
gPreviewImageHeight[LR] = heightLR;
sem_wait(&gPreviewImage_semaphore);
gPreviewImage[LR] = ImageUtils::allocateImage(gPreviewImageWidth[LR],
gPreviewImageHeight[LR], 4);
gPreviewImage[HR] = ImageUtils::allocateImage(gPreviewImageWidth[HR],
gPreviewImageHeight[HR], 4);
sem_post(&gPreviewImage_semaphore);
gPreviewFBOWidth = PREVIEW_FBO_WIDTH_SCALE * gPreviewImageWidth[HR];
gPreviewFBOHeight = PREVIEW_FBO_HEIGHT_SCALE * gPreviewImageHeight[HR];
// The origin is such that the current frame will sit with its center
// at the center of the previewFBO
gCenterOffsetX = (gPreviewFBOWidth / 2 - gPreviewImageWidth[HR] / 2);
gCenterOffsetY = (gPreviewFBOHeight / 2 - gPreviewImageHeight[HR] / 2);
gPanOffset = 0.0f;
db_Identity3x3(gThisH1t);
db_Identity3x3(gLastH1t);
gPanViewfinder = true;
int w = gPreviewImageWidth[HR];
int h = gPreviewImageHeight[HR];
int wm = gPreviewFBOWidth;
int hm = gPreviewFBOHeight;
// K is the transformation to map the canonical [-1,1] vertex coordinate
// system to the [0,w] image coordinate system before applying the given
// affine transformation trs.
gKm[0] = wm / 2.0 - 0.5;
gKm[1] = 0.0;
gKm[2] = wm / 2.0 - 0.5;
gKm[3] = 0.0;
gKm[4] = hm / 2.0 - 0.5;
gKm[5] = hm / 2.0 - 0.5;
gKm[6] = 0.0;
gKm[7] = 0.0;
gKm[8] = 1.0;
gK[0] = w / 2.0 - 0.5;
gK[1] = 0.0;
gK[2] = w / 2.0 - 0.5;
gK[3] = 0.0;
gK[4] = h / 2.0 - 0.5;
gK[5] = h / 2.0 - 0.5;
gK[6] = 0.0;
gK[7] = 0.0;
gK[8] = 1.0;
db_Identity3x3(gKinv);
db_InvertCalibrationMatrix(gKinv, gK);
db_Identity3x3(gKminv);
db_InvertCalibrationMatrix(gKminv, gKm);
//////////////////////////////////////////
////// Compute g_Translation now... //////
//////////////////////////////////////////
double T[9], Tp[9], Ttemp[9];
db_Identity3x3(T);
T[2] = gCenterOffsetX;
T[5] = gCenterOffsetY;
// Tp = inv(K) * T * K
db_Identity3x3(Ttemp);
db_Multiply3x3_3x3(Ttemp, T, gK);
db_Multiply3x3_3x3(Tp, gKinv, Ttemp);
ConvertAffine3x3toGL4x4(g_dTranslationToFBOCenter, Tp);
UpdateWarpTransformation(g_dIdent3x3);
}
void FreeTextureMemory()
{
sem_wait(&gPreviewImage_semaphore);
ImageUtils::freeImage(gPreviewImage[LR]);
ImageUtils::freeImage(gPreviewImage[HR]);
sem_post(&gPreviewImage_semaphore);
}
extern "C"
{
JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM* vm, void* reserved);
JNIEXPORT void JNICALL JNI_OnUnload(JavaVM* vm, void* reserved);
JNIEXPORT jint JNICALL Java_com_android_camera_MosaicRenderer_init(
JNIEnv * env, jobject obj);
JNIEXPORT void JNICALL Java_com_android_camera_MosaicRenderer_reset(
JNIEnv * env, jobject obj, jint width, jint height,
jboolean isLandscapeOrientation);
JNIEXPORT void JNICALL Java_com_android_camera_MosaicRenderer_preprocess(
JNIEnv * env, jobject obj, jfloatArray stMatrix);
JNIEXPORT void JNICALL Java_com_android_camera_MosaicRenderer_transferGPUtoCPU(
JNIEnv * env, jobject obj);
JNIEXPORT void JNICALL Java_com_android_camera_MosaicRenderer_step(
JNIEnv * env, jobject obj);
JNIEXPORT void JNICALL Java_com_android_camera_MosaicRenderer_updateMatrix(
JNIEnv * env, jobject obj);
JNIEXPORT void JNICALL Java_com_android_camera_MosaicRenderer_setWarping(
JNIEnv * env, jobject obj, jboolean flag);
};
JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM* vm, void* reserved)
{
sem_init(&gPreviewImage_semaphore, 0, 1);
return JNI_VERSION_1_4;
}
JNIEXPORT void JNICALL JNI_OnUnload(JavaVM* vm, void* reserved)
{
sem_destroy(&gPreviewImage_semaphore);
}
JNIEXPORT jint JNICALL Java_com_android_camera_MosaicRenderer_init(
JNIEnv * env, jobject obj)
{
gSurfTexRenderer[LR].InitializeGLProgram();
gSurfTexRenderer[HR].InitializeGLProgram();
gYVURenderer[LR].InitializeGLProgram();
gYVURenderer[HR].InitializeGLProgram();
gWarper1.InitializeGLProgram();
gWarper2.InitializeGLProgram();
gPreview.InitializeGLProgram();
gBuffer[0].InitializeGLContext();
gBuffer[1].InitializeGLContext();
gBufferInput[LR].InitializeGLContext();
gBufferInput[HR].InitializeGLContext();
gBufferInputYVU[LR].InitializeGLContext();
gBufferInputYVU[HR].InitializeGLContext();
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glGenTextures(1, gSurfaceTextureID);
// bind the surface texture
bindSurfaceTexture(gSurfaceTextureID[0]);
return (jint) gSurfaceTextureID[0];
}
// width: the width of the view
// height: the height of the view
// isLandscape: whether the device is in landscape or portrait. Android
// Compatibility Definition Document specifies that the long side of the
// camera aligns with the long side of the screen.
void calculateUILayoutScaling(int width, int height, bool isLandscape) {
if (isLandscape) {
// __________ ________
// | | => |________|
// |__________| => (View)
// (Preview FBO)
//
// Scale the preview FBO's height to the height of view and
// maintain the aspect ratio of the current frame on the screen.
gUILayoutScalingY = PREVIEW_FBO_HEIGHT_SCALE;
// Note that OpenGL scales a texture to view's width and height automatically.
// The "width / height" inverts the scaling, so as to maintain the aspect ratio
// of the current frame.
gUILayoutScalingX = ((float) gPreviewFBOWidth / gPreviewFBOHeight)
/ ((float) width / height) * PREVIEW_FBO_HEIGHT_SCALE;
} else {
// ___
// __________ | | ______
// | | => | | => |______|
// |__________| => | | => (View)
// (Preview FBO) | |
// |___|
//
// Scale the preview FBO's height to the width of view and
// maintain the aspect ratio of the current frame on the screen.
// In preview, Java_com_android_camera_MosaicRenderer_step rotates the
// preview FBO by 90 degrees. In capture, UpdateWarpTransformation
// rotates the preview FBO.
gUILayoutScalingY = PREVIEW_FBO_WIDTH_SCALE;
// Note that OpenGL scales a texture to view's width and height automatically.
// The "height / width" inverts the scaling, so as to maintain the aspect ratio
// of the current frame.
gUILayoutScalingX = ((float) gPreviewFBOHeight / gPreviewFBOWidth)
/ ((float) width / height) * PREVIEW_FBO_WIDTH_SCALE;
}
}
JNIEXPORT void JNICALL Java_com_android_camera_MosaicRenderer_reset(
JNIEnv * env, jobject obj, jint width, jint height, jboolean isLandscapeOrientation)
{
gIsLandscapeOrientation = isLandscapeOrientation;
calculateUILayoutScaling(width, height, gIsLandscapeOrientation);
gBuffer[0].Init(gPreviewFBOWidth, gPreviewFBOHeight, GL_RGBA);
gBuffer[1].Init(gPreviewFBOWidth, gPreviewFBOHeight, GL_RGBA);
gBufferInput[LR].Init(gPreviewImageWidth[LR],
gPreviewImageHeight[LR], GL_RGBA);
gBufferInput[HR].Init(gPreviewImageWidth[HR],
gPreviewImageHeight[HR], GL_RGBA);
gBufferInputYVU[LR].Init(gPreviewImageWidth[LR],
gPreviewImageHeight[LR], GL_RGBA);
gBufferInputYVU[HR].Init(gPreviewImageWidth[HR],
gPreviewImageHeight[HR], GL_RGBA);
// bind the surface texture
bindSurfaceTexture(gSurfaceTextureID[0]);
// To speed up, there is no need to clear the destination buffers
// (offscreen/screen buffers) of gSurfTexRenderer, gYVURenderer
// and gPreview because we always fill the whole destination buffers
// when we draw something to those offscreen/screen buffers.
gSurfTexRenderer[LR].SetupGraphics(&gBufferInput[LR]);
gSurfTexRenderer[LR].SetViewportMatrix(1, 1, 1, 1);
gSurfTexRenderer[LR].SetScalingMatrix(1.0f, -1.0f);
gSurfTexRenderer[LR].SetInputTextureName(gSurfaceTextureID[0]);
gSurfTexRenderer[LR].SetInputTextureType(GL_TEXTURE_EXTERNAL_OES_ENUM);
gSurfTexRenderer[HR].SetupGraphics(&gBufferInput[HR]);
gSurfTexRenderer[HR].SetViewportMatrix(1, 1, 1, 1);
gSurfTexRenderer[HR].SetScalingMatrix(1.0f, -1.0f);
gSurfTexRenderer[HR].SetInputTextureName(gSurfaceTextureID[0]);
gSurfTexRenderer[HR].SetInputTextureType(GL_TEXTURE_EXTERNAL_OES_ENUM);
gYVURenderer[LR].SetupGraphics(&gBufferInputYVU[LR]);
gYVURenderer[LR].SetInputTextureName(gBufferInput[LR].GetTextureName());
gYVURenderer[LR].SetInputTextureType(GL_TEXTURE_2D);
gYVURenderer[HR].SetupGraphics(&gBufferInputYVU[HR]);
gYVURenderer[HR].SetInputTextureName(gBufferInput[HR].GetTextureName());
gYVURenderer[HR].SetInputTextureType(GL_TEXTURE_2D);
// gBuffer[1-gCurrentFBOIndex] --> gWarper1 --> gBuffer[gCurrentFBOIndex]
gWarper1.SetupGraphics(&gBuffer[gCurrentFBOIndex]);
// Clear the destination buffer of gWarper1.
gWarper1.Clear(0.0, 0.0, 0.0, 1.0);
gWarper1.SetViewportMatrix(1, 1, 1, 1);
gWarper1.SetScalingMatrix(1.0f, 1.0f);
gWarper1.SetInputTextureName(gBuffer[1 - gCurrentFBOIndex].GetTextureName());
gWarper1.SetInputTextureType(GL_TEXTURE_2D);
// gBufferInput[HR] --> gWarper2 --> gBuffer[gCurrentFBOIndex]
gWarper2.SetupGraphics(&gBuffer[gCurrentFBOIndex]);
// gWarp2's destination buffer is the same to gWarp1's. No need to clear it
// again.
gWarper2.SetViewportMatrix(gPreviewImageWidth[HR],
gPreviewImageHeight[HR], gBuffer[gCurrentFBOIndex].GetWidth(),
gBuffer[gCurrentFBOIndex].GetHeight());
gWarper2.SetScalingMatrix(1.0f, 1.0f);
gWarper2.SetInputTextureName(gBufferInput[HR].GetTextureName());
gWarper2.SetInputTextureType(GL_TEXTURE_2D);
// gBuffer[gCurrentFBOIndex] --> gPreview --> Screen
gPreview.SetupGraphics(width, height);
gPreview.SetViewportMatrix(1, 1, 1, 1);
// Scale the previewFBO so that the viewfinder window fills the layout height
// while maintaining the image aspect ratio
gPreview.SetScalingMatrix(gUILayoutScalingX, -1.0f * gUILayoutScalingY);
gPreview.SetInputTextureName(gBuffer[gCurrentFBOIndex].GetTextureName());
gPreview.SetInputTextureType(GL_TEXTURE_2D);
}
JNIEXPORT void JNICALL Java_com_android_camera_MosaicRenderer_preprocess(
JNIEnv * env, jobject obj, jfloatArray stMatrix)
{
jfloat *stmat = env->GetFloatArrayElements(stMatrix, 0);
gSurfTexRenderer[LR].SetSTMatrix((float*) stmat);
gSurfTexRenderer[HR].SetSTMatrix((float*) stmat);
env->ReleaseFloatArrayElements(stMatrix, stmat, 0);
gSurfTexRenderer[LR].DrawTexture(g_dAffinetransIdentGL);
gSurfTexRenderer[HR].DrawTexture(g_dAffinetransIdentGL);
}
#ifndef now_ms
#include <time.h>
static double
now_ms(void)
{
//struct timespec res;
struct timeval res;
//clock_gettime(CLOCK_REALTIME, &res);
gettimeofday(&res, NULL);
return 1000.0*res.tv_sec + (double)res.tv_usec/1e3;
}
#endif
JNIEXPORT void JNICALL Java_com_android_camera_MosaicRenderer_transferGPUtoCPU(
JNIEnv * env, jobject obj)
{
double t0, t1, time_c;
gYVURenderer[LR].DrawTexture();
gYVURenderer[HR].DrawTexture();
sem_wait(&gPreviewImage_semaphore);
// Bind to the input LR FBO and read the Low-Res data from there...
glBindFramebuffer(GL_FRAMEBUFFER, gBufferInputYVU[LR].GetFrameBufferName());
t0 = now_ms();
glReadPixels(0,
0,
gBufferInput[LR].GetWidth(),
gBufferInput[LR].GetHeight(),
GL_RGBA,
GL_UNSIGNED_BYTE,
gPreviewImage[LR]);
checkGlError("glReadPixels LR (MosaicRenderer.transferGPUtoCPU())");
// Bind to the input HR FBO and read the high-res data from there...
glBindFramebuffer(GL_FRAMEBUFFER, gBufferInputYVU[HR].GetFrameBufferName());
t0 = now_ms();
glReadPixels(0,
0,
gBufferInput[HR].GetWidth(),
gBufferInput[HR].GetHeight(),
GL_RGBA,
GL_UNSIGNED_BYTE,
gPreviewImage[HR]);
checkGlError("glReadPixels HR (MosaicRenderer.transferGPUtoCPU())");
sem_post(&gPreviewImage_semaphore);
}
JNIEXPORT void JNICALL Java_com_android_camera_MosaicRenderer_step(
JNIEnv * env, jobject obj)
{
if(!gWarpImage) // ViewFinder
{
gWarper2.SetupGraphics(&gBuffer[gCurrentFBOIndex]);
gPreview.SetInputTextureName(gBuffer[gCurrentFBOIndex].GetTextureName());
gWarper2.DrawTexture(g_dTranslationToFBOCenterGL);
if (gIsLandscapeOrientation) {
gPreview.DrawTexture(g_dAffinetransIdentGL);
} else {
gPreview.DrawTexture(g_dAffinetransRotation90GL);
}
}
else
{
gWarper1.SetupGraphics(&gBuffer[gCurrentFBOIndex]);
// Clear the destination so that we can paint on it afresh
gWarper1.Clear(0.0, 0.0, 0.0, 1.0);
gWarper1.SetInputTextureName(
gBuffer[1 - gCurrentFBOIndex].GetTextureName());
gWarper2.SetupGraphics(&gBuffer[gCurrentFBOIndex]);
gPreview.SetInputTextureName(gBuffer[gCurrentFBOIndex].GetTextureName());
gWarper1.DrawTexture(g_dAffinetransGL);
gWarper2.DrawTexture(g_dTranslationToFBOCenterGL);
gPreview.DrawTexture(g_dAffinetransPanGL);
gCurrentFBOIndex = 1 - gCurrentFBOIndex;
}
}
JNIEXPORT void JNICALL Java_com_android_camera_MosaicRenderer_setWarping(
JNIEnv * env, jobject obj, jboolean flag)
{
// TODO: Review this logic
if(gWarpImage != (bool) flag) //switching from viewfinder to capture or vice-versa
{
// Clear gBuffer[0]
gWarper1.SetupGraphics(&gBuffer[0]);
gWarper1.Clear(0.0, 0.0, 0.0, 1.0);
// Clear gBuffer[1]
gWarper1.SetupGraphics(&gBuffer[1]);
gWarper1.Clear(0.0, 0.0, 0.0, 1.0);
// Clear the screen to black.
gPreview.Clear(0.0, 0.0, 0.0, 1.0);
gLastTx = 0.0f;
gPanOffset = 0.0f;
gPanViewfinder = true;
db_Identity3x3(gThisH1t);
db_Identity3x3(gLastH1t);
// Make sure g_dAffinetransGL and g_dAffinetransPanGL are updated.
// Otherwise, the first frame after setting the flag to true will be
// incorrectly drawn.
if ((bool) flag) {
UpdateWarpTransformation(g_dIdent3x3);
}
}
gWarpImage = (bool)flag;
}
JNIEXPORT void JNICALL Java_com_android_camera_MosaicRenderer_updateMatrix(
JNIEnv * env, jobject obj)
{
for(int i=0; i<16; i++)
{
g_dAffinetransGL[i] = g_dAffinetrans[i];
g_dAffinetransPanGL[i] = g_dAffinetransPan[i];
g_dTranslationToFBOCenterGL[i] = g_dTranslationToFBOCenter[i];
}
}