| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| package com.android.launcher2; |
| |
| import android.animation.Animator; |
| import android.animation.AnimatorListenerAdapter; |
| import android.animation.AnimatorSet; |
| import android.animation.TimeInterpolator; |
| import android.animation.ValueAnimator; |
| import android.animation.ValueAnimator.AnimatorUpdateListener; |
| import android.content.Context; |
| import android.content.res.Resources; |
| import android.content.res.TypedArray; |
| import android.graphics.Bitmap; |
| import android.graphics.Canvas; |
| import android.graphics.Color; |
| import android.graphics.Paint; |
| import android.graphics.Point; |
| import android.graphics.PorterDuff; |
| import android.graphics.PorterDuffXfermode; |
| import android.graphics.Rect; |
| import android.graphics.drawable.ColorDrawable; |
| import android.graphics.drawable.Drawable; |
| import android.graphics.drawable.NinePatchDrawable; |
| import android.os.Parcelable; |
| import android.util.AttributeSet; |
| import android.util.Log; |
| import android.util.SparseArray; |
| import android.view.MotionEvent; |
| import android.view.View; |
| import android.view.ViewDebug; |
| import android.view.ViewGroup; |
| import android.view.animation.Animation; |
| import android.view.animation.DecelerateInterpolator; |
| import android.view.animation.LayoutAnimationController; |
| |
| import com.android.launcher.R; |
| import com.android.launcher2.FolderIcon.FolderRingAnimator; |
| |
| import java.util.ArrayList; |
| import java.util.Arrays; |
| import java.util.Collections; |
| import java.util.Comparator; |
| import java.util.HashMap; |
| import java.util.Stack; |
| |
| public class CellLayout extends ViewGroup { |
| static final String TAG = "CellLayout"; |
| |
| private Launcher mLauncher; |
| private int mCellWidth; |
| private int mCellHeight; |
| |
| private int mCountX; |
| private int mCountY; |
| |
| private int mOriginalWidthGap; |
| private int mOriginalHeightGap; |
| private int mWidthGap; |
| private int mHeightGap; |
| private int mMaxGap; |
| private boolean mScrollingTransformsDirty = false; |
| |
| private final Rect mRect = new Rect(); |
| private final CellInfo mCellInfo = new CellInfo(); |
| |
| // These are temporary variables to prevent having to allocate a new object just to |
| // return an (x, y) value from helper functions. Do NOT use them to maintain other state. |
| private final int[] mTmpXY = new int[2]; |
| private final int[] mTmpPoint = new int[2]; |
| int[] mTempLocation = new int[2]; |
| |
| boolean[][] mOccupied; |
| boolean[][] mTmpOccupied; |
| private boolean mLastDownOnOccupiedCell = false; |
| |
| private OnTouchListener mInterceptTouchListener; |
| |
| private ArrayList<FolderRingAnimator> mFolderOuterRings = new ArrayList<FolderRingAnimator>(); |
| private int[] mFolderLeaveBehindCell = {-1, -1}; |
| |
| private int mForegroundAlpha = 0; |
| private float mBackgroundAlpha; |
| private float mBackgroundAlphaMultiplier = 1.0f; |
| |
| private Drawable mNormalBackground; |
| private Drawable mActiveGlowBackground; |
| private Drawable mOverScrollForegroundDrawable; |
| private Drawable mOverScrollLeft; |
| private Drawable mOverScrollRight; |
| private Rect mBackgroundRect; |
| private Rect mForegroundRect; |
| private int mForegroundPadding; |
| |
| // If we're actively dragging something over this screen, mIsDragOverlapping is true |
| private boolean mIsDragOverlapping = false; |
| private final Point mDragCenter = new Point(); |
| |
| // These arrays are used to implement the drag visualization on x-large screens. |
| // They are used as circular arrays, indexed by mDragOutlineCurrent. |
| private Rect[] mDragOutlines = new Rect[4]; |
| private float[] mDragOutlineAlphas = new float[mDragOutlines.length]; |
| private InterruptibleInOutAnimator[] mDragOutlineAnims = |
| new InterruptibleInOutAnimator[mDragOutlines.length]; |
| |
| // Used as an index into the above 3 arrays; indicates which is the most current value. |
| private int mDragOutlineCurrent = 0; |
| private final Paint mDragOutlinePaint = new Paint(); |
| |
| private BubbleTextView mPressedOrFocusedIcon; |
| |
| private HashMap<CellLayout.LayoutParams, Animator> mReorderAnimators = new |
| HashMap<CellLayout.LayoutParams, Animator>(); |
| private HashMap<View, ReorderHintAnimation> |
| mShakeAnimators = new HashMap<View, ReorderHintAnimation>(); |
| |
| private boolean mItemPlacementDirty = false; |
| |
| // When a drag operation is in progress, holds the nearest cell to the touch point |
| private final int[] mDragCell = new int[2]; |
| |
| private boolean mDragging = false; |
| |
| private TimeInterpolator mEaseOutInterpolator; |
| private ShortcutAndWidgetContainer mShortcutsAndWidgets; |
| |
| private boolean mIsHotseat = false; |
| private float mHotseatScale = 1f; |
| |
| public static final int MODE_DRAG_OVER = 0; |
| public static final int MODE_ON_DROP = 1; |
| public static final int MODE_ON_DROP_EXTERNAL = 2; |
| public static final int MODE_ACCEPT_DROP = 3; |
| private static final boolean DESTRUCTIVE_REORDER = false; |
| private static final boolean DEBUG_VISUALIZE_OCCUPIED = false; |
| |
| static final int LANDSCAPE = 0; |
| static final int PORTRAIT = 1; |
| |
| private static final float REORDER_HINT_MAGNITUDE = 0.12f; |
| private static final int REORDER_ANIMATION_DURATION = 150; |
| private float mReorderHintAnimationMagnitude; |
| |
| private ArrayList<View> mIntersectingViews = new ArrayList<View>(); |
| private Rect mOccupiedRect = new Rect(); |
| private int[] mDirectionVector = new int[2]; |
| int[] mPreviousReorderDirection = new int[2]; |
| private static final int INVALID_DIRECTION = -100; |
| private DropTarget.DragEnforcer mDragEnforcer; |
| |
| private final static PorterDuffXfermode sAddBlendMode = |
| new PorterDuffXfermode(PorterDuff.Mode.ADD); |
| private final static Paint sPaint = new Paint(); |
| |
| public CellLayout(Context context) { |
| this(context, null); |
| } |
| |
| public CellLayout(Context context, AttributeSet attrs) { |
| this(context, attrs, 0); |
| } |
| |
| public CellLayout(Context context, AttributeSet attrs, int defStyle) { |
| super(context, attrs, defStyle); |
| mDragEnforcer = new DropTarget.DragEnforcer(context); |
| |
| // A ViewGroup usually does not draw, but CellLayout needs to draw a rectangle to show |
| // the user where a dragged item will land when dropped. |
| setWillNotDraw(false); |
| setClipToPadding(false); |
| mLauncher = (Launcher) context; |
| |
| TypedArray a = context.obtainStyledAttributes(attrs, R.styleable.CellLayout, defStyle, 0); |
| |
| mCellWidth = a.getDimensionPixelSize(R.styleable.CellLayout_cellWidth, 10); |
| mCellHeight = a.getDimensionPixelSize(R.styleable.CellLayout_cellHeight, 10); |
| mWidthGap = mOriginalWidthGap = a.getDimensionPixelSize(R.styleable.CellLayout_widthGap, 0); |
| mHeightGap = mOriginalHeightGap = a.getDimensionPixelSize(R.styleable.CellLayout_heightGap, 0); |
| mMaxGap = a.getDimensionPixelSize(R.styleable.CellLayout_maxGap, 0); |
| mCountX = LauncherModel.getCellCountX(); |
| mCountY = LauncherModel.getCellCountY(); |
| mOccupied = new boolean[mCountX][mCountY]; |
| mTmpOccupied = new boolean[mCountX][mCountY]; |
| mPreviousReorderDirection[0] = INVALID_DIRECTION; |
| mPreviousReorderDirection[1] = INVALID_DIRECTION; |
| |
| a.recycle(); |
| |
| setAlwaysDrawnWithCacheEnabled(false); |
| |
| final Resources res = getResources(); |
| mHotseatScale = (res.getInteger(R.integer.hotseat_item_scale_percentage) / 100f); |
| |
| mNormalBackground = res.getDrawable(R.drawable.homescreen_blue_normal_holo); |
| mActiveGlowBackground = res.getDrawable(R.drawable.homescreen_blue_strong_holo); |
| |
| mOverScrollLeft = res.getDrawable(R.drawable.overscroll_glow_left); |
| mOverScrollRight = res.getDrawable(R.drawable.overscroll_glow_right); |
| mForegroundPadding = |
| res.getDimensionPixelSize(R.dimen.workspace_overscroll_drawable_padding); |
| |
| mReorderHintAnimationMagnitude = (REORDER_HINT_MAGNITUDE * |
| res.getDimensionPixelSize(R.dimen.app_icon_size)); |
| |
| mNormalBackground.setFilterBitmap(true); |
| mActiveGlowBackground.setFilterBitmap(true); |
| |
| // Initialize the data structures used for the drag visualization. |
| |
| mEaseOutInterpolator = new DecelerateInterpolator(2.5f); // Quint ease out |
| |
| |
| mDragCell[0] = mDragCell[1] = -1; |
| for (int i = 0; i < mDragOutlines.length; i++) { |
| mDragOutlines[i] = new Rect(-1, -1, -1, -1); |
| } |
| |
| // When dragging things around the home screens, we show a green outline of |
| // where the item will land. The outlines gradually fade out, leaving a trail |
| // behind the drag path. |
| // Set up all the animations that are used to implement this fading. |
| final int duration = res.getInteger(R.integer.config_dragOutlineFadeTime); |
| final float fromAlphaValue = 0; |
| final float toAlphaValue = (float)res.getInteger(R.integer.config_dragOutlineMaxAlpha); |
| |
| Arrays.fill(mDragOutlineAlphas, fromAlphaValue); |
| |
| for (int i = 0; i < mDragOutlineAnims.length; i++) { |
| final InterruptibleInOutAnimator anim = |
| new InterruptibleInOutAnimator(this, duration, fromAlphaValue, toAlphaValue); |
| anim.getAnimator().setInterpolator(mEaseOutInterpolator); |
| final int thisIndex = i; |
| anim.getAnimator().addUpdateListener(new AnimatorUpdateListener() { |
| public void onAnimationUpdate(ValueAnimator animation) { |
| final Bitmap outline = (Bitmap)anim.getTag(); |
| |
| // If an animation is started and then stopped very quickly, we can still |
| // get spurious updates we've cleared the tag. Guard against this. |
| if (outline == null) { |
| @SuppressWarnings("all") // suppress dead code warning |
| final boolean debug = false; |
| if (debug) { |
| Object val = animation.getAnimatedValue(); |
| Log.d(TAG, "anim " + thisIndex + " update: " + val + |
| ", isStopped " + anim.isStopped()); |
| } |
| // Try to prevent it from continuing to run |
| animation.cancel(); |
| } else { |
| mDragOutlineAlphas[thisIndex] = (Float) animation.getAnimatedValue(); |
| CellLayout.this.invalidate(mDragOutlines[thisIndex]); |
| } |
| } |
| }); |
| // The animation holds a reference to the drag outline bitmap as long is it's |
| // running. This way the bitmap can be GCed when the animations are complete. |
| anim.getAnimator().addListener(new AnimatorListenerAdapter() { |
| @Override |
| public void onAnimationEnd(Animator animation) { |
| if ((Float) ((ValueAnimator) animation).getAnimatedValue() == 0f) { |
| anim.setTag(null); |
| } |
| } |
| }); |
| mDragOutlineAnims[i] = anim; |
| } |
| |
| mBackgroundRect = new Rect(); |
| mForegroundRect = new Rect(); |
| |
| mShortcutsAndWidgets = new ShortcutAndWidgetContainer(context); |
| mShortcutsAndWidgets.setCellDimensions(mCellWidth, mCellHeight, mWidthGap, mHeightGap, |
| mCountX); |
| |
| addView(mShortcutsAndWidgets); |
| } |
| |
| static int widthInPortrait(Resources r, int numCells) { |
| // We use this method from Workspace to figure out how many rows/columns Launcher should |
| // have. We ignore the left/right padding on CellLayout because it turns out in our design |
| // the padding extends outside the visible screen size, but it looked fine anyway. |
| int cellWidth = r.getDimensionPixelSize(R.dimen.workspace_cell_width); |
| int minGap = Math.min(r.getDimensionPixelSize(R.dimen.workspace_width_gap), |
| r.getDimensionPixelSize(R.dimen.workspace_height_gap)); |
| |
| return minGap * (numCells - 1) + cellWidth * numCells; |
| } |
| |
| static int heightInLandscape(Resources r, int numCells) { |
| // We use this method from Workspace to figure out how many rows/columns Launcher should |
| // have. We ignore the left/right padding on CellLayout because it turns out in our design |
| // the padding extends outside the visible screen size, but it looked fine anyway. |
| int cellHeight = r.getDimensionPixelSize(R.dimen.workspace_cell_height); |
| int minGap = Math.min(r.getDimensionPixelSize(R.dimen.workspace_width_gap), |
| r.getDimensionPixelSize(R.dimen.workspace_height_gap)); |
| |
| return minGap * (numCells - 1) + cellHeight * numCells; |
| } |
| |
| public void enableHardwareLayers() { |
| mShortcutsAndWidgets.setLayerType(LAYER_TYPE_HARDWARE, sPaint); |
| } |
| |
| public void disableHardwareLayers() { |
| mShortcutsAndWidgets.setLayerType(LAYER_TYPE_NONE, sPaint); |
| } |
| |
| public void buildHardwareLayer() { |
| mShortcutsAndWidgets.buildLayer(); |
| } |
| |
| public float getChildrenScale() { |
| return mIsHotseat ? mHotseatScale : 1.0f; |
| } |
| |
| public void setGridSize(int x, int y) { |
| mCountX = x; |
| mCountY = y; |
| mOccupied = new boolean[mCountX][mCountY]; |
| mTmpOccupied = new boolean[mCountX][mCountY]; |
| mTempRectStack.clear(); |
| mShortcutsAndWidgets.setCellDimensions(mCellWidth, mCellHeight, mWidthGap, mHeightGap, |
| mCountX); |
| requestLayout(); |
| } |
| |
| // Set whether or not to invert the layout horizontally if the layout is in RTL mode. |
| public void setInvertIfRtl(boolean invert) { |
| mShortcutsAndWidgets.setInvertIfRtl(invert); |
| } |
| |
| private void invalidateBubbleTextView(BubbleTextView icon) { |
| final int padding = icon.getPressedOrFocusedBackgroundPadding(); |
| invalidate(icon.getLeft() + getPaddingLeft() - padding, |
| icon.getTop() + getPaddingTop() - padding, |
| icon.getRight() + getPaddingLeft() + padding, |
| icon.getBottom() + getPaddingTop() + padding); |
| } |
| |
| void setOverScrollAmount(float r, boolean left) { |
| if (left && mOverScrollForegroundDrawable != mOverScrollLeft) { |
| mOverScrollForegroundDrawable = mOverScrollLeft; |
| } else if (!left && mOverScrollForegroundDrawable != mOverScrollRight) { |
| mOverScrollForegroundDrawable = mOverScrollRight; |
| } |
| |
| mForegroundAlpha = (int) Math.round((r * 255)); |
| mOverScrollForegroundDrawable.setAlpha(mForegroundAlpha); |
| invalidate(); |
| } |
| |
| void setPressedOrFocusedIcon(BubbleTextView icon) { |
| // We draw the pressed or focused BubbleTextView's background in CellLayout because it |
| // requires an expanded clip rect (due to the glow's blur radius) |
| BubbleTextView oldIcon = mPressedOrFocusedIcon; |
| mPressedOrFocusedIcon = icon; |
| if (oldIcon != null) { |
| invalidateBubbleTextView(oldIcon); |
| } |
| if (mPressedOrFocusedIcon != null) { |
| invalidateBubbleTextView(mPressedOrFocusedIcon); |
| } |
| } |
| |
| void setIsDragOverlapping(boolean isDragOverlapping) { |
| if (mIsDragOverlapping != isDragOverlapping) { |
| mIsDragOverlapping = isDragOverlapping; |
| invalidate(); |
| } |
| } |
| |
| boolean getIsDragOverlapping() { |
| return mIsDragOverlapping; |
| } |
| |
| protected void setOverscrollTransformsDirty(boolean dirty) { |
| mScrollingTransformsDirty = dirty; |
| } |
| |
| protected void resetOverscrollTransforms() { |
| if (mScrollingTransformsDirty) { |
| setOverscrollTransformsDirty(false); |
| setTranslationX(0); |
| setRotationY(0); |
| // It doesn't matter if we pass true or false here, the important thing is that we |
| // pass 0, which results in the overscroll drawable not being drawn any more. |
| setOverScrollAmount(0, false); |
| setPivotX(getMeasuredWidth() / 2); |
| setPivotY(getMeasuredHeight() / 2); |
| } |
| } |
| |
| public void scaleRect(Rect r, float scale) { |
| if (scale != 1.0f) { |
| r.left = (int) (r.left * scale + 0.5f); |
| r.top = (int) (r.top * scale + 0.5f); |
| r.right = (int) (r.right * scale + 0.5f); |
| r.bottom = (int) (r.bottom * scale + 0.5f); |
| } |
| } |
| |
| Rect temp = new Rect(); |
| void scaleRectAboutCenter(Rect in, Rect out, float scale) { |
| int cx = in.centerX(); |
| int cy = in.centerY(); |
| out.set(in); |
| out.offset(-cx, -cy); |
| scaleRect(out, scale); |
| out.offset(cx, cy); |
| } |
| |
| @Override |
| protected void onDraw(Canvas canvas) { |
| // When we're large, we are either drawn in a "hover" state (ie when dragging an item to |
| // a neighboring page) or with just a normal background (if backgroundAlpha > 0.0f) |
| // When we're small, we are either drawn normally or in the "accepts drops" state (during |
| // a drag). However, we also drag the mini hover background *over* one of those two |
| // backgrounds |
| if (mBackgroundAlpha > 0.0f) { |
| Drawable bg; |
| |
| if (mIsDragOverlapping) { |
| // In the mini case, we draw the active_glow bg *over* the active background |
| bg = mActiveGlowBackground; |
| } else { |
| bg = mNormalBackground; |
| } |
| |
| bg.setAlpha((int) (mBackgroundAlpha * mBackgroundAlphaMultiplier * 255)); |
| bg.setBounds(mBackgroundRect); |
| bg.draw(canvas); |
| } |
| |
| final Paint paint = mDragOutlinePaint; |
| for (int i = 0; i < mDragOutlines.length; i++) { |
| final float alpha = mDragOutlineAlphas[i]; |
| if (alpha > 0) { |
| final Rect r = mDragOutlines[i]; |
| scaleRectAboutCenter(r, temp, getChildrenScale()); |
| final Bitmap b = (Bitmap) mDragOutlineAnims[i].getTag(); |
| paint.setAlpha((int)(alpha + .5f)); |
| canvas.drawBitmap(b, null, temp, paint); |
| } |
| } |
| |
| // We draw the pressed or focused BubbleTextView's background in CellLayout because it |
| // requires an expanded clip rect (due to the glow's blur radius) |
| if (mPressedOrFocusedIcon != null) { |
| final int padding = mPressedOrFocusedIcon.getPressedOrFocusedBackgroundPadding(); |
| final Bitmap b = mPressedOrFocusedIcon.getPressedOrFocusedBackground(); |
| if (b != null) { |
| canvas.drawBitmap(b, |
| mPressedOrFocusedIcon.getLeft() + getPaddingLeft() - padding, |
| mPressedOrFocusedIcon.getTop() + getPaddingTop() - padding, |
| null); |
| } |
| } |
| |
| if (DEBUG_VISUALIZE_OCCUPIED) { |
| int[] pt = new int[2]; |
| ColorDrawable cd = new ColorDrawable(Color.RED); |
| cd.setBounds(0, 0, mCellWidth, mCellHeight); |
| for (int i = 0; i < mCountX; i++) { |
| for (int j = 0; j < mCountY; j++) { |
| if (mOccupied[i][j]) { |
| cellToPoint(i, j, pt); |
| canvas.save(); |
| canvas.translate(pt[0], pt[1]); |
| cd.draw(canvas); |
| canvas.restore(); |
| } |
| } |
| } |
| } |
| |
| int previewOffset = FolderRingAnimator.sPreviewSize; |
| |
| // The folder outer / inner ring image(s) |
| for (int i = 0; i < mFolderOuterRings.size(); i++) { |
| FolderRingAnimator fra = mFolderOuterRings.get(i); |
| |
| // Draw outer ring |
| Drawable d = FolderRingAnimator.sSharedOuterRingDrawable; |
| int width = (int) fra.getOuterRingSize(); |
| int height = width; |
| cellToPoint(fra.mCellX, fra.mCellY, mTempLocation); |
| |
| int centerX = mTempLocation[0] + mCellWidth / 2; |
| int centerY = mTempLocation[1] + previewOffset / 2; |
| |
| canvas.save(); |
| canvas.translate(centerX - width / 2, centerY - height / 2); |
| d.setBounds(0, 0, width, height); |
| d.draw(canvas); |
| canvas.restore(); |
| |
| // Draw inner ring |
| d = FolderRingAnimator.sSharedInnerRingDrawable; |
| width = (int) fra.getInnerRingSize(); |
| height = width; |
| cellToPoint(fra.mCellX, fra.mCellY, mTempLocation); |
| |
| centerX = mTempLocation[0] + mCellWidth / 2; |
| centerY = mTempLocation[1] + previewOffset / 2; |
| canvas.save(); |
| canvas.translate(centerX - width / 2, centerY - width / 2); |
| d.setBounds(0, 0, width, height); |
| d.draw(canvas); |
| canvas.restore(); |
| } |
| |
| if (mFolderLeaveBehindCell[0] >= 0 && mFolderLeaveBehindCell[1] >= 0) { |
| Drawable d = FolderIcon.sSharedFolderLeaveBehind; |
| int width = d.getIntrinsicWidth(); |
| int height = d.getIntrinsicHeight(); |
| |
| cellToPoint(mFolderLeaveBehindCell[0], mFolderLeaveBehindCell[1], mTempLocation); |
| int centerX = mTempLocation[0] + mCellWidth / 2; |
| int centerY = mTempLocation[1] + previewOffset / 2; |
| |
| canvas.save(); |
| canvas.translate(centerX - width / 2, centerY - width / 2); |
| d.setBounds(0, 0, width, height); |
| d.draw(canvas); |
| canvas.restore(); |
| } |
| } |
| |
| @Override |
| protected void dispatchDraw(Canvas canvas) { |
| super.dispatchDraw(canvas); |
| if (mForegroundAlpha > 0) { |
| mOverScrollForegroundDrawable.setBounds(mForegroundRect); |
| Paint p = ((NinePatchDrawable) mOverScrollForegroundDrawable).getPaint(); |
| p.setXfermode(sAddBlendMode); |
| mOverScrollForegroundDrawable.draw(canvas); |
| p.setXfermode(null); |
| } |
| } |
| |
| public void showFolderAccept(FolderRingAnimator fra) { |
| mFolderOuterRings.add(fra); |
| } |
| |
| public void hideFolderAccept(FolderRingAnimator fra) { |
| if (mFolderOuterRings.contains(fra)) { |
| mFolderOuterRings.remove(fra); |
| } |
| invalidate(); |
| } |
| |
| public void setFolderLeaveBehindCell(int x, int y) { |
| mFolderLeaveBehindCell[0] = x; |
| mFolderLeaveBehindCell[1] = y; |
| invalidate(); |
| } |
| |
| public void clearFolderLeaveBehind() { |
| mFolderLeaveBehindCell[0] = -1; |
| mFolderLeaveBehindCell[1] = -1; |
| invalidate(); |
| } |
| |
| @Override |
| public boolean shouldDelayChildPressedState() { |
| return false; |
| } |
| |
| public void restoreInstanceState(SparseArray<Parcelable> states) { |
| dispatchRestoreInstanceState(states); |
| } |
| |
| @Override |
| public void cancelLongPress() { |
| super.cancelLongPress(); |
| |
| // Cancel long press for all children |
| final int count = getChildCount(); |
| for (int i = 0; i < count; i++) { |
| final View child = getChildAt(i); |
| child.cancelLongPress(); |
| } |
| } |
| |
| public void setOnInterceptTouchListener(View.OnTouchListener listener) { |
| mInterceptTouchListener = listener; |
| } |
| |
| int getCountX() { |
| return mCountX; |
| } |
| |
| int getCountY() { |
| return mCountY; |
| } |
| |
| public void setIsHotseat(boolean isHotseat) { |
| mIsHotseat = isHotseat; |
| } |
| |
| public boolean addViewToCellLayout(View child, int index, int childId, LayoutParams params, |
| boolean markCells) { |
| final LayoutParams lp = params; |
| |
| // Hotseat icons - remove text |
| if (child instanceof BubbleTextView) { |
| BubbleTextView bubbleChild = (BubbleTextView) child; |
| |
| Resources res = getResources(); |
| if (mIsHotseat) { |
| bubbleChild.setTextColor(res.getColor(android.R.color.transparent)); |
| } else { |
| bubbleChild.setTextColor(res.getColor(R.color.workspace_icon_text_color)); |
| } |
| } |
| |
| child.setScaleX(getChildrenScale()); |
| child.setScaleY(getChildrenScale()); |
| |
| // Generate an id for each view, this assumes we have at most 256x256 cells |
| // per workspace screen |
| if (lp.cellX >= 0 && lp.cellX <= mCountX - 1 && lp.cellY >= 0 && lp.cellY <= mCountY - 1) { |
| // If the horizontal or vertical span is set to -1, it is taken to |
| // mean that it spans the extent of the CellLayout |
| if (lp.cellHSpan < 0) lp.cellHSpan = mCountX; |
| if (lp.cellVSpan < 0) lp.cellVSpan = mCountY; |
| |
| child.setId(childId); |
| |
| mShortcutsAndWidgets.addView(child, index, lp); |
| |
| if (markCells) markCellsAsOccupiedForView(child); |
| |
| return true; |
| } |
| return false; |
| } |
| |
| @Override |
| public void removeAllViews() { |
| clearOccupiedCells(); |
| mShortcutsAndWidgets.removeAllViews(); |
| } |
| |
| @Override |
| public void removeAllViewsInLayout() { |
| if (mShortcutsAndWidgets.getChildCount() > 0) { |
| clearOccupiedCells(); |
| mShortcutsAndWidgets.removeAllViewsInLayout(); |
| } |
| } |
| |
| public void removeViewWithoutMarkingCells(View view) { |
| mShortcutsAndWidgets.removeView(view); |
| } |
| |
| @Override |
| public void removeView(View view) { |
| markCellsAsUnoccupiedForView(view); |
| mShortcutsAndWidgets.removeView(view); |
| } |
| |
| @Override |
| public void removeViewAt(int index) { |
| markCellsAsUnoccupiedForView(mShortcutsAndWidgets.getChildAt(index)); |
| mShortcutsAndWidgets.removeViewAt(index); |
| } |
| |
| @Override |
| public void removeViewInLayout(View view) { |
| markCellsAsUnoccupiedForView(view); |
| mShortcutsAndWidgets.removeViewInLayout(view); |
| } |
| |
| @Override |
| public void removeViews(int start, int count) { |
| for (int i = start; i < start + count; i++) { |
| markCellsAsUnoccupiedForView(mShortcutsAndWidgets.getChildAt(i)); |
| } |
| mShortcutsAndWidgets.removeViews(start, count); |
| } |
| |
| @Override |
| public void removeViewsInLayout(int start, int count) { |
| for (int i = start; i < start + count; i++) { |
| markCellsAsUnoccupiedForView(mShortcutsAndWidgets.getChildAt(i)); |
| } |
| mShortcutsAndWidgets.removeViewsInLayout(start, count); |
| } |
| |
| @Override |
| protected void onAttachedToWindow() { |
| super.onAttachedToWindow(); |
| mCellInfo.screen = ((ViewGroup) getParent()).indexOfChild(this); |
| } |
| |
| public void setTagToCellInfoForPoint(int touchX, int touchY) { |
| final CellInfo cellInfo = mCellInfo; |
| Rect frame = mRect; |
| final int x = touchX + getScrollX(); |
| final int y = touchY + getScrollY(); |
| final int count = mShortcutsAndWidgets.getChildCount(); |
| |
| boolean found = false; |
| for (int i = count - 1; i >= 0; i--) { |
| final View child = mShortcutsAndWidgets.getChildAt(i); |
| final LayoutParams lp = (LayoutParams) child.getLayoutParams(); |
| |
| if ((child.getVisibility() == VISIBLE || child.getAnimation() != null) && |
| lp.isLockedToGrid) { |
| child.getHitRect(frame); |
| |
| float scale = child.getScaleX(); |
| frame = new Rect(child.getLeft(), child.getTop(), child.getRight(), |
| child.getBottom()); |
| // The child hit rect is relative to the CellLayoutChildren parent, so we need to |
| // offset that by this CellLayout's padding to test an (x,y) point that is relative |
| // to this view. |
| frame.offset(getPaddingLeft(), getPaddingTop()); |
| frame.inset((int) (frame.width() * (1f - scale) / 2), |
| (int) (frame.height() * (1f - scale) / 2)); |
| |
| if (frame.contains(x, y)) { |
| cellInfo.cell = child; |
| cellInfo.cellX = lp.cellX; |
| cellInfo.cellY = lp.cellY; |
| cellInfo.spanX = lp.cellHSpan; |
| cellInfo.spanY = lp.cellVSpan; |
| found = true; |
| break; |
| } |
| } |
| } |
| |
| mLastDownOnOccupiedCell = found; |
| |
| if (!found) { |
| final int cellXY[] = mTmpXY; |
| pointToCellExact(x, y, cellXY); |
| |
| cellInfo.cell = null; |
| cellInfo.cellX = cellXY[0]; |
| cellInfo.cellY = cellXY[1]; |
| cellInfo.spanX = 1; |
| cellInfo.spanY = 1; |
| } |
| setTag(cellInfo); |
| } |
| |
| @Override |
| public boolean onInterceptTouchEvent(MotionEvent ev) { |
| // First we clear the tag to ensure that on every touch down we start with a fresh slate, |
| // even in the case where we return early. Not clearing here was causing bugs whereby on |
| // long-press we'd end up picking up an item from a previous drag operation. |
| final int action = ev.getAction(); |
| |
| if (action == MotionEvent.ACTION_DOWN) { |
| clearTagCellInfo(); |
| } |
| |
| if (mInterceptTouchListener != null && mInterceptTouchListener.onTouch(this, ev)) { |
| return true; |
| } |
| |
| if (action == MotionEvent.ACTION_DOWN) { |
| setTagToCellInfoForPoint((int) ev.getX(), (int) ev.getY()); |
| } |
| |
| return false; |
| } |
| |
| private void clearTagCellInfo() { |
| final CellInfo cellInfo = mCellInfo; |
| cellInfo.cell = null; |
| cellInfo.cellX = -1; |
| cellInfo.cellY = -1; |
| cellInfo.spanX = 0; |
| cellInfo.spanY = 0; |
| setTag(cellInfo); |
| } |
| |
| public CellInfo getTag() { |
| return (CellInfo) super.getTag(); |
| } |
| |
| /** |
| * Given a point, return the cell that strictly encloses that point |
| * @param x X coordinate of the point |
| * @param y Y coordinate of the point |
| * @param result Array of 2 ints to hold the x and y coordinate of the cell |
| */ |
| void pointToCellExact(int x, int y, int[] result) { |
| final int hStartPadding = getPaddingLeft(); |
| final int vStartPadding = getPaddingTop(); |
| |
| result[0] = (x - hStartPadding) / (mCellWidth + mWidthGap); |
| result[1] = (y - vStartPadding) / (mCellHeight + mHeightGap); |
| |
| final int xAxis = mCountX; |
| final int yAxis = mCountY; |
| |
| if (result[0] < 0) result[0] = 0; |
| if (result[0] >= xAxis) result[0] = xAxis - 1; |
| if (result[1] < 0) result[1] = 0; |
| if (result[1] >= yAxis) result[1] = yAxis - 1; |
| } |
| |
| /** |
| * Given a point, return the cell that most closely encloses that point |
| * @param x X coordinate of the point |
| * @param y Y coordinate of the point |
| * @param result Array of 2 ints to hold the x and y coordinate of the cell |
| */ |
| void pointToCellRounded(int x, int y, int[] result) { |
| pointToCellExact(x + (mCellWidth / 2), y + (mCellHeight / 2), result); |
| } |
| |
| /** |
| * Given a cell coordinate, return the point that represents the upper left corner of that cell |
| * |
| * @param cellX X coordinate of the cell |
| * @param cellY Y coordinate of the cell |
| * |
| * @param result Array of 2 ints to hold the x and y coordinate of the point |
| */ |
| void cellToPoint(int cellX, int cellY, int[] result) { |
| final int hStartPadding = getPaddingLeft(); |
| final int vStartPadding = getPaddingTop(); |
| |
| result[0] = hStartPadding + cellX * (mCellWidth + mWidthGap); |
| result[1] = vStartPadding + cellY * (mCellHeight + mHeightGap); |
| } |
| |
| /** |
| * Given a cell coordinate, return the point that represents the center of the cell |
| * |
| * @param cellX X coordinate of the cell |
| * @param cellY Y coordinate of the cell |
| * |
| * @param result Array of 2 ints to hold the x and y coordinate of the point |
| */ |
| void cellToCenterPoint(int cellX, int cellY, int[] result) { |
| regionToCenterPoint(cellX, cellY, 1, 1, result); |
| } |
| |
| /** |
| * Given a cell coordinate and span return the point that represents the center of the regio |
| * |
| * @param cellX X coordinate of the cell |
| * @param cellY Y coordinate of the cell |
| * |
| * @param result Array of 2 ints to hold the x and y coordinate of the point |
| */ |
| void regionToCenterPoint(int cellX, int cellY, int spanX, int spanY, int[] result) { |
| final int hStartPadding = getPaddingLeft(); |
| final int vStartPadding = getPaddingTop(); |
| result[0] = hStartPadding + cellX * (mCellWidth + mWidthGap) + |
| (spanX * mCellWidth + (spanX - 1) * mWidthGap) / 2; |
| result[1] = vStartPadding + cellY * (mCellHeight + mHeightGap) + |
| (spanY * mCellHeight + (spanY - 1) * mHeightGap) / 2; |
| } |
| |
| /** |
| * Given a cell coordinate and span fills out a corresponding pixel rect |
| * |
| * @param cellX X coordinate of the cell |
| * @param cellY Y coordinate of the cell |
| * @param result Rect in which to write the result |
| */ |
| void regionToRect(int cellX, int cellY, int spanX, int spanY, Rect result) { |
| final int hStartPadding = getPaddingLeft(); |
| final int vStartPadding = getPaddingTop(); |
| final int left = hStartPadding + cellX * (mCellWidth + mWidthGap); |
| final int top = vStartPadding + cellY * (mCellHeight + mHeightGap); |
| result.set(left, top, left + (spanX * mCellWidth + (spanX - 1) * mWidthGap), |
| top + (spanY * mCellHeight + (spanY - 1) * mHeightGap)); |
| } |
| |
| public float getDistanceFromCell(float x, float y, int[] cell) { |
| cellToCenterPoint(cell[0], cell[1], mTmpPoint); |
| float distance = (float) Math.sqrt( Math.pow(x - mTmpPoint[0], 2) + |
| Math.pow(y - mTmpPoint[1], 2)); |
| return distance; |
| } |
| |
| int getCellWidth() { |
| return mCellWidth; |
| } |
| |
| int getCellHeight() { |
| return mCellHeight; |
| } |
| |
| int getWidthGap() { |
| return mWidthGap; |
| } |
| |
| int getHeightGap() { |
| return mHeightGap; |
| } |
| |
| Rect getContentRect(Rect r) { |
| if (r == null) { |
| r = new Rect(); |
| } |
| int left = getPaddingLeft(); |
| int top = getPaddingTop(); |
| int right = left + getWidth() - getPaddingLeft() - getPaddingRight(); |
| int bottom = top + getHeight() - getPaddingTop() - getPaddingBottom(); |
| r.set(left, top, right, bottom); |
| return r; |
| } |
| |
| static void getMetrics(Rect metrics, Resources res, int measureWidth, int measureHeight, |
| int countX, int countY, int orientation) { |
| int numWidthGaps = countX - 1; |
| int numHeightGaps = countY - 1; |
| |
| int widthGap; |
| int heightGap; |
| int cellWidth; |
| int cellHeight; |
| int paddingLeft; |
| int paddingRight; |
| int paddingTop; |
| int paddingBottom; |
| |
| int maxGap = res.getDimensionPixelSize(R.dimen.workspace_max_gap); |
| if (orientation == LANDSCAPE) { |
| cellWidth = res.getDimensionPixelSize(R.dimen.workspace_cell_width_land); |
| cellHeight = res.getDimensionPixelSize(R.dimen.workspace_cell_height_land); |
| widthGap = res.getDimensionPixelSize(R.dimen.workspace_width_gap_land); |
| heightGap = res.getDimensionPixelSize(R.dimen.workspace_height_gap_land); |
| paddingLeft = res.getDimensionPixelSize(R.dimen.cell_layout_left_padding_land); |
| paddingRight = res.getDimensionPixelSize(R.dimen.cell_layout_right_padding_land); |
| paddingTop = res.getDimensionPixelSize(R.dimen.cell_layout_top_padding_land); |
| paddingBottom = res.getDimensionPixelSize(R.dimen.cell_layout_bottom_padding_land); |
| } else { |
| // PORTRAIT |
| cellWidth = res.getDimensionPixelSize(R.dimen.workspace_cell_width_port); |
| cellHeight = res.getDimensionPixelSize(R.dimen.workspace_cell_height_port); |
| widthGap = res.getDimensionPixelSize(R.dimen.workspace_width_gap_port); |
| heightGap = res.getDimensionPixelSize(R.dimen.workspace_height_gap_port); |
| paddingLeft = res.getDimensionPixelSize(R.dimen.cell_layout_left_padding_port); |
| paddingRight = res.getDimensionPixelSize(R.dimen.cell_layout_right_padding_port); |
| paddingTop = res.getDimensionPixelSize(R.dimen.cell_layout_top_padding_port); |
| paddingBottom = res.getDimensionPixelSize(R.dimen.cell_layout_bottom_padding_port); |
| } |
| |
| if (widthGap < 0 || heightGap < 0) { |
| int hSpace = measureWidth - paddingLeft - paddingRight; |
| int vSpace = measureHeight - paddingTop - paddingBottom; |
| int hFreeSpace = hSpace - (countX * cellWidth); |
| int vFreeSpace = vSpace - (countY * cellHeight); |
| widthGap = Math.min(maxGap, numWidthGaps > 0 ? (hFreeSpace / numWidthGaps) : 0); |
| heightGap = Math.min(maxGap, numHeightGaps > 0 ? (vFreeSpace / numHeightGaps) : 0); |
| } |
| metrics.set(cellWidth, cellHeight, widthGap, heightGap); |
| } |
| |
| @Override |
| protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) { |
| int widthSpecMode = MeasureSpec.getMode(widthMeasureSpec); |
| int widthSpecSize = MeasureSpec.getSize(widthMeasureSpec); |
| |
| int heightSpecMode = MeasureSpec.getMode(heightMeasureSpec); |
| int heightSpecSize = MeasureSpec.getSize(heightMeasureSpec); |
| |
| if (widthSpecMode == MeasureSpec.UNSPECIFIED || heightSpecMode == MeasureSpec.UNSPECIFIED) { |
| throw new RuntimeException("CellLayout cannot have UNSPECIFIED dimensions"); |
| } |
| |
| int numWidthGaps = mCountX - 1; |
| int numHeightGaps = mCountY - 1; |
| |
| if (mOriginalWidthGap < 0 || mOriginalHeightGap < 0) { |
| int hSpace = widthSpecSize - getPaddingLeft() - getPaddingRight(); |
| int vSpace = heightSpecSize - getPaddingTop() - getPaddingBottom(); |
| int hFreeSpace = hSpace - (mCountX * mCellWidth); |
| int vFreeSpace = vSpace - (mCountY * mCellHeight); |
| mWidthGap = Math.min(mMaxGap, numWidthGaps > 0 ? (hFreeSpace / numWidthGaps) : 0); |
| mHeightGap = Math.min(mMaxGap,numHeightGaps > 0 ? (vFreeSpace / numHeightGaps) : 0); |
| mShortcutsAndWidgets.setCellDimensions(mCellWidth, mCellHeight, mWidthGap, mHeightGap, |
| mCountX); |
| } else { |
| mWidthGap = mOriginalWidthGap; |
| mHeightGap = mOriginalHeightGap; |
| } |
| |
| // Initial values correspond to widthSpecMode == MeasureSpec.EXACTLY |
| int newWidth = widthSpecSize; |
| int newHeight = heightSpecSize; |
| if (widthSpecMode == MeasureSpec.AT_MOST) { |
| newWidth = getPaddingLeft() + getPaddingRight() + (mCountX * mCellWidth) + |
| ((mCountX - 1) * mWidthGap); |
| newHeight = getPaddingTop() + getPaddingBottom() + (mCountY * mCellHeight) + |
| ((mCountY - 1) * mHeightGap); |
| setMeasuredDimension(newWidth, newHeight); |
| } |
| |
| int count = getChildCount(); |
| for (int i = 0; i < count; i++) { |
| View child = getChildAt(i); |
| int childWidthMeasureSpec = MeasureSpec.makeMeasureSpec(newWidth - getPaddingLeft() - |
| getPaddingRight(), MeasureSpec.EXACTLY); |
| int childheightMeasureSpec = MeasureSpec.makeMeasureSpec(newHeight - getPaddingTop() - |
| getPaddingBottom(), MeasureSpec.EXACTLY); |
| child.measure(childWidthMeasureSpec, childheightMeasureSpec); |
| } |
| setMeasuredDimension(newWidth, newHeight); |
| } |
| |
| @Override |
| protected void onLayout(boolean changed, int l, int t, int r, int b) { |
| int count = getChildCount(); |
| for (int i = 0; i < count; i++) { |
| View child = getChildAt(i); |
| child.layout(getPaddingLeft(), getPaddingTop(), |
| r - l - getPaddingRight(), b - t - getPaddingBottom()); |
| } |
| } |
| |
| @Override |
| protected void onSizeChanged(int w, int h, int oldw, int oldh) { |
| super.onSizeChanged(w, h, oldw, oldh); |
| mBackgroundRect.set(0, 0, w, h); |
| mForegroundRect.set(mForegroundPadding, mForegroundPadding, |
| w - mForegroundPadding, h - mForegroundPadding); |
| } |
| |
| @Override |
| protected void setChildrenDrawingCacheEnabled(boolean enabled) { |
| mShortcutsAndWidgets.setChildrenDrawingCacheEnabled(enabled); |
| } |
| |
| @Override |
| protected void setChildrenDrawnWithCacheEnabled(boolean enabled) { |
| mShortcutsAndWidgets.setChildrenDrawnWithCacheEnabled(enabled); |
| } |
| |
| public float getBackgroundAlpha() { |
| return mBackgroundAlpha; |
| } |
| |
| public void setBackgroundAlphaMultiplier(float multiplier) { |
| if (mBackgroundAlphaMultiplier != multiplier) { |
| mBackgroundAlphaMultiplier = multiplier; |
| invalidate(); |
| } |
| } |
| |
| public float getBackgroundAlphaMultiplier() { |
| return mBackgroundAlphaMultiplier; |
| } |
| |
| public void setBackgroundAlpha(float alpha) { |
| if (mBackgroundAlpha != alpha) { |
| mBackgroundAlpha = alpha; |
| invalidate(); |
| } |
| } |
| |
| public void setShortcutAndWidgetAlpha(float alpha) { |
| final int childCount = getChildCount(); |
| for (int i = 0; i < childCount; i++) { |
| getChildAt(i).setAlpha(alpha); |
| } |
| } |
| |
| public ShortcutAndWidgetContainer getShortcutsAndWidgets() { |
| if (getChildCount() > 0) { |
| return (ShortcutAndWidgetContainer) getChildAt(0); |
| } |
| return null; |
| } |
| |
| public View getChildAt(int x, int y) { |
| return mShortcutsAndWidgets.getChildAt(x, y); |
| } |
| |
| public boolean animateChildToPosition(final View child, int cellX, int cellY, int duration, |
| int delay, boolean permanent, boolean adjustOccupied) { |
| ShortcutAndWidgetContainer clc = getShortcutsAndWidgets(); |
| boolean[][] occupied = mOccupied; |
| if (!permanent) { |
| occupied = mTmpOccupied; |
| } |
| |
| if (clc.indexOfChild(child) != -1) { |
| final LayoutParams lp = (LayoutParams) child.getLayoutParams(); |
| final ItemInfo info = (ItemInfo) child.getTag(); |
| |
| // We cancel any existing animations |
| if (mReorderAnimators.containsKey(lp)) { |
| mReorderAnimators.get(lp).cancel(); |
| mReorderAnimators.remove(lp); |
| } |
| |
| final int oldX = lp.x; |
| final int oldY = lp.y; |
| if (adjustOccupied) { |
| occupied[lp.cellX][lp.cellY] = false; |
| occupied[cellX][cellY] = true; |
| } |
| lp.isLockedToGrid = true; |
| if (permanent) { |
| lp.cellX = info.cellX = cellX; |
| lp.cellY = info.cellY = cellY; |
| } else { |
| lp.tmpCellX = cellX; |
| lp.tmpCellY = cellY; |
| } |
| clc.setupLp(lp); |
| lp.isLockedToGrid = false; |
| final int newX = lp.x; |
| final int newY = lp.y; |
| |
| lp.x = oldX; |
| lp.y = oldY; |
| |
| // Exit early if we're not actually moving the view |
| if (oldX == newX && oldY == newY) { |
| lp.isLockedToGrid = true; |
| return true; |
| } |
| |
| ValueAnimator va = LauncherAnimUtils.ofFloat(child, 0f, 1f); |
| va.setDuration(duration); |
| mReorderAnimators.put(lp, va); |
| |
| va.addUpdateListener(new AnimatorUpdateListener() { |
| @Override |
| public void onAnimationUpdate(ValueAnimator animation) { |
| float r = ((Float) animation.getAnimatedValue()).floatValue(); |
| lp.x = (int) ((1 - r) * oldX + r * newX); |
| lp.y = (int) ((1 - r) * oldY + r * newY); |
| child.requestLayout(); |
| } |
| }); |
| va.addListener(new AnimatorListenerAdapter() { |
| boolean cancelled = false; |
| public void onAnimationEnd(Animator animation) { |
| // If the animation was cancelled, it means that another animation |
| // has interrupted this one, and we don't want to lock the item into |
| // place just yet. |
| if (!cancelled) { |
| lp.isLockedToGrid = true; |
| child.requestLayout(); |
| } |
| if (mReorderAnimators.containsKey(lp)) { |
| mReorderAnimators.remove(lp); |
| } |
| } |
| public void onAnimationCancel(Animator animation) { |
| cancelled = true; |
| } |
| }); |
| va.setStartDelay(delay); |
| va.start(); |
| return true; |
| } |
| return false; |
| } |
| |
| /** |
| * Estimate where the top left cell of the dragged item will land if it is dropped. |
| * |
| * @param originX The X value of the top left corner of the item |
| * @param originY The Y value of the top left corner of the item |
| * @param spanX The number of horizontal cells that the item spans |
| * @param spanY The number of vertical cells that the item spans |
| * @param result The estimated drop cell X and Y. |
| */ |
| void estimateDropCell(int originX, int originY, int spanX, int spanY, int[] result) { |
| final int countX = mCountX; |
| final int countY = mCountY; |
| |
| // pointToCellRounded takes the top left of a cell but will pad that with |
| // cellWidth/2 and cellHeight/2 when finding the matching cell |
| pointToCellRounded(originX, originY, result); |
| |
| // If the item isn't fully on this screen, snap to the edges |
| int rightOverhang = result[0] + spanX - countX; |
| if (rightOverhang > 0) { |
| result[0] -= rightOverhang; // Snap to right |
| } |
| result[0] = Math.max(0, result[0]); // Snap to left |
| int bottomOverhang = result[1] + spanY - countY; |
| if (bottomOverhang > 0) { |
| result[1] -= bottomOverhang; // Snap to bottom |
| } |
| result[1] = Math.max(0, result[1]); // Snap to top |
| } |
| |
| void visualizeDropLocation(View v, Bitmap dragOutline, int originX, int originY, int cellX, |
| int cellY, int spanX, int spanY, boolean resize, Point dragOffset, Rect dragRegion) { |
| final int oldDragCellX = mDragCell[0]; |
| final int oldDragCellY = mDragCell[1]; |
| |
| if (v != null && dragOffset == null) { |
| mDragCenter.set(originX + (v.getWidth() / 2), originY + (v.getHeight() / 2)); |
| } else { |
| mDragCenter.set(originX, originY); |
| } |
| |
| if (dragOutline == null && v == null) { |
| return; |
| } |
| |
| if (cellX != oldDragCellX || cellY != oldDragCellY) { |
| mDragCell[0] = cellX; |
| mDragCell[1] = cellY; |
| // Find the top left corner of the rect the object will occupy |
| final int[] topLeft = mTmpPoint; |
| cellToPoint(cellX, cellY, topLeft); |
| |
| int left = topLeft[0]; |
| int top = topLeft[1]; |
| |
| if (v != null && dragOffset == null) { |
| // When drawing the drag outline, it did not account for margin offsets |
| // added by the view's parent. |
| MarginLayoutParams lp = (MarginLayoutParams) v.getLayoutParams(); |
| left += lp.leftMargin; |
| top += lp.topMargin; |
| |
| // Offsets due to the size difference between the View and the dragOutline. |
| // There is a size difference to account for the outer blur, which may lie |
| // outside the bounds of the view. |
| top += (v.getHeight() - dragOutline.getHeight()) / 2; |
| // We center about the x axis |
| left += ((mCellWidth * spanX) + ((spanX - 1) * mWidthGap) |
| - dragOutline.getWidth()) / 2; |
| } else { |
| if (dragOffset != null && dragRegion != null) { |
| // Center the drag region *horizontally* in the cell and apply a drag |
| // outline offset |
| left += dragOffset.x + ((mCellWidth * spanX) + ((spanX - 1) * mWidthGap) |
| - dragRegion.width()) / 2; |
| top += dragOffset.y; |
| } else { |
| // Center the drag outline in the cell |
| left += ((mCellWidth * spanX) + ((spanX - 1) * mWidthGap) |
| - dragOutline.getWidth()) / 2; |
| top += ((mCellHeight * spanY) + ((spanY - 1) * mHeightGap) |
| - dragOutline.getHeight()) / 2; |
| } |
| } |
| final int oldIndex = mDragOutlineCurrent; |
| mDragOutlineAnims[oldIndex].animateOut(); |
| mDragOutlineCurrent = (oldIndex + 1) % mDragOutlines.length; |
| Rect r = mDragOutlines[mDragOutlineCurrent]; |
| r.set(left, top, left + dragOutline.getWidth(), top + dragOutline.getHeight()); |
| if (resize) { |
| cellToRect(cellX, cellY, spanX, spanY, r); |
| } |
| |
| mDragOutlineAnims[mDragOutlineCurrent].setTag(dragOutline); |
| mDragOutlineAnims[mDragOutlineCurrent].animateIn(); |
| } |
| } |
| |
| public void clearDragOutlines() { |
| final int oldIndex = mDragOutlineCurrent; |
| mDragOutlineAnims[oldIndex].animateOut(); |
| mDragCell[0] = mDragCell[1] = -1; |
| } |
| |
| /** |
| * Find a vacant area that will fit the given bounds nearest the requested |
| * cell location. Uses Euclidean distance to score multiple vacant areas. |
| * |
| * @param pixelX The X location at which you want to search for a vacant area. |
| * @param pixelY The Y location at which you want to search for a vacant area. |
| * @param spanX Horizontal span of the object. |
| * @param spanY Vertical span of the object. |
| * @param result Array in which to place the result, or null (in which case a new array will |
| * be allocated) |
| * @return The X, Y cell of a vacant area that can contain this object, |
| * nearest the requested location. |
| */ |
| int[] findNearestVacantArea(int pixelX, int pixelY, int spanX, int spanY, |
| int[] result) { |
| return findNearestVacantArea(pixelX, pixelY, spanX, spanY, null, result); |
| } |
| |
| /** |
| * Find a vacant area that will fit the given bounds nearest the requested |
| * cell location. Uses Euclidean distance to score multiple vacant areas. |
| * |
| * @param pixelX The X location at which you want to search for a vacant area. |
| * @param pixelY The Y location at which you want to search for a vacant area. |
| * @param minSpanX The minimum horizontal span required |
| * @param minSpanY The minimum vertical span required |
| * @param spanX Horizontal span of the object. |
| * @param spanY Vertical span of the object. |
| * @param result Array in which to place the result, or null (in which case a new array will |
| * be allocated) |
| * @return The X, Y cell of a vacant area that can contain this object, |
| * nearest the requested location. |
| */ |
| int[] findNearestVacantArea(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, |
| int spanY, int[] result, int[] resultSpan) { |
| return findNearestVacantArea(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY, null, |
| result, resultSpan); |
| } |
| |
| /** |
| * Find a vacant area that will fit the given bounds nearest the requested |
| * cell location. Uses Euclidean distance to score multiple vacant areas. |
| * |
| * @param pixelX The X location at which you want to search for a vacant area. |
| * @param pixelY The Y location at which you want to search for a vacant area. |
| * @param spanX Horizontal span of the object. |
| * @param spanY Vertical span of the object. |
| * @param ignoreOccupied If true, the result can be an occupied cell |
| * @param result Array in which to place the result, or null (in which case a new array will |
| * be allocated) |
| * @return The X, Y cell of a vacant area that can contain this object, |
| * nearest the requested location. |
| */ |
| int[] findNearestArea(int pixelX, int pixelY, int spanX, int spanY, View ignoreView, |
| boolean ignoreOccupied, int[] result) { |
| return findNearestArea(pixelX, pixelY, spanX, spanY, |
| spanX, spanY, ignoreView, ignoreOccupied, result, null, mOccupied); |
| } |
| |
| private final Stack<Rect> mTempRectStack = new Stack<Rect>(); |
| private void lazyInitTempRectStack() { |
| if (mTempRectStack.isEmpty()) { |
| for (int i = 0; i < mCountX * mCountY; i++) { |
| mTempRectStack.push(new Rect()); |
| } |
| } |
| } |
| |
| private void recycleTempRects(Stack<Rect> used) { |
| while (!used.isEmpty()) { |
| mTempRectStack.push(used.pop()); |
| } |
| } |
| |
| /** |
| * Find a vacant area that will fit the given bounds nearest the requested |
| * cell location. Uses Euclidean distance to score multiple vacant areas. |
| * |
| * @param pixelX The X location at which you want to search for a vacant area. |
| * @param pixelY The Y location at which you want to search for a vacant area. |
| * @param minSpanX The minimum horizontal span required |
| * @param minSpanY The minimum vertical span required |
| * @param spanX Horizontal span of the object. |
| * @param spanY Vertical span of the object. |
| * @param ignoreOccupied If true, the result can be an occupied cell |
| * @param result Array in which to place the result, or null (in which case a new array will |
| * be allocated) |
| * @return The X, Y cell of a vacant area that can contain this object, |
| * nearest the requested location. |
| */ |
| int[] findNearestArea(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, int spanY, |
| View ignoreView, boolean ignoreOccupied, int[] result, int[] resultSpan, |
| boolean[][] occupied) { |
| lazyInitTempRectStack(); |
| // mark space take by ignoreView as available (method checks if ignoreView is null) |
| markCellsAsUnoccupiedForView(ignoreView, occupied); |
| |
| // For items with a spanX / spanY > 1, the passed in point (pixelX, pixelY) corresponds |
| // to the center of the item, but we are searching based on the top-left cell, so |
| // we translate the point over to correspond to the top-left. |
| pixelX -= (mCellWidth + mWidthGap) * (spanX - 1) / 2f; |
| pixelY -= (mCellHeight + mHeightGap) * (spanY - 1) / 2f; |
| |
| // Keep track of best-scoring drop area |
| final int[] bestXY = result != null ? result : new int[2]; |
| double bestDistance = Double.MAX_VALUE; |
| final Rect bestRect = new Rect(-1, -1, -1, -1); |
| final Stack<Rect> validRegions = new Stack<Rect>(); |
| |
| final int countX = mCountX; |
| final int countY = mCountY; |
| |
| if (minSpanX <= 0 || minSpanY <= 0 || spanX <= 0 || spanY <= 0 || |
| spanX < minSpanX || spanY < minSpanY) { |
| return bestXY; |
| } |
| |
| for (int y = 0; y < countY - (minSpanY - 1); y++) { |
| inner: |
| for (int x = 0; x < countX - (minSpanX - 1); x++) { |
| int ySize = -1; |
| int xSize = -1; |
| if (ignoreOccupied) { |
| // First, let's see if this thing fits anywhere |
| for (int i = 0; i < minSpanX; i++) { |
| for (int j = 0; j < minSpanY; j++) { |
| if (occupied[x + i][y + j]) { |
| continue inner; |
| } |
| } |
| } |
| xSize = minSpanX; |
| ySize = minSpanY; |
| |
| // We know that the item will fit at _some_ acceptable size, now let's see |
| // how big we can make it. We'll alternate between incrementing x and y spans |
| // until we hit a limit. |
| boolean incX = true; |
| boolean hitMaxX = xSize >= spanX; |
| boolean hitMaxY = ySize >= spanY; |
| while (!(hitMaxX && hitMaxY)) { |
| if (incX && !hitMaxX) { |
| for (int j = 0; j < ySize; j++) { |
| if (x + xSize > countX -1 || occupied[x + xSize][y + j]) { |
| // We can't move out horizontally |
| hitMaxX = true; |
| } |
| } |
| if (!hitMaxX) { |
| xSize++; |
| } |
| } else if (!hitMaxY) { |
| for (int i = 0; i < xSize; i++) { |
| if (y + ySize > countY - 1 || occupied[x + i][y + ySize]) { |
| // We can't move out vertically |
| hitMaxY = true; |
| } |
| } |
| if (!hitMaxY) { |
| ySize++; |
| } |
| } |
| hitMaxX |= xSize >= spanX; |
| hitMaxY |= ySize >= spanY; |
| incX = !incX; |
| } |
| incX = true; |
| hitMaxX = xSize >= spanX; |
| hitMaxY = ySize >= spanY; |
| } |
| final int[] cellXY = mTmpXY; |
| cellToCenterPoint(x, y, cellXY); |
| |
| // We verify that the current rect is not a sub-rect of any of our previous |
| // candidates. In this case, the current rect is disqualified in favour of the |
| // containing rect. |
| Rect currentRect = mTempRectStack.pop(); |
| currentRect.set(x, y, x + xSize, y + ySize); |
| boolean contained = false; |
| for (Rect r : validRegions) { |
| if (r.contains(currentRect)) { |
| contained = true; |
| break; |
| } |
| } |
| validRegions.push(currentRect); |
| double distance = Math.sqrt(Math.pow(cellXY[0] - pixelX, 2) |
| + Math.pow(cellXY[1] - pixelY, 2)); |
| |
| if ((distance <= bestDistance && !contained) || |
| currentRect.contains(bestRect)) { |
| bestDistance = distance; |
| bestXY[0] = x; |
| bestXY[1] = y; |
| if (resultSpan != null) { |
| resultSpan[0] = xSize; |
| resultSpan[1] = ySize; |
| } |
| bestRect.set(currentRect); |
| } |
| } |
| } |
| // re-mark space taken by ignoreView as occupied |
| markCellsAsOccupiedForView(ignoreView, occupied); |
| |
| // Return -1, -1 if no suitable location found |
| if (bestDistance == Double.MAX_VALUE) { |
| bestXY[0] = -1; |
| bestXY[1] = -1; |
| } |
| recycleTempRects(validRegions); |
| return bestXY; |
| } |
| |
| /** |
| * Find a vacant area that will fit the given bounds nearest the requested |
| * cell location, and will also weigh in a suggested direction vector of the |
| * desired location. This method computers distance based on unit grid distances, |
| * not pixel distances. |
| * |
| * @param cellX The X cell nearest to which you want to search for a vacant area. |
| * @param cellY The Y cell nearest which you want to search for a vacant area. |
| * @param spanX Horizontal span of the object. |
| * @param spanY Vertical span of the object. |
| * @param direction The favored direction in which the views should move from x, y |
| * @param exactDirectionOnly If this parameter is true, then only solutions where the direction |
| * matches exactly. Otherwise we find the best matching direction. |
| * @param occoupied The array which represents which cells in the CellLayout are occupied |
| * @param blockOccupied The array which represents which cells in the specified block (cellX, |
| * cellY, spanX, spanY) are occupied. This is used when try to move a group of views. |
| * @param result Array in which to place the result, or null (in which case a new array will |
| * be allocated) |
| * @return The X, Y cell of a vacant area that can contain this object, |
| * nearest the requested location. |
| */ |
| private int[] findNearestArea(int cellX, int cellY, int spanX, int spanY, int[] direction, |
| boolean[][] occupied, boolean blockOccupied[][], int[] result) { |
| // Keep track of best-scoring drop area |
| final int[] bestXY = result != null ? result : new int[2]; |
| float bestDistance = Float.MAX_VALUE; |
| int bestDirectionScore = Integer.MIN_VALUE; |
| |
| final int countX = mCountX; |
| final int countY = mCountY; |
| |
| for (int y = 0; y < countY - (spanY - 1); y++) { |
| inner: |
| for (int x = 0; x < countX - (spanX - 1); x++) { |
| // First, let's see if this thing fits anywhere |
| for (int i = 0; i < spanX; i++) { |
| for (int j = 0; j < spanY; j++) { |
| if (occupied[x + i][y + j] && (blockOccupied == null || blockOccupied[i][j])) { |
| continue inner; |
| } |
| } |
| } |
| |
| float distance = (float) |
| Math.sqrt((x - cellX) * (x - cellX) + (y - cellY) * (y - cellY)); |
| int[] curDirection = mTmpPoint; |
| computeDirectionVector(x - cellX, y - cellY, curDirection); |
| // The direction score is just the dot product of the two candidate direction |
| // and that passed in. |
| int curDirectionScore = direction[0] * curDirection[0] + |
| direction[1] * curDirection[1]; |
| boolean exactDirectionOnly = false; |
| boolean directionMatches = direction[0] == curDirection[0] && |
| direction[0] == curDirection[0]; |
| if ((directionMatches || !exactDirectionOnly) && |
| Float.compare(distance, bestDistance) < 0 || (Float.compare(distance, |
| bestDistance) == 0 && curDirectionScore > bestDirectionScore)) { |
| bestDistance = distance; |
| bestDirectionScore = curDirectionScore; |
| bestXY[0] = x; |
| bestXY[1] = y; |
| } |
| } |
| } |
| |
| // Return -1, -1 if no suitable location found |
| if (bestDistance == Float.MAX_VALUE) { |
| bestXY[0] = -1; |
| bestXY[1] = -1; |
| } |
| return bestXY; |
| } |
| |
| private boolean addViewToTempLocation(View v, Rect rectOccupiedByPotentialDrop, |
| int[] direction, ItemConfiguration currentState) { |
| CellAndSpan c = currentState.map.get(v); |
| boolean success = false; |
| markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, false); |
| markCellsForRect(rectOccupiedByPotentialDrop, mTmpOccupied, true); |
| |
| findNearestArea(c.x, c.y, c.spanX, c.spanY, direction, mTmpOccupied, null, mTempLocation); |
| |
| if (mTempLocation[0] >= 0 && mTempLocation[1] >= 0) { |
| c.x = mTempLocation[0]; |
| c.y = mTempLocation[1]; |
| success = true; |
| } |
| markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, true); |
| return success; |
| } |
| |
| /** |
| * This helper class defines a cluster of views. It helps with defining complex edges |
| * of the cluster and determining how those edges interact with other views. The edges |
| * essentially define a fine-grained boundary around the cluster of views -- like a more |
| * precise version of a bounding box. |
| */ |
| private class ViewCluster { |
| final static int LEFT = 0; |
| final static int TOP = 1; |
| final static int RIGHT = 2; |
| final static int BOTTOM = 3; |
| |
| ArrayList<View> views; |
| ItemConfiguration config; |
| Rect boundingRect = new Rect(); |
| |
| int[] leftEdge = new int[mCountY]; |
| int[] rightEdge = new int[mCountY]; |
| int[] topEdge = new int[mCountX]; |
| int[] bottomEdge = new int[mCountX]; |
| boolean leftEdgeDirty, rightEdgeDirty, topEdgeDirty, bottomEdgeDirty, boundingRectDirty; |
| |
| @SuppressWarnings("unchecked") |
| public ViewCluster(ArrayList<View> views, ItemConfiguration config) { |
| this.views = (ArrayList<View>) views.clone(); |
| this.config = config; |
| resetEdges(); |
| } |
| |
| void resetEdges() { |
| for (int i = 0; i < mCountX; i++) { |
| topEdge[i] = -1; |
| bottomEdge[i] = -1; |
| } |
| for (int i = 0; i < mCountY; i++) { |
| leftEdge[i] = -1; |
| rightEdge[i] = -1; |
| } |
| leftEdgeDirty = true; |
| rightEdgeDirty = true; |
| bottomEdgeDirty = true; |
| topEdgeDirty = true; |
| boundingRectDirty = true; |
| } |
| |
| void computeEdge(int which, int[] edge) { |
| int count = views.size(); |
| for (int i = 0; i < count; i++) { |
| CellAndSpan cs = config.map.get(views.get(i)); |
| switch (which) { |
| case LEFT: |
| int left = cs.x; |
| for (int j = cs.y; j < cs.y + cs.spanY; j++) { |
| if (left < edge[j] || edge[j] < 0) { |
| edge[j] = left; |
| } |
| } |
| break; |
| case RIGHT: |
| int right = cs.x + cs.spanX; |
| for (int j = cs.y; j < cs.y + cs.spanY; j++) { |
| if (right > edge[j]) { |
| edge[j] = right; |
| } |
| } |
| break; |
| case TOP: |
| int top = cs.y; |
| for (int j = cs.x; j < cs.x + cs.spanX; j++) { |
| if (top < edge[j] || edge[j] < 0) { |
| edge[j] = top; |
| } |
| } |
| break; |
| case BOTTOM: |
| int bottom = cs.y + cs.spanY; |
| for (int j = cs.x; j < cs.x + cs.spanX; j++) { |
| if (bottom > edge[j]) { |
| edge[j] = bottom; |
| } |
| } |
| break; |
| } |
| } |
| } |
| |
| boolean isViewTouchingEdge(View v, int whichEdge) { |
| CellAndSpan cs = config.map.get(v); |
| |
| int[] edge = getEdge(whichEdge); |
| |
| switch (whichEdge) { |
| case LEFT: |
| for (int i = cs.y; i < cs.y + cs.spanY; i++) { |
| if (edge[i] == cs.x + cs.spanX) { |
| return true; |
| } |
| } |
| break; |
| case RIGHT: |
| for (int i = cs.y; i < cs.y + cs.spanY; i++) { |
| if (edge[i] == cs.x) { |
| return true; |
| } |
| } |
| break; |
| case TOP: |
| for (int i = cs.x; i < cs.x + cs.spanX; i++) { |
| if (edge[i] == cs.y + cs.spanY) { |
| return true; |
| } |
| } |
| break; |
| case BOTTOM: |
| for (int i = cs.x; i < cs.x + cs.spanX; i++) { |
| if (edge[i] == cs.y) { |
| return true; |
| } |
| } |
| break; |
| } |
| return false; |
| } |
| |
| void shift(int whichEdge, int delta) { |
| for (View v: views) { |
| CellAndSpan c = config.map.get(v); |
| switch (whichEdge) { |
| case LEFT: |
| c.x -= delta; |
| break; |
| case RIGHT: |
| c.x += delta; |
| break; |
| case TOP: |
| c.y -= delta; |
| break; |
| case BOTTOM: |
| default: |
| c.y += delta; |
| break; |
| } |
| } |
| resetEdges(); |
| } |
| |
| public void addView(View v) { |
| views.add(v); |
| resetEdges(); |
| } |
| |
| public Rect getBoundingRect() { |
| if (boundingRectDirty) { |
| boolean first = true; |
| for (View v: views) { |
| CellAndSpan c = config.map.get(v); |
| if (first) { |
| boundingRect.set(c.x, c.y, c.x + c.spanX, c.y + c.spanY); |
| first = false; |
| } else { |
| boundingRect.union(c.x, c.y, c.x + c.spanX, c.y + c.spanY); |
| } |
| } |
| } |
| return boundingRect; |
| } |
| |
| public int[] getEdge(int which) { |
| switch (which) { |
| case LEFT: |
| return getLeftEdge(); |
| case RIGHT: |
| return getRightEdge(); |
| case TOP: |
| return getTopEdge(); |
| case BOTTOM: |
| default: |
| return getBottomEdge(); |
| } |
| } |
| |
| public int[] getLeftEdge() { |
| if (leftEdgeDirty) { |
| computeEdge(LEFT, leftEdge); |
| } |
| return leftEdge; |
| } |
| |
| public int[] getRightEdge() { |
| if (rightEdgeDirty) { |
| computeEdge(RIGHT, rightEdge); |
| } |
| return rightEdge; |
| } |
| |
| public int[] getTopEdge() { |
| if (topEdgeDirty) { |
| computeEdge(TOP, topEdge); |
| } |
| return topEdge; |
| } |
| |
| public int[] getBottomEdge() { |
| if (bottomEdgeDirty) { |
| computeEdge(BOTTOM, bottomEdge); |
| } |
| return bottomEdge; |
| } |
| |
| PositionComparator comparator = new PositionComparator(); |
| class PositionComparator implements Comparator<View> { |
| int whichEdge = 0; |
| public int compare(View left, View right) { |
| CellAndSpan l = config.map.get(left); |
| CellAndSpan r = config.map.get(right); |
| switch (whichEdge) { |
| case LEFT: |
| return (r.x + r.spanX) - (l.x + l.spanX); |
| case RIGHT: |
| return l.x - r.x; |
| case TOP: |
| return (r.y + r.spanY) - (l.y + l.spanY); |
| case BOTTOM: |
| default: |
| return l.y - r.y; |
| } |
| } |
| } |
| |
| public void sortConfigurationForEdgePush(int edge) { |
| comparator.whichEdge = edge; |
| Collections.sort(config.sortedViews, comparator); |
| } |
| } |
| |
| private boolean pushViewsToTempLocation(ArrayList<View> views, Rect rectOccupiedByPotentialDrop, |
| int[] direction, View dragView, ItemConfiguration currentState) { |
| |
| ViewCluster cluster = new ViewCluster(views, currentState); |
| Rect clusterRect = cluster.getBoundingRect(); |
| int whichEdge; |
| int pushDistance; |
| boolean fail = false; |
| |
| // Determine the edge of the cluster that will be leading the push and how far |
| // the cluster must be shifted. |
| if (direction[0] < 0) { |
| whichEdge = ViewCluster.LEFT; |
| pushDistance = clusterRect.right - rectOccupiedByPotentialDrop.left; |
| } else if (direction[0] > 0) { |
| whichEdge = ViewCluster.RIGHT; |
| pushDistance = rectOccupiedByPotentialDrop.right - clusterRect.left; |
| } else if (direction[1] < 0) { |
| whichEdge = ViewCluster.TOP; |
| pushDistance = clusterRect.bottom - rectOccupiedByPotentialDrop.top; |
| } else { |
| whichEdge = ViewCluster.BOTTOM; |
| pushDistance = rectOccupiedByPotentialDrop.bottom - clusterRect.top; |
| } |
| |
| // Break early for invalid push distance. |
| if (pushDistance <= 0) { |
| return false; |
| } |
| |
| // Mark the occupied state as false for the group of views we want to move. |
| for (View v: views) { |
| CellAndSpan c = currentState.map.get(v); |
| markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, false); |
| } |
| |
| // We save the current configuration -- if we fail to find a solution we will revert |
| // to the initial state. The process of finding a solution modifies the configuration |
| // in place, hence the need for revert in the failure case. |
| currentState.save(); |
| |
| // The pushing algorithm is simplified by considering the views in the order in which |
| // they would be pushed by the cluster. For example, if the cluster is leading with its |
| // left edge, we consider sort the views by their right edge, from right to left. |
| cluster.sortConfigurationForEdgePush(whichEdge); |
| |
| while (pushDistance > 0 && !fail) { |
| for (View v: currentState.sortedViews) { |
| // For each view that isn't in the cluster, we see if the leading edge of the |
| // cluster is contacting the edge of that view. If so, we add that view to the |
| // cluster. |
| if (!cluster.views.contains(v) && v != dragView) { |
| if (cluster.isViewTouchingEdge(v, whichEdge)) { |
| LayoutParams lp = (LayoutParams) v.getLayoutParams(); |
| if (!lp.canReorder) { |
| // The push solution includes the all apps button, this is not viable. |
| fail = true; |
| break; |
| } |
| cluster.addView(v); |
| CellAndSpan c = currentState.map.get(v); |
| |
| // Adding view to cluster, mark it as not occupied. |
| markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, false); |
| } |
| } |
| } |
| pushDistance--; |
| |
| // The cluster has been completed, now we move the whole thing over in the appropriate |
| // direction. |
| cluster.shift(whichEdge, 1); |
| } |
| |
| boolean foundSolution = false; |
| clusterRect = cluster.getBoundingRect(); |
| |
| // Due to the nature of the algorithm, the only check required to verify a valid solution |
| // is to ensure that completed shifted cluster lies completely within the cell layout. |
| if (!fail && clusterRect.left >= 0 && clusterRect.right <= mCountX && clusterRect.top >= 0 && |
| clusterRect.bottom <= mCountY) { |
| foundSolution = true; |
| } else { |
| currentState.restore(); |
| } |
| |
| // In either case, we set the occupied array as marked for the location of the views |
| for (View v: cluster.views) { |
| CellAndSpan c = currentState.map.get(v); |
| markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, true); |
| } |
| |
| return foundSolution; |
| } |
| |
| private boolean addViewsToTempLocation(ArrayList<View> views, Rect rectOccupiedByPotentialDrop, |
| int[] direction, View dragView, ItemConfiguration currentState) { |
| if (views.size() == 0) return true; |
| |
| boolean success = false; |
| Rect boundingRect = null; |
| // We construct a rect which represents the entire group of views passed in |
| for (View v: views) { |
| CellAndSpan c = currentState.map.get(v); |
| if (boundingRect == null) { |
| boundingRect = new Rect(c.x, c.y, c.x + c.spanX, c.y + c.spanY); |
| } else { |
| boundingRect.union(c.x, c.y, c.x + c.spanX, c.y + c.spanY); |
| } |
| } |
| |
| // Mark the occupied state as false for the group of views we want to move. |
| for (View v: views) { |
| CellAndSpan c = currentState.map.get(v); |
| markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, false); |
| } |
| |
| boolean[][] blockOccupied = new boolean[boundingRect.width()][boundingRect.height()]; |
| int top = boundingRect.top; |
| int left = boundingRect.left; |
| // We mark more precisely which parts of the bounding rect are truly occupied, allowing |
| // for interlocking. |
| for (View v: views) { |
| CellAndSpan c = currentState.map.get(v); |
| markCellsForView(c.x - left, c.y - top, c.spanX, c.spanY, blockOccupied, true); |
| } |
| |
| markCellsForRect(rectOccupiedByPotentialDrop, mTmpOccupied, true); |
| |
| findNearestArea(boundingRect.left, boundingRect.top, boundingRect.width(), |
| boundingRect.height(), direction, mTmpOccupied, blockOccupied, mTempLocation); |
| |
| // If we successfuly found a location by pushing the block of views, we commit it |
| if (mTempLocation[0] >= 0 && mTempLocation[1] >= 0) { |
| int deltaX = mTempLocation[0] - boundingRect.left; |
| int deltaY = mTempLocation[1] - boundingRect.top; |
| for (View v: views) { |
| CellAndSpan c = currentState.map.get(v); |
| c.x += deltaX; |
| c.y += deltaY; |
| } |
| success = true; |
| } |
| |
| // In either case, we set the occupied array as marked for the location of the views |
| for (View v: views) { |
| CellAndSpan c = currentState.map.get(v); |
| markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, true); |
| } |
| return success; |
| } |
| |
| private void markCellsForRect(Rect r, boolean[][] occupied, boolean value) { |
| markCellsForView(r.left, r.top, r.width(), r.height(), occupied, value); |
| } |
| |
| // This method tries to find a reordering solution which satisfies the push mechanic by trying |
| // to push items in each of the cardinal directions, in an order based on the direction vector |
| // passed. |
| private boolean attemptPushInDirection(ArrayList<View> intersectingViews, Rect occupied, |
| int[] direction, View ignoreView, ItemConfiguration solution) { |
| if ((Math.abs(direction[0]) + Math.abs(direction[1])) > 1) { |
| // If the direction vector has two non-zero components, we try pushing |
| // separately in each of the components. |
| int temp = direction[1]; |
| direction[1] = 0; |
| |
| if (pushViewsToTempLocation(intersectingViews, occupied, direction, |
| ignoreView, solution)) { |
| return true; |
| } |
| direction[1] = temp; |
| temp = direction[0]; |
| direction[0] = 0; |
| |
| if (pushViewsToTempLocation(intersectingViews, occupied, direction, |
| ignoreView, solution)) { |
| return true; |
| } |
| // Revert the direction |
| direction[0] = temp; |
| |
| // Now we try pushing in each component of the opposite direction |
| direction[0] *= -1; |
| direction[1] *= -1; |
| temp = direction[1]; |
| direction[1] = 0; |
| if (pushViewsToTempLocation(intersectingViews, occupied, direction, |
| ignoreView, solution)) { |
| return true; |
| } |
| |
| direction[1] = temp; |
| temp = direction[0]; |
| direction[0] = 0; |
| if (pushViewsToTempLocation(intersectingViews, occupied, direction, |
| ignoreView, solution)) { |
| return true; |
| } |
| // revert the direction |
| direction[0] = temp; |
| direction[0] *= -1; |
| direction[1] *= -1; |
| |
| } else { |
| // If the direction vector has a single non-zero component, we push first in the |
| // direction of the vector |
| if (pushViewsToTempLocation(intersectingViews, occupied, direction, |
| ignoreView, solution)) { |
| return true; |
| } |
| // Then we try the opposite direction |
| direction[0] *= -1; |
| direction[1] *= -1; |
| if (pushViewsToTempLocation(intersectingViews, occupied, direction, |
| ignoreView, solution)) { |
| return true; |
| } |
| // Switch the direction back |
| direction[0] *= -1; |
| direction[1] *= -1; |
| |
| // If we have failed to find a push solution with the above, then we try |
| // to find a solution by pushing along the perpendicular axis. |
| |
| // Swap the components |
| int temp = direction[1]; |
| direction[1] = direction[0]; |
| direction[0] = temp; |
| if (pushViewsToTempLocation(intersectingViews, occupied, direction, |
| ignoreView, solution)) { |
| return true; |
| } |
| |
| // Then we try the opposite direction |
| direction[0] *= -1; |
| direction[1] *= -1; |
| if (pushViewsToTempLocation(intersectingViews, occupied, direction, |
| ignoreView, solution)) { |
| return true; |
| } |
| // Switch the direction back |
| direction[0] *= -1; |
| direction[1] *= -1; |
| |
| // Swap the components back |
| temp = direction[1]; |
| direction[1] = direction[0]; |
| direction[0] = temp; |
| } |
| return false; |
| } |
| |
| private boolean rearrangementExists(int cellX, int cellY, int spanX, int spanY, int[] direction, |
| View ignoreView, ItemConfiguration solution) { |
| // Return early if get invalid cell positions |
| if (cellX < 0 || cellY < 0) return false; |
| |
| mIntersectingViews.clear(); |
| mOccupiedRect.set(cellX, cellY, cellX + spanX, cellY + spanY); |
| |
| // Mark the desired location of the view currently being dragged. |
| if (ignoreView != null) { |
| CellAndSpan c = solution.map.get(ignoreView); |
| if (c != null) { |
| c.x = cellX; |
| c.y = cellY; |
| } |
| } |
| Rect r0 = new Rect(cellX, cellY, cellX + spanX, cellY + spanY); |
| Rect r1 = new Rect(); |
| for (View child: solution.map.keySet()) { |
| if (child == ignoreView) continue; |
| CellAndSpan c = solution.map.get(child); |
| LayoutParams lp = (LayoutParams) child.getLayoutParams(); |
| r1.set(c.x, c.y, c.x + c.spanX, c.y + c.spanY); |
| if (Rect.intersects(r0, r1)) { |
| if (!lp.canReorder) { |
| return false; |
| } |
| mIntersectingViews.add(child); |
| } |
| } |
| |
| // First we try to find a solution which respects the push mechanic. That is, |
| // we try to find a solution such that no displaced item travels through another item |
| // without also displacing that item. |
| if (attemptPushInDirection(mIntersectingViews, mOccupiedRect, direction, ignoreView, |
| solution)) { |
| return true; |
| } |
| |
| // Next we try moving the views as a block, but without requiring the push mechanic. |
| if (addViewsToTempLocation(mIntersectingViews, mOccupiedRect, direction, ignoreView, |
| solution)) { |
| return true; |
| } |
| |
| // Ok, they couldn't move as a block, let's move them individually |
| for (View v : mIntersectingViews) { |
| if (!addViewToTempLocation(v, mOccupiedRect, direction, solution)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* |
| * Returns a pair (x, y), where x,y are in {-1, 0, 1} corresponding to vector between |
| * the provided point and the provided cell |
| */ |
| private void computeDirectionVector(float deltaX, float deltaY, int[] result) { |
| double angle = Math.atan(((float) deltaY) / deltaX); |
| |
| result[0] = 0; |
| result[1] = 0; |
| if (Math.abs(Math.cos(angle)) > 0.5f) { |
| result[0] = (int) Math.signum(deltaX); |
| } |
| if (Math.abs(Math.sin(angle)) > 0.5f) { |
| result[1] = (int) Math.signum(deltaY); |
| } |
| } |
| |
| private void copyOccupiedArray(boolean[][] occupied) { |
| for (int i = 0; i < mCountX; i++) { |
| for (int j = 0; j < mCountY; j++) { |
| occupied[i][j] = mOccupied[i][j]; |
| } |
| } |
| } |
| |
| ItemConfiguration simpleSwap(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, |
| int spanY, int[] direction, View dragView, boolean decX, ItemConfiguration solution) { |
| // Copy the current state into the solution. This solution will be manipulated as necessary. |
| copyCurrentStateToSolution(solution, false); |
| // Copy the current occupied array into the temporary occupied array. This array will be |
| // manipulated as necessary to find a solution. |
| copyOccupiedArray(mTmpOccupied); |
| |
| // We find the nearest cell into which we would place the dragged item, assuming there's |
| // nothing in its way. |
| int result[] = new int[2]; |
| result = findNearestArea(pixelX, pixelY, spanX, spanY, result); |
| |
| boolean success = false; |
| // First we try the exact nearest position of the item being dragged, |
| // we will then want to try to move this around to other neighbouring positions |
| success = rearrangementExists(result[0], result[1], spanX, spanY, direction, dragView, |
| solution); |
| |
| if (!success) { |
| // We try shrinking the widget down to size in an alternating pattern, shrink 1 in |
| // x, then 1 in y etc. |
| if (spanX > minSpanX && (minSpanY == spanY || decX)) { |
| return simpleSwap(pixelX, pixelY, minSpanX, minSpanY, spanX - 1, spanY, direction, |
| dragView, false, solution); |
| } else if (spanY > minSpanY) { |
| return simpleSwap(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY - 1, direction, |
| dragView, true, solution); |
| } |
| solution.isSolution = false; |
| } else { |
| solution.isSolution = true; |
| solution.dragViewX = result[0]; |
| solution.dragViewY = result[1]; |
| solution.dragViewSpanX = spanX; |
| solution.dragViewSpanY = spanY; |
| } |
| return solution; |
| } |
| |
| private void copyCurrentStateToSolution(ItemConfiguration solution, boolean temp) { |
| int childCount = mShortcutsAndWidgets.getChildCount(); |
| for (int i = 0; i < childCount; i++) { |
| View child = mShortcutsAndWidgets.getChildAt(i); |
| LayoutParams lp = (LayoutParams) child.getLayoutParams(); |
| CellAndSpan c; |
| if (temp) { |
| c = new CellAndSpan(lp.tmpCellX, lp.tmpCellY, lp.cellHSpan, lp.cellVSpan); |
| } else { |
| c = new CellAndSpan(lp.cellX, lp.cellY, lp.cellHSpan, lp.cellVSpan); |
| } |
| solution.add(child, c); |
| } |
| } |
| |
| private void copySolutionToTempState(ItemConfiguration solution, View dragView) { |
| for (int i = 0; i < mCountX; i++) { |
| for (int j = 0; j < mCountY; j++) { |
| mTmpOccupied[i][j] = false; |
| } |
| } |
| |
| int childCount = mShortcutsAndWidgets.getChildCount(); |
| for (int i = 0; i < childCount; i++) { |
| View child = mShortcutsAndWidgets.getChildAt(i); |
| if (child == dragView) continue; |
| LayoutParams lp = (LayoutParams) child.getLayoutParams(); |
| CellAndSpan c = solution.map.get(child); |
| if (c != null) { |
| lp.tmpCellX = c.x; |
| lp.tmpCellY = c.y; |
| lp.cellHSpan = c.spanX; |
| lp.cellVSpan = c.spanY; |
| markCellsForView(c.x, c.y, c.spanX, c.spanY, mTmpOccupied, true); |
| } |
| } |
| markCellsForView(solution.dragViewX, solution.dragViewY, solution.dragViewSpanX, |
| solution.dragViewSpanY, mTmpOccupied, true); |
| } |
| |
| private void animateItemsToSolution(ItemConfiguration solution, View dragView, boolean |
| commitDragView) { |
| |
| boolean[][] occupied = DESTRUCTIVE_REORDER ? mOccupied : mTmpOccupied; |
| for (int i = 0; i < mCountX; i++) { |
| for (int j = 0; j < mCountY; j++) { |
| occupied[i][j] = false; |
| } |
| } |
| |
| int childCount = mShortcutsAndWidgets.getChildCount(); |
| for (int i = 0; i < childCount; i++) { |
| View child = mShortcutsAndWidgets.getChildAt(i); |
| if (child == dragView) continue; |
| CellAndSpan c = solution.map.get(child); |
| if (c != null) { |
| animateChildToPosition(child, c.x, c.y, REORDER_ANIMATION_DURATION, 0, |
| DESTRUCTIVE_REORDER, false); |
| markCellsForView(c.x, c.y, c.spanX, c.spanY, occupied, true); |
| } |
| } |
| if (commitDragView) { |
| markCellsForView(solution.dragViewX, solution.dragViewY, solution.dragViewSpanX, |
| solution.dragViewSpanY, occupied, true); |
| } |
| } |
| |
| // This method starts or changes the reorder hint animations |
| private void beginOrAdjustHintAnimations(ItemConfiguration solution, View dragView, int delay) { |
| int childCount = mShortcutsAndWidgets.getChildCount(); |
| for (int i = 0; i < childCount; i++) { |
| View child = mShortcutsAndWidgets.getChildAt(i); |
| if (child == dragView) continue; |
| CellAndSpan c = solution.map.get(child); |
| LayoutParams lp = (LayoutParams) child.getLayoutParams(); |
| if (c != null) { |
| ReorderHintAnimation rha = new ReorderHintAnimation(child, lp.cellX, lp.cellY, |
| c.x, c.y, c.spanX, c.spanY); |
| rha.animate(); |
| } |
| } |
| } |
| |
| // Class which represents the reorder hint animations. These animations show that an item is |
| // in a temporary state, and hint at where the item will return to. |
| class ReorderHintAnimation { |
| View child; |
| float finalDeltaX; |
| float finalDeltaY; |
| float initDeltaX; |
| float initDeltaY; |
| float finalScale; |
| float initScale; |
| private static final int DURATION = 300; |
| Animator a; |
| |
| public ReorderHintAnimation(View child, int cellX0, int cellY0, int cellX1, int cellY1, |
| int spanX, int spanY) { |
| regionToCenterPoint(cellX0, cellY0, spanX, spanY, mTmpPoint); |
| final int x0 = mTmpPoint[0]; |
| final int y0 = mTmpPoint[1]; |
| regionToCenterPoint(cellX1, cellY1, spanX, spanY, mTmpPoint); |
| final int x1 = mTmpPoint[0]; |
| final int y1 = mTmpPoint[1]; |
| final int dX = x1 - x0; |
| final int dY = y1 - y0; |
| finalDeltaX = 0; |
| finalDeltaY = 0; |
| if (dX == dY && dX == 0) { |
| } else { |
| if (dY == 0) { |
| finalDeltaX = - Math.signum(dX) * mReorderHintAnimationMagnitude; |
| } else if (dX == 0) { |
| finalDeltaY = - Math.signum(dY) * mReorderHintAnimationMagnitude; |
| } else { |
| double angle = Math.atan( (float) (dY) / dX); |
| finalDeltaX = (int) (- Math.signum(dX) * |
| Math.abs(Math.cos(angle) * mReorderHintAnimationMagnitude)); |
| finalDeltaY = (int) (- Math.signum(dY) * |
| Math.abs(Math.sin(angle) * mReorderHintAnimationMagnitude)); |
| } |
| } |
| initDeltaX = child.getTranslationX(); |
| initDeltaY = child.getTranslationY(); |
| finalScale = getChildrenScale() - 4.0f / child.getWidth(); |
| initScale = child.getScaleX(); |
| this.child = child; |
| } |
| |
| void animate() { |
| if (mShakeAnimators.containsKey(child)) { |
| ReorderHintAnimation oldAnimation = mShakeAnimators.get(child); |
| oldAnimation.cancel(); |
| mShakeAnimators.remove(child); |
| if (finalDeltaX == 0 && finalDeltaY == 0) { |
| completeAnimationImmediately(); |
| return; |
| } |
| } |
| if (finalDeltaX == 0 && finalDeltaY == 0) { |
| return; |
| } |
| ValueAnimator va = LauncherAnimUtils.ofFloat(child, 0f, 1f); |
| a = va; |
| va.setRepeatMode(ValueAnimator.REVERSE); |
| va.setRepeatCount(ValueAnimator.INFINITE); |
| va.setDuration(DURATION); |
| va.setStartDelay((int) (Math.random() * 60)); |
| va.addUpdateListener(new AnimatorUpdateListener() { |
| @Override |
| public void onAnimationUpdate(ValueAnimator animation) { |
| float r = ((Float) animation.getAnimatedValue()).floatValue(); |
| float x = r * finalDeltaX + (1 - r) * initDeltaX; |
| float y = r * finalDeltaY + (1 - r) * initDeltaY; |
| child.setTranslationX(x); |
| child.setTranslationY(y); |
| float s = r * finalScale + (1 - r) * initScale; |
| child.setScaleX(s); |
| child.setScaleY(s); |
| } |
| }); |
| va.addListener(new AnimatorListenerAdapter() { |
| public void onAnimationRepeat(Animator animation) { |
| // We make sure to end only after a full period |
| initDeltaX = 0; |
| initDeltaY = 0; |
| initScale = getChildrenScale(); |
| } |
| }); |
| mShakeAnimators.put(child, this); |
| va.start(); |
| } |
| |
| private void cancel() { |
| if (a != null) { |
| a.cancel(); |
| } |
| } |
| |
| private void completeAnimationImmediately() { |
| if (a != null) { |
| a.cancel(); |
| } |
| |
| AnimatorSet s = LauncherAnimUtils.createAnimatorSet(); |
| a = s; |
| s.playTogether( |
| LauncherAnimUtils.ofFloat(child, "scaleX", getChildrenScale()), |
| LauncherAnimUtils.ofFloat(child, "scaleY", getChildrenScale()), |
| LauncherAnimUtils.ofFloat(child, "translationX", 0f), |
| LauncherAnimUtils.ofFloat(child, "translationY", 0f) |
| ); |
| s.setDuration(REORDER_ANIMATION_DURATION); |
| s.setInterpolator(new android.view.animation.DecelerateInterpolator(1.5f)); |
| s.start(); |
| } |
| } |
| |
| private void completeAndClearReorderHintAnimations() { |
| for (ReorderHintAnimation a: mShakeAnimators.values()) { |
| a.completeAnimationImmediately(); |
| } |
| mShakeAnimators.clear(); |
| } |
| |
| private void commitTempPlacement() { |
| for (int i = 0; i < mCountX; i++) { |
| for (int j = 0; j < mCountY; j++) { |
| mOccupied[i][j] = mTmpOccupied[i][j]; |
| } |
| } |
| int childCount = mShortcutsAndWidgets.getChildCount(); |
| for (int i = 0; i < childCount; i++) { |
| View child = mShortcutsAndWidgets.getChildAt(i); |
| LayoutParams lp = (LayoutParams) child.getLayoutParams(); |
| ItemInfo info = (ItemInfo) child.getTag(); |
| // We do a null check here because the item info can be null in the case of the |
| // AllApps button in the hotseat. |
| if (info != null) { |
| if (info.cellX != lp.tmpCellX || info.cellY != lp.tmpCellY || |
| info.spanX != lp.cellHSpan || info.spanY != lp.cellVSpan) { |
| info.requiresDbUpdate = true; |
| } |
| info.cellX = lp.cellX = lp.tmpCellX; |
| info.cellY = lp.cellY = lp.tmpCellY; |
| info.spanX = lp.cellHSpan; |
| info.spanY = lp.cellVSpan; |
| } |
| } |
| mLauncher.getWorkspace().updateItemLocationsInDatabase(this); |
| } |
| |
| public void setUseTempCoords(boolean useTempCoords) { |
| int childCount = mShortcutsAndWidgets.getChildCount(); |
| for (int i = 0; i < childCount; i++) { |
| LayoutParams lp = (LayoutParams) mShortcutsAndWidgets.getChildAt(i).getLayoutParams(); |
| lp.useTmpCoords = useTempCoords; |
| } |
| } |
| |
| ItemConfiguration findConfigurationNoShuffle(int pixelX, int pixelY, int minSpanX, int minSpanY, |
| int spanX, int spanY, View dragView, ItemConfiguration solution) { |
| int[] result = new int[2]; |
| int[] resultSpan = new int[2]; |
| findNearestVacantArea(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY, null, result, |
| resultSpan); |
| if (result[0] >= 0 && result[1] >= 0) { |
| copyCurrentStateToSolution(solution, false); |
| solution.dragViewX = result[0]; |
| solution.dragViewY = result[1]; |
| solution.dragViewSpanX = resultSpan[0]; |
| solution.dragViewSpanY = resultSpan[1]; |
| solution.isSolution = true; |
| } else { |
| solution.isSolution = false; |
| } |
| return solution; |
| } |
| |
| public void prepareChildForDrag(View child) { |
| markCellsAsUnoccupiedForView(child); |
| } |
| |
| /* This seems like it should be obvious and straight-forward, but when the direction vector |
| needs to match with the notion of the dragView pushing other views, we have to employ |
| a slightly more subtle notion of the direction vector. The question is what two points is |
| the vector between? The center of the dragView and its desired destination? Not quite, as |
| this doesn't necessarily coincide with the interaction of the dragView and items occupying |
| those cells. Instead we use some heuristics to often lock the vector to up, down, left |
| or right, which helps make pushing feel right. |
| */ |
| private void getDirectionVectorForDrop(int dragViewCenterX, int dragViewCenterY, int spanX, |
| int spanY, View dragView, int[] resultDirection) { |
| int[] targetDestination = new int[2]; |
| |
| findNearestArea(dragViewCenterX, dragViewCenterY, spanX, spanY, targetDestination); |
| Rect dragRect = new Rect(); |
| regionToRect(targetDestination[0], targetDestination[1], spanX, spanY, dragRect); |
| dragRect.offset(dragViewCenterX - dragRect.centerX(), dragViewCenterY - dragRect.centerY()); |
| |
| Rect dropRegionRect = new Rect(); |
| getViewsIntersectingRegion(targetDestination[0], targetDestination[1], spanX, spanY, |
| dragView, dropRegionRect, mIntersectingViews); |
| |
| int dropRegionSpanX = dropRegionRect.width(); |
| int dropRegionSpanY = dropRegionRect.height(); |
| |
| regionToRect(dropRegionRect.left, dropRegionRect.top, dropRegionRect.width(), |
| dropRegionRect.height(), dropRegionRect); |
| |
| int deltaX = (dropRegionRect.centerX() - dragViewCenterX) / spanX; |
| int deltaY = (dropRegionRect.centerY() - dragViewCenterY) / spanY; |
| |
| if (dropRegionSpanX == mCountX || spanX == mCountX) { |
| deltaX = 0; |
| } |
| if (dropRegionSpanY == mCountY || spanY == mCountY) { |
| deltaY = 0; |
| } |
| |
| if (deltaX == 0 && deltaY == 0) { |
| // No idea what to do, give a random direction. |
| resultDirection[0] = 1; |
| resultDirection[1] = 0; |
| } else { |
| computeDirectionVector(deltaX, deltaY, resultDirection); |
| } |
| } |
| |
| // For a given cell and span, fetch the set of views intersecting the region. |
| private void getViewsIntersectingRegion(int cellX, int cellY, int spanX, int spanY, |
| View dragView, Rect boundingRect, ArrayList<View> intersectingViews) { |
| if (boundingRect != null) { |
| boundingRect.set(cellX, cellY, cellX + spanX, cellY + spanY); |
| } |
| intersectingViews.clear(); |
| Rect r0 = new Rect(cellX, cellY, cellX + spanX, cellY + spanY); |
| Rect r1 = new Rect(); |
| final int count = mShortcutsAndWidgets.getChildCount(); |
| for (int i = 0; i < count; i++) { |
| View child = mShortcutsAndWidgets.getChildAt(i); |
| if (child == dragView) continue; |
| LayoutParams lp = (LayoutParams) child.getLayoutParams(); |
| r1.set(lp.cellX, lp.cellY, lp.cellX + lp.cellHSpan, lp.cellY + lp.cellVSpan); |
| if (Rect.intersects(r0, r1)) { |
| mIntersectingViews.add(child); |
| if (boundingRect != null) { |
| boundingRect.union(r1); |
| } |
| } |
| } |
| } |
| |
| boolean isNearestDropLocationOccupied(int pixelX, int pixelY, int spanX, int spanY, |
| View dragView, int[] result) { |
| result = findNearestArea(pixelX, pixelY, spanX, spanY, result); |
| getViewsIntersectingRegion(result[0], result[1], spanX, spanY, dragView, null, |
| mIntersectingViews); |
| return !mIntersectingViews.isEmpty(); |
| } |
| |
| void revertTempState() { |
| if (!isItemPlacementDirty() || DESTRUCTIVE_REORDER) return; |
| final int count = mShortcutsAndWidgets.getChildCount(); |
| for (int i = 0; i < count; i++) { |
| View child = mShortcutsAndWidgets.getChildAt(i); |
| LayoutParams lp = (LayoutParams) child.getLayoutParams(); |
| if (lp.tmpCellX != lp.cellX || lp.tmpCellY != lp.cellY) { |
| lp.tmpCellX = lp.cellX; |
| lp.tmpCellY = lp.cellY; |
| animateChildToPosition(child, lp.cellX, lp.cellY, REORDER_ANIMATION_DURATION, |
| 0, false, false); |
| } |
| } |
| completeAndClearReorderHintAnimations(); |
| setItemPlacementDirty(false); |
| } |
| |
| boolean createAreaForResize(int cellX, int cellY, int spanX, int spanY, |
| View dragView, int[] direction, boolean commit) { |
| int[] pixelXY = new int[2]; |
| regionToCenterPoint(cellX, cellY, spanX, spanY, pixelXY); |
| |
| // First we determine if things have moved enough to cause a different layout |
| ItemConfiguration swapSolution = simpleSwap(pixelXY[0], pixelXY[1], spanX, spanY, |
| spanX, spanY, direction, dragView, true, new ItemConfiguration()); |
| |
| setUseTempCoords(true); |
| if (swapSolution != null && swapSolution.isSolution) { |
| // If we're just testing for a possible location (MODE_ACCEPT_DROP), we don't bother |
| // committing anything or animating anything as we just want to determine if a solution |
| // exists |
| copySolutionToTempState(swapSolution, dragView); |
| setItemPlacementDirty(true); |
| animateItemsToSolution(swapSolution, dragView, commit); |
| |
| if (commit) { |
| commitTempPlacement(); |
| completeAndClearReorderHintAnimations(); |
| setItemPlacementDirty(false); |
| } else { |
| beginOrAdjustHintAnimations(swapSolution, dragView, |
| REORDER_ANIMATION_DURATION); |
| } |
| mShortcutsAndWidgets.requestLayout(); |
| } |
| return swapSolution.isSolution; |
| } |
| |
| int[] createArea(int pixelX, int pixelY, int minSpanX, int minSpanY, int spanX, int spanY, |
| View dragView, int[] result, int resultSpan[], int mode) { |
| // First we determine if things have moved enough to cause a different layout |
| result = findNearestArea(pixelX, pixelY, spanX, spanY, result); |
| |
| if (resultSpan == null) { |
| resultSpan = new int[2]; |
| } |
| |
| // When we are checking drop validity or actually dropping, we don't recompute the |
| // direction vector, since we want the solution to match the preview, and it's possible |
| // that the exact position of the item has changed to result in a new reordering outcome. |
| if ((mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL || mode == MODE_ACCEPT_DROP) |
| && mPreviousReorderDirection[0] != INVALID_DIRECTION) { |
| mDirectionVector[0] = mPreviousReorderDirection[0]; |
| mDirectionVector[1] = mPreviousReorderDirection[1]; |
| // We reset this vector after drop |
| if (mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL) { |
| mPreviousReorderDirection[0] = INVALID_DIRECTION; |
| mPreviousReorderDirection[1] = INVALID_DIRECTION; |
| } |
| } else { |
| getDirectionVectorForDrop(pixelX, pixelY, spanX, spanY, dragView, mDirectionVector); |
| mPreviousReorderDirection[0] = mDirectionVector[0]; |
| mPreviousReorderDirection[1] = mDirectionVector[1]; |
| } |
| |
| ItemConfiguration swapSolution = simpleSwap(pixelX, pixelY, minSpanX, minSpanY, |
| spanX, spanY, mDirectionVector, dragView, true, new ItemConfiguration()); |
| |
| // We attempt the approach which doesn't shuffle views at all |
| ItemConfiguration noShuffleSolution = findConfigurationNoShuffle(pixelX, pixelY, minSpanX, |
| minSpanY, spanX, spanY, dragView, new ItemConfiguration()); |
| |
| ItemConfiguration finalSolution = null; |
| if (swapSolution.isSolution && swapSolution.area() >= noShuffleSolution.area()) { |
| finalSolution = swapSolution; |
| } else if (noShuffleSolution.isSolution) { |
| finalSolution = noShuffleSolution; |
| } |
| |
| boolean foundSolution = true; |
| if (!DESTRUCTIVE_REORDER) { |
| setUseTempCoords(true); |
| } |
| |
| if (finalSolution != null) { |
| result[0] = finalSolution.dragViewX; |
| result[1] = finalSolution.dragViewY; |
| resultSpan[0] = finalSolution.dragViewSpanX; |
| resultSpan[1] = finalSolution.dragViewSpanY; |
| |
| // If we're just testing for a possible location (MODE_ACCEPT_DROP), we don't bother |
| // committing anything or animating anything as we just want to determine if a solution |
| // exists |
| if (mode == MODE_DRAG_OVER || mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL) { |
| if (!DESTRUCTIVE_REORDER) { |
| copySolutionToTempState(finalSolution, dragView); |
| } |
| setItemPlacementDirty(true); |
| animateItemsToSolution(finalSolution, dragView, mode == MODE_ON_DROP); |
| |
| if (!DESTRUCTIVE_REORDER && |
| (mode == MODE_ON_DROP || mode == MODE_ON_DROP_EXTERNAL)) { |
| commitTempPlacement(); |
| completeAndClearReorderHintAnimations(); |
| setItemPlacementDirty(false); |
| } else { |
| beginOrAdjustHintAnimations(finalSolution, dragView, |
| REORDER_ANIMATION_DURATION); |
| } |
| } |
| } else { |
| foundSolution = false; |
| result[0] = result[1] = resultSpan[0] = resultSpan[1] = -1; |
| } |
| |
| if ((mode == MODE_ON_DROP || !foundSolution) && !DESTRUCTIVE_REORDER) { |
| setUseTempCoords(false); |
| } |
| |
| mShortcutsAndWidgets.requestLayout(); |
| return result; |
| } |
| |
| void setItemPlacementDirty(boolean dirty) { |
| mItemPlacementDirty = dirty; |
| } |
| boolean isItemPlacementDirty() { |
| return mItemPlacementDirty; |
| } |
| |
| private class ItemConfiguration { |
| HashMap<View, CellAndSpan> map = new HashMap<View, CellAndSpan>(); |
| private HashMap<View, CellAndSpan> savedMap = new HashMap<View, CellAndSpan>(); |
| ArrayList<View> sortedViews = new ArrayList<View>(); |
| boolean isSolution = false; |
| int dragViewX, dragViewY, dragViewSpanX, dragViewSpanY; |
| |
| void save() { |
| // Copy current state into savedMap |
| for (View v: map.keySet()) { |
| map.get(v).copy(savedMap.get(v)); |
| } |
| } |
| |
| void restore() { |
| // Restore current state from savedMap |
| for (View v: savedMap.keySet()) { |
| savedMap.get(v).copy(map.get(v)); |
| } |
| } |
| |
| void add(View v, CellAndSpan cs) { |
| map.put(v, cs); |
| savedMap.put(v, new CellAndSpan()); |
| sortedViews.add(v); |
| } |
| |
| int area() { |
| return dragViewSpanX * dragViewSpanY; |
| } |
| } |
| |
| private class CellAndSpan { |
| int x, y; |
| int spanX, spanY; |
| |
| public CellAndSpan() { |
| } |
| |
| public void copy(CellAndSpan copy) { |
| copy.x = x; |
| copy.y = y; |
| copy.spanX = spanX; |
| copy.spanY = spanY; |
| } |
| |
| public CellAndSpan(int x, int y, int spanX, int spanY) { |
| this.x = x; |
| this.y = y; |
| this.spanX = spanX; |
| this.spanY = spanY; |
| } |
| |
| public String toString() { |
| return "(" + x + ", " + y + ": " + spanX + ", " + spanY + ")"; |
| } |
| |
| } |
| |
| /** |
| * Find a vacant area that will fit the given bounds nearest the requested |
| * cell location. Uses Euclidean distance to score multiple vacant areas. |
| * |
| * @param pixelX The X location at which you want to search for a vacant area. |
| * @param pixelY The Y location at which you want to search for a vacant area. |
| * @param spanX Horizontal span of the object. |
| * @param spanY Vertical span of the object. |
| * @param ignoreView Considers space occupied by this view as unoccupied |
| * @param result Previously returned value to possibly recycle. |
| * @return The X, Y cell of a vacant area that can contain this object, |
| * nearest the requested location. |
| */ |
| int[] findNearestVacantArea( |
| int pixelX, int pixelY, int spanX, int spanY, View ignoreView, int[] result) { |
| return findNearestArea(pixelX, pixelY, spanX, spanY, ignoreView, true, result); |
| } |
| |
| /** |
| * Find a vacant area that will fit the given bounds nearest the requested |
| * cell location. Uses Euclidean distance to score multiple vacant areas. |
| * |
| * @param pixelX The X location at which you want to search for a vacant area. |
| * @param pixelY The Y location at which you want to search for a vacant area. |
| * @param minSpanX The minimum horizontal span required |
| * @param minSpanY The minimum vertical span required |
| * @param spanX Horizontal span of the object. |
| * @param spanY Vertical span of the object. |
| * @param ignoreView Considers space occupied by this view as unoccupied |
| * @param result Previously returned value to possibly recycle. |
| * @return The X, Y cell of a vacant area that can contain this object, |
| * nearest the requested location. |
| */ |
| int[] findNearestVacantArea(int pixelX, int pixelY, int minSpanX, int minSpanY, |
| int spanX, int spanY, View ignoreView, int[] result, int[] resultSpan) { |
| return findNearestArea(pixelX, pixelY, minSpanX, minSpanY, spanX, spanY, ignoreView, true, |
| result, resultSpan, mOccupied); |
| } |
| |
| /** |
| * Find a starting cell position that will fit the given bounds nearest the requested |
| * cell location. Uses Euclidean distance to score multiple vacant areas. |
| * |
| * @param pixelX The X location at which you want to search for a vacant area. |
| * @param pixelY The Y location at which you want to search for a vacant area. |
| * @param spanX Horizontal span of the object. |
| * @param spanY Vertical span of the object. |
| * @param ignoreView Considers space occupied by this view as unoccupied |
| * @param result Previously returned value to possibly recycle. |
| * @return The X, Y cell of a vacant area that can contain this object, |
| * nearest the requested location. |
| */ |
| int[] findNearestArea( |
| int pixelX, int pixelY, int spanX, int spanY, int[] result) { |
| return findNearestArea(pixelX, pixelY, spanX, spanY, null, false, result); |
| } |
| |
| boolean existsEmptyCell() { |
| return findCellForSpan(null, 1, 1); |
| } |
| |
| /** |
| * Finds the upper-left coordinate of the first rectangle in the grid that can |
| * hold a cell of the specified dimensions. If intersectX and intersectY are not -1, |
| * then this method will only return coordinates for rectangles that contain the cell |
| * (intersectX, intersectY) |
| * |
| * @param cellXY The array that will contain the position of a vacant cell if such a cell |
| * can be found. |
| * @param spanX The horizontal span of the cell we want to find. |
| * @param spanY The vertical span of the cell we want to find. |
| * |
| * @return True if a vacant cell of the specified dimension was found, false otherwise. |
| */ |
| boolean findCellForSpan(int[] cellXY, int spanX, int spanY) { |
| return findCellForSpanThatIntersectsIgnoring(cellXY, spanX, spanY, -1, -1, null, mOccupied); |
| } |
| |
| /** |
| * Like above, but ignores any cells occupied by the item "ignoreView" |
| * |
| * @param cellXY The array that will contain the position of a vacant cell if such a cell |
| * can be found. |
| * @param spanX The horizontal span of the cell we want to find. |
| * @param spanY The vertical span of the cell we want to find. |
| * @param ignoreView The home screen item we should treat as not occupying any space |
| * @return |
| */ |
| boolean findCellForSpanIgnoring(int[] cellXY, int spanX, int spanY, View ignoreView) { |
| return findCellForSpanThatIntersectsIgnoring(cellXY, spanX, spanY, -1, -1, |
| ignoreView, mOccupied); |
| } |
| |
| /** |
| * Like above, but if intersectX and intersectY are not -1, then this method will try to |
| * return coordinates for rectangles that contain the cell [intersectX, intersectY] |
| * |
| * @param spanX The horizontal span of the cell we want to find. |
| * @param spanY The vertical span of the cell we want to find. |
| * @param ignoreView The home screen item we should treat as not occupying any space |
| * @param intersectX The X coordinate of the cell that we should try to overlap |
| * @param intersectX The Y coordinate of the cell that we should try to overlap |
| * |
| * @return True if a vacant cell of the specified dimension was found, false otherwise. |
| */ |
| boolean findCellForSpanThatIntersects(int[] cellXY, int spanX, int spanY, |
| int intersectX, int intersectY) { |
| return findCellForSpanThatIntersectsIgnoring( |
| cellXY, spanX, spanY, intersectX, intersectY, null, mOccupied); |
| } |
| |
| /** |
| * The superset of the above two methods |
| */ |
| boolean findCellForSpanThatIntersectsIgnoring(int[] cellXY, int spanX, int spanY, |
| int intersectX, int intersectY, View ignoreView, boolean occupied[][]) { |
| // mark space take by ignoreView as available (method checks if ignoreView is null) |
| markCellsAsUnoccupiedForView(ignoreView, occupied); |
| |
| boolean foundCell = false; |
| while (true) { |
| int startX = 0; |
| if (intersectX >= 0) { |
| startX = Math.max(startX, intersectX - (spanX - 1)); |
| } |
| int endX = mCountX - (spanX - 1); |
| if (intersectX >= 0) { |
| endX = Math.min(endX, intersectX + (spanX - 1) + (spanX == 1 ? 1 : 0)); |
| } |
| int startY = 0; |
| if (intersectY >= 0) { |
| startY = Math.max(startY, intersectY - (spanY - 1)); |
| } |
| int endY = mCountY - (spanY - 1); |
| if (intersectY >= 0) { |
| endY = Math.min(endY, intersectY + (spanY - 1) + (spanY == 1 ? 1 : 0)); |
| } |
| |
| for (int y = startY; y < endY && !foundCell; y++) { |
| inner: |
| for (int x = startX; x < endX; x++) { |
| for (int i = 0; i < spanX; i++) { |
| for (int j = 0; j < spanY; j++) { |
| if (occupied[x + i][y + j]) { |
| // small optimization: we can skip to after the column we just found |
| // an occupied cell |
| x += i; |
| continue inner; |
| } |
| } |
| } |
| if (cellXY != null) { |
| cellXY[0] = x; |
| cellXY[1] = y; |
| } |
| foundCell = true; |
| break; |
| } |
| } |
| if (intersectX == -1 && intersectY == -1) { |
| break; |
| } else { |
| // if we failed to find anything, try again but without any requirements of |
| // intersecting |
| intersectX = -1; |
| intersectY = -1; |
| continue; |
| } |
| } |
| |
| // re-mark space taken by ignoreView as occupied |
| markCellsAsOccupiedForView(ignoreView, occupied); |
| return foundCell; |
| } |
| |
| /** |
| * A drag event has begun over this layout. |
| * It may have begun over this layout (in which case onDragChild is called first), |
| * or it may have begun on another layout. |
| */ |
| void onDragEnter() { |
| mDragEnforcer.onDragEnter(); |
| mDragging = true; |
| } |
| |
| /** |
| * Called when drag has left this CellLayout or has been completed (successfully or not) |
| */ |
| void onDragExit() { |
| mDragEnforcer.onDragExit(); |
| // This can actually be called when we aren't in a drag, e.g. when adding a new |
| // item to this layout via the customize drawer. |
| // Guard against that case. |
| if (mDragging) { |
| mDragging = false; |
| } |
| |
| // Invalidate the drag data |
| mDragCell[0] = mDragCell[1] = -1; |
| mDragOutlineAnims[mDragOutlineCurrent].animateOut(); |
| mDragOutlineCurrent = (mDragOutlineCurrent + 1) % mDragOutlineAnims.length; |
| revertTempState(); |
| setIsDragOverlapping(false); |
| } |
| |
| /** |
| * Mark a child as having been dropped. |
| * At the beginning of the drag operation, the child may have been on another |
| * screen, but it is re-parented before this method is called. |
| * |
| * @param child The child that is being dropped |
| */ |
| void onDropChild(View child) { |
| if (child != null) { |
| LayoutParams lp = (LayoutParams) child.getLayoutParams(); |
| lp.dropped = true; |
| child.requestLayout(); |
| } |
| } |
| |
| /** |
| * Computes a bounding rectangle for a range of cells |
| * |
| * @param cellX X coordinate of upper left corner expressed as a cell position |
| * @param cellY Y coordinate of upper left corner expressed as a cell position |
| * @param cellHSpan Width in cells |
| * @param cellVSpan Height in cells |
| * @param resultRect Rect into which to put the results |
| */ |
| public void cellToRect(int cellX, int cellY, int cellHSpan, int cellVSpan, Rect resultRect) { |
| final int cellWidth = mCellWidth; |
| final int cellHeight = mCellHeight; |
| final int widthGap = mWidthGap; |
| final int heightGap = mHeightGap; |
| |
| final int hStartPadding = getPaddingLeft(); |
| final int vStartPadding = getPaddingTop(); |
| |
| int width = cellHSpan * cellWidth + ((cellHSpan - 1) * widthGap); |
| int height = cellVSpan * cellHeight + ((cellVSpan - 1) * heightGap); |
| |
| int x = hStartPadding + cellX * (cellWidth + widthGap); |
| int y = vStartPadding + cellY * (cellHeight + heightGap); |
| |
| resultRect.set(x, y, x + width, y + height); |
| } |
| |
| /** |
| * Computes the required horizontal and vertical cell spans to always |
| * fit the given rectangle. |
| * |
| * @param width Width in pixels |
| * @param height Height in pixels |
| * @param result An array of length 2 in which to store the result (may be null). |
| */ |
| public int[] rectToCell(int width, int height, int[] result) { |
| return rectToCell(getResources(), width, height, result); |
| } |
| |
| public static int[] rectToCell(Resources resources, int width, int height, int[] result) { |
| // Always assume we're working with the smallest span to make sure we |
| // reserve enough space in both orientations. |
| int actualWidth = resources.getDimensionPixelSize(R.dimen.workspace_cell_width); |
| int actualHeight = resources.getDimensionPixelSize(R.dimen.workspace_cell_height); |
| int smallerSize = Math.min(actualWidth, actualHeight); |
| |
| // Always round up to next largest cell |
| int spanX = (int) Math.ceil(width / (float) smallerSize); |
| int spanY = (int) Math.ceil(height / (float) smallerSize); |
| |
| if (result == null) { |
| return new int[] { spanX, spanY }; |
| } |
| result[0] = spanX; |
| result[1] = spanY; |
| return result; |
| } |
| |
| public int[] cellSpansToSize(int hSpans, int vSpans) { |
| int[] size = new int[2]; |
| size[0] = hSpans * mCellWidth + (hSpans - 1) * mWidthGap; |
| size[1] = vSpans * mCellHeight + (vSpans - 1) * mHeightGap; |
| return size; |
| } |
| |
| /** |
| * Calculate the grid spans needed to fit given item |
| */ |
| public void calculateSpans(ItemInfo info) { |
| final int minWidth; |
| final int minHeight; |
| |
| if (info instanceof LauncherAppWidgetInfo) { |
| minWidth = ((LauncherAppWidgetInfo) info).minWidth; |
| minHeight = ((LauncherAppWidgetInfo) info).minHeight; |
| } else if (info instanceof PendingAddWidgetInfo) { |
| minWidth = ((PendingAddWidgetInfo) info).minWidth; |
| minHeight = ((PendingAddWidgetInfo) info).minHeight; |
| } else { |
| // It's not a widget, so it must be 1x1 |
| info.spanX = info.spanY = 1; |
| return; |
| } |
| int[] spans = rectToCell(minWidth, minHeight, null); |
| info.spanX = spans[0]; |
| info.spanY = spans[1]; |
| } |
| |
| /** |
| * Find the first vacant cell, if there is one. |
| * |
| * @param vacant Holds the x and y coordinate of the vacant cell |
| * @param spanX Horizontal cell span. |
| * @param spanY Vertical cell span. |
| * |
| * @return True if a vacant cell was found |
| */ |
| public boolean getVacantCell(int[] vacant, int spanX, int spanY) { |
| |
| return findVacantCell(vacant, spanX, spanY, mCountX, mCountY, mOccupied); |
| } |
| |
| static boolean findVacantCell(int[] vacant, int spanX, int spanY, |
| int xCount, int yCount, boolean[][] occupied) { |
| |
| for (int y = 0; y < yCount; y++) { |
| for (int x = 0; x < xCount; x++) { |
| boolean available = !occupied[x][y]; |
| out: for (int i = x; i < x + spanX - 1 && x < xCount; i++) { |
| for (int j = y; j < y + spanY - 1 && y < yCount; j++) { |
| available = available && !occupied[i][j]; |
| if (!available) break out; |
| } |
| } |
| |
| if (available) { |
| vacant[0] = x; |
| vacant[1] = y; |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| private void clearOccupiedCells() { |
| for (int x = 0; x < mCountX; x++) { |
| for (int y = 0; y < mCountY; y++) { |
| mOccupied[x][y] = false; |
| } |
| } |
| } |
| |
| public void onMove(View view, int newCellX, int newCellY, int newSpanX, int newSpanY) { |
| markCellsAsUnoccupiedForView(view); |
| markCellsForView(newCellX, newCellY, newSpanX, newSpanY, mOccupied, true); |
| } |
| |
| public void markCellsAsOccupiedForView(View view) { |
| markCellsAsOccupiedForView(view, mOccupied); |
| } |
| public void markCellsAsOccupiedForView(View view, boolean[][] occupied) { |
| if (view == null || view.getParent() != mShortcutsAndWidgets) return; |
| LayoutParams lp = (LayoutParams) view.getLayoutParams(); |
| markCellsForView(lp.cellX, lp.cellY, lp.cellHSpan, lp.cellVSpan, occupied, true); |
| } |
| |
| public void markCellsAsUnoccupiedForView(View view) { |
| markCellsAsUnoccupiedForView(view, mOccupied); |
| } |
| public void markCellsAsUnoccupiedForView(View view, boolean occupied[][]) { |
| if (view == null || view.getParent() != mShortcutsAndWidgets) return; |
| LayoutParams lp = (LayoutParams) view.getLayoutParams(); |
| markCellsForView(lp.cellX, lp.cellY, lp.cellHSpan, lp.cellVSpan, occupied, false); |
| } |
| |
| private void markCellsForView(int cellX, int cellY, int spanX, int spanY, boolean[][] occupied, |
| boolean value) { |
| if (cellX < 0 || cellY < 0) return; |
| for (int x = cellX; x < cellX + spanX && x < mCountX; x++) { |
| for (int y = cellY; y < cellY + spanY && y < mCountY; y++) { |
| occupied[x][y] = value; |
| } |
| } |
| } |
| |
| public int getDesiredWidth() { |
| return getPaddingLeft() + getPaddingRight() + (mCountX * mCellWidth) + |
| (Math.max((mCountX - 1), 0) * mWidthGap); |
| } |
| |
| public int getDesiredHeight() { |
| return getPaddingTop() + getPaddingBottom() + (mCountY * mCellHeight) + |
| (Math.max((mCountY - 1), 0) * mHeightGap); |
| } |
| |
| public boolean isOccupied(int x, int y) { |
| if (x < mCountX && y < mCountY) { |
| return mOccupied[x][y]; |
| } else { |
| throw new RuntimeException("Position exceeds the bound of this CellLayout"); |
| } |
| } |
| |
| @Override |
| public ViewGroup.LayoutParams generateLayoutParams(AttributeSet attrs) { |
| return new CellLayout.LayoutParams(getContext(), attrs); |
| } |
| |
| @Override |
| protected boolean checkLayoutParams(ViewGroup.LayoutParams p) { |
| return p instanceof CellLayout.LayoutParams; |
| } |
| |
| @Override |
| protected ViewGroup.LayoutParams generateLayoutParams(ViewGroup.LayoutParams p) { |
| return new CellLayout.LayoutParams(p); |
| } |
| |
| public static class CellLayoutAnimationController extends LayoutAnimationController { |
| public CellLayoutAnimationController(Animation animation, float delay) { |
| super(animation, delay); |
| } |
| |
| @Override |
| protected long getDelayForView(View view) { |
| return (int) (Math.random() * 150); |
| } |
| } |
| |
| public static class LayoutParams extends ViewGroup.MarginLayoutParams { |
| /** |
| * Horizontal location of the item in the grid. |
| */ |
| @ViewDebug.ExportedProperty |
| public int cellX; |
| |
| /** |
| * Vertical location of the item in the grid. |
| */ |
| @ViewDebug.ExportedProperty |
| public int cellY; |
| |
| /** |
| * Temporary horizontal location of the item in the grid during reorder |
| */ |
| public int tmpCellX; |
| |
| /** |
| * Temporary vertical location of the item in the grid during reorder |
| */ |
| public int tmpCellY; |
| |
| /** |
| * Indicates that the temporary coordinates should be used to layout the items |
| */ |
| public boolean useTmpCoords; |
| |
| /** |
| * Number of cells spanned horizontally by the item. |
| */ |
| @ViewDebug.ExportedProperty |
| public int cellHSpan; |
| |
| /** |
| * Number of cells spanned vertically by the item. |
| */ |
| @ViewDebug.ExportedProperty |
| public int cellVSpan; |
| |
| /** |
| * Indicates whether the item will set its x, y, width and height parameters freely, |
| * or whether these will be computed based on cellX, cellY, cellHSpan and cellVSpan. |
| */ |
| public boolean isLockedToGrid = true; |
| |
| /** |
| * Indicates whether this item can be reordered. Always true except in the case of the |
| * the AllApps button. |
| */ |
| public boolean canReorder = true; |
| |
| // X coordinate of the view in the layout. |
| @ViewDebug.ExportedProperty |
| int x; |
| // Y coordinate of the view in the layout. |
| @ViewDebug.ExportedProperty |
| int y; |
| |
| boolean dropped; |
| |
| public LayoutParams(Context c, AttributeSet attrs) { |
| super(c, attrs); |
| cellHSpan = 1; |
| cellVSpan = 1; |
| } |
| |
| public LayoutParams(ViewGroup.LayoutParams source) { |
| super(source); |
| cellHSpan = 1; |
| cellVSpan = 1; |
| } |
| |
| public LayoutParams(LayoutParams source) { |
| super(source); |
| this.cellX = source.cellX; |
| this.cellY = source.cellY; |
| this.cellHSpan = source.cellHSpan; |
| this.cellVSpan = source.cellVSpan; |
| } |
| |
| public LayoutParams(int cellX, int cellY, int cellHSpan, int cellVSpan) { |
| super(LayoutParams.MATCH_PARENT, LayoutParams.MATCH_PARENT); |
| this.cellX = cellX; |
| this.cellY = cellY; |
| this.cellHSpan = cellHSpan; |
| this.cellVSpan = cellVSpan; |
| } |
| |
| public void setup(int cellWidth, int cellHeight, int widthGap, int heightGap, |
| boolean invertHorizontally, int colCount) { |
| if (isLockedToGrid) { |
| final int myCellHSpan = cellHSpan; |
| final int myCellVSpan = cellVSpan; |
| int myCellX = useTmpCoords ? tmpCellX : cellX; |
| int myCellY = useTmpCoords ? tmpCellY : cellY; |
| |
| if (invertHorizontally) { |
| myCellX = colCount - myCellX - cellHSpan; |
| } |
| |
| width = myCellHSpan * cellWidth + ((myCellHSpan - 1) * widthGap) - |
| leftMargin - rightMargin; |
| height = myCellVSpan * cellHeight + ((myCellVSpan - 1) * heightGap) - |
| topMargin - bottomMargin; |
| x = (int) (myCellX * (cellWidth + widthGap) + leftMargin); |
| y = (int) (myCellY * (cellHeight + heightGap) + topMargin); |
| } |
| } |
| |
| public String toString() { |
| return "(" + this.cellX + ", " + this.cellY + ")"; |
| } |
| |
| public void setWidth(int width) { |
| this.width = width; |
| } |
| |
| public int getWidth() { |
| return width; |
| } |
| |
| public void setHeight(int height) { |
| this.height = height; |
| } |
| |
| public int getHeight() { |
| return height; |
| } |
| |
| public void setX(int x) { |
| this.x = x; |
| } |
| |
| public int getX() { |
| return x; |
| } |
| |
| public void setY(int y) { |
| this.y = y; |
| } |
| |
| public int getY() { |
| return y; |
| } |
| } |
| |
| // This class stores info for two purposes: |
| // 1. When dragging items (mDragInfo in Workspace), we store the View, its cellX & cellY, |
| // its spanX, spanY, and the screen it is on |
| // 2. When long clicking on an empty cell in a CellLayout, we save information about the |
| // cellX and cellY coordinates and which page was clicked. We then set this as a tag on |
| // the CellLayout that was long clicked |
| static final class CellInfo { |
| View cell; |
| int cellX = -1; |
| int cellY = -1; |
| int spanX; |
| int spanY; |
| int screen; |
| long container; |
| |
| @Override |
| public String toString() { |
| return "Cell[view=" + (cell == null ? "null" : cell.getClass()) |
| + ", x=" + cellX + ", y=" + cellY + "]"; |
| } |
| } |
| |
| public boolean lastDownOnOccupiedCell() { |
| return mLastDownOnOccupiedCell; |
| } |
| } |