| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef LATINIME_BINARY_FORMAT_H |
| #define LATINIME_BINARY_FORMAT_H |
| |
| #include <cstdlib> |
| #include <map> |
| #include <stdint.h> |
| |
| #include "bloom_filter.h" |
| #include "char_utils.h" |
| #include "hash_map_compat.h" |
| |
| namespace latinime { |
| |
| class BinaryFormat { |
| public: |
| // Mask and flags for children address type selection. |
| static const int MASK_GROUP_ADDRESS_TYPE = 0xC0; |
| |
| // Flag for single/multiple char group |
| static const int FLAG_HAS_MULTIPLE_CHARS = 0x20; |
| |
| // Flag for terminal groups |
| static const int FLAG_IS_TERMINAL = 0x10; |
| |
| // Flag for shortcut targets presence |
| static const int FLAG_HAS_SHORTCUT_TARGETS = 0x08; |
| // Flag for bigram presence |
| static const int FLAG_HAS_BIGRAMS = 0x04; |
| // Flag for non-words (typically, shortcut only entries) |
| static const int FLAG_IS_NOT_A_WORD = 0x02; |
| // Flag for blacklist |
| static const int FLAG_IS_BLACKLISTED = 0x01; |
| |
| // Attribute (bigram/shortcut) related flags: |
| // Flag for presence of more attributes |
| static const int FLAG_ATTRIBUTE_HAS_NEXT = 0x80; |
| // Flag for sign of offset. If this flag is set, the offset value must be negated. |
| static const int FLAG_ATTRIBUTE_OFFSET_NEGATIVE = 0x40; |
| |
| // Mask for attribute probability, stored on 4 bits inside the flags byte. |
| static const int MASK_ATTRIBUTE_PROBABILITY = 0x0F; |
| // The numeric value of the shortcut probability that means 'whitelist'. |
| static const int WHITELIST_SHORTCUT_PROBABILITY = 15; |
| |
| // Mask and flags for attribute address type selection. |
| static const int MASK_ATTRIBUTE_ADDRESS_TYPE = 0x30; |
| |
| static const int UNKNOWN_FORMAT = -1; |
| static const int SHORTCUT_LIST_SIZE_SIZE = 2; |
| |
| static int detectFormat(const uint8_t *const dict); |
| static int getHeaderSize(const uint8_t *const dict); |
| static int getFlags(const uint8_t *const dict); |
| static bool hasBlacklistedOrNotAWordFlag(const int flags); |
| static void readHeaderValue(const uint8_t *const dict, const char *const key, int *outValue, |
| const int outValueSize); |
| static int readHeaderValueInt(const uint8_t *const dict, const char *const key); |
| static int getGroupCountAndForwardPointer(const uint8_t *const dict, int *pos); |
| static uint8_t getFlagsAndForwardPointer(const uint8_t *const dict, int *pos); |
| static int getCodePointAndForwardPointer(const uint8_t *const dict, int *pos); |
| static int readProbabilityWithoutMovingPointer(const uint8_t *const dict, const int pos); |
| static int skipOtherCharacters(const uint8_t *const dict, const int pos); |
| static int skipChildrenPosition(const uint8_t flags, const int pos); |
| static int skipProbability(const uint8_t flags, const int pos); |
| static int skipShortcuts(const uint8_t *const dict, const uint8_t flags, const int pos); |
| static int skipChildrenPosAndAttributes(const uint8_t *const dict, const uint8_t flags, |
| const int pos); |
| static int readChildrenPosition(const uint8_t *const dict, const uint8_t flags, const int pos); |
| static bool hasChildrenInFlags(const uint8_t flags); |
| static int getAttributeAddressAndForwardPointer(const uint8_t *const dict, const uint8_t flags, |
| int *pos); |
| static int getAttributeProbabilityFromFlags(const int flags); |
| static int getTerminalPosition(const uint8_t *const root, const int *const inWord, |
| const int length, const bool forceLowerCaseSearch); |
| static int getWordAtAddress(const uint8_t *const root, const int address, const int maxDepth, |
| int *outWord, int *outUnigramProbability); |
| static int computeProbabilityForBigram( |
| const int unigramProbability, const int bigramProbability); |
| static int getProbability(const int position, const std::map<int, int> *bigramMap, |
| const uint8_t *bigramFilter, const int unigramProbability); |
| static int getBigramProbabilityFromHashMap(const int position, |
| const hash_map_compat<int, int> *bigramMap, const int unigramProbability); |
| static float getMultiWordCostMultiplier(const uint8_t *const dict); |
| static void fillBigramProbabilityToHashMap(const uint8_t *const root, int position, |
| hash_map_compat<int, int> *bigramMap); |
| static int getBigramProbability(const uint8_t *const root, int position, |
| const int nextPosition, const int unigramProbability); |
| |
| // Flags for special processing |
| // Those *must* match the flags in makedict (BinaryDictInputOutput#*_PROCESSING_FLAG) or |
| // something very bad (like, the apocalypse) will happen. Please update both at the same time. |
| enum { |
| REQUIRES_GERMAN_UMLAUT_PROCESSING = 0x1, |
| REQUIRES_FRENCH_LIGATURES_PROCESSING = 0x4 |
| }; |
| |
| private: |
| DISALLOW_IMPLICIT_CONSTRUCTORS(BinaryFormat); |
| static int getBigramListPositionForWordPosition(const uint8_t *const root, int position); |
| |
| static const int FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = 0x00; |
| static const int FLAG_GROUP_ADDRESS_TYPE_ONEBYTE = 0x40; |
| static const int FLAG_GROUP_ADDRESS_TYPE_TWOBYTES = 0x80; |
| static const int FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = 0xC0; |
| static const int FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE = 0x10; |
| static const int FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES = 0x20; |
| static const int FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES = 0x30; |
| |
| // Originally, format version 1 had a 16-bit magic number, then the version number `01' |
| // then options that must be 0. Hence the first 32-bits of the format are always as follow |
| // and it's okay to consider them a magic number as a whole. |
| static const int FORMAT_VERSION_1_MAGIC_NUMBER = 0x78B10100; |
| static const int FORMAT_VERSION_1_HEADER_SIZE = 5; |
| // The versions of Latin IME that only handle format version 1 only test for the magic |
| // number, so we had to change it so that version 2 files would be rejected by older |
| // implementations. On this occasion, we made the magic number 32 bits long. |
| static const int FORMAT_VERSION_2_MAGIC_NUMBER = -1681835266; // 0x9BC13AFE |
| |
| static const int CHARACTER_ARRAY_TERMINATOR_SIZE = 1; |
| static const int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20; |
| static const int CHARACTER_ARRAY_TERMINATOR = 0x1F; |
| static const int MULTIPLE_BYTE_CHARACTER_ADDITIONAL_SIZE = 2; |
| static const int NO_FLAGS = 0; |
| static int skipAllAttributes(const uint8_t *const dict, const uint8_t flags, const int pos); |
| static int skipBigrams(const uint8_t *const dict, const uint8_t flags, const int pos); |
| }; |
| |
| AK_FORCE_INLINE int BinaryFormat::detectFormat(const uint8_t *const dict) { |
| // The magic number is stored big-endian. |
| const int magicNumber = (dict[0] << 24) + (dict[1] << 16) + (dict[2] << 8) + dict[3]; |
| switch (magicNumber) { |
| case FORMAT_VERSION_1_MAGIC_NUMBER: |
| // Format 1 header is exactly 5 bytes long and looks like: |
| // Magic number (2 bytes) 0x78 0xB1 |
| // Version number (1 byte) 0x01 |
| // Options (2 bytes) must be 0x00 0x00 |
| return 1; |
| case FORMAT_VERSION_2_MAGIC_NUMBER: |
| // Format 2 header is as follows: |
| // Magic number (4 bytes) 0x9B 0xC1 0x3A 0xFE |
| // Version number (2 bytes) 0x00 0x02 |
| // Options (2 bytes) |
| // Header size (4 bytes) : integer, big endian |
| return (dict[4] << 8) + dict[5]; |
| default: |
| return UNKNOWN_FORMAT; |
| } |
| } |
| |
| inline int BinaryFormat::getFlags(const uint8_t *const dict) { |
| switch (detectFormat(dict)) { |
| case 1: |
| return NO_FLAGS; // TODO: NO_FLAGS is unused anywhere else? |
| default: |
| return (dict[6] << 8) + dict[7]; |
| } |
| } |
| |
| inline bool BinaryFormat::hasBlacklistedOrNotAWordFlag(const int flags) { |
| return (flags & (FLAG_IS_BLACKLISTED | FLAG_IS_NOT_A_WORD)) != 0; |
| } |
| |
| inline int BinaryFormat::getHeaderSize(const uint8_t *const dict) { |
| switch (detectFormat(dict)) { |
| case 1: |
| return FORMAT_VERSION_1_HEADER_SIZE; |
| case 2: |
| // See the format of the header in the comment in detectFormat() above |
| return (dict[8] << 24) + (dict[9] << 16) + (dict[10] << 8) + dict[11]; |
| default: |
| return S_INT_MAX; |
| } |
| } |
| |
| inline void BinaryFormat::readHeaderValue(const uint8_t *const dict, const char *const key, |
| int *outValue, const int outValueSize) { |
| int outValueIndex = 0; |
| // Only format 2 and above have header attributes as {key,value} string pairs. For prior |
| // formats, we just return an empty string, as if the key wasn't found. |
| if (2 <= detectFormat(dict)) { |
| const int headerOptionsOffset = 4 /* magic number */ |
| + 2 /* dictionary version */ + 2 /* flags */; |
| const int headerSize = |
| (dict[headerOptionsOffset] << 24) + (dict[headerOptionsOffset + 1] << 16) |
| + (dict[headerOptionsOffset + 2] << 8) + dict[headerOptionsOffset + 3]; |
| const int headerEnd = headerOptionsOffset + 4 + headerSize; |
| int index = headerOptionsOffset + 4; |
| while (index < headerEnd) { |
| int keyIndex = 0; |
| int codePoint = getCodePointAndForwardPointer(dict, &index); |
| while (codePoint != NOT_A_CODE_POINT) { |
| if (codePoint != key[keyIndex++]) { |
| break; |
| } |
| codePoint = getCodePointAndForwardPointer(dict, &index); |
| } |
| if (codePoint == NOT_A_CODE_POINT && key[keyIndex] == 0) { |
| // We found the key! Copy and return the value. |
| codePoint = getCodePointAndForwardPointer(dict, &index); |
| while (codePoint != NOT_A_CODE_POINT && outValueIndex < outValueSize) { |
| outValue[outValueIndex++] = codePoint; |
| codePoint = getCodePointAndForwardPointer(dict, &index); |
| } |
| // Finished copying. Break to go to the termination code. |
| break; |
| } |
| // We didn't find the key, skip the remainder of it and its value |
| while (codePoint != NOT_A_CODE_POINT) { |
| codePoint = getCodePointAndForwardPointer(dict, &index); |
| } |
| codePoint = getCodePointAndForwardPointer(dict, &index); |
| while (codePoint != NOT_A_CODE_POINT) { |
| codePoint = getCodePointAndForwardPointer(dict, &index); |
| } |
| } |
| // We couldn't find it - fall through and return an empty value. |
| } |
| // Put a terminator 0 if possible at all (always unless outValueSize is <= 0) |
| if (outValueIndex >= outValueSize) outValueIndex = outValueSize - 1; |
| if (outValueIndex >= 0) outValue[outValueIndex] = 0; |
| } |
| |
| inline int BinaryFormat::readHeaderValueInt(const uint8_t *const dict, const char *const key) { |
| const int bufferSize = LARGEST_INT_DIGIT_COUNT; |
| int intBuffer[bufferSize]; |
| char charBuffer[bufferSize]; |
| BinaryFormat::readHeaderValue(dict, key, intBuffer, bufferSize); |
| for (int i = 0; i < bufferSize; ++i) { |
| charBuffer[i] = intBuffer[i]; |
| } |
| // If not a number, return S_INT_MIN |
| if (!isdigit(charBuffer[0])) return S_INT_MIN; |
| return atoi(charBuffer); |
| } |
| |
| AK_FORCE_INLINE int BinaryFormat::getGroupCountAndForwardPointer(const uint8_t *const dict, |
| int *pos) { |
| const int msb = dict[(*pos)++]; |
| if (msb < 0x80) return msb; |
| return ((msb & 0x7F) << 8) | dict[(*pos)++]; |
| } |
| |
| inline float BinaryFormat::getMultiWordCostMultiplier(const uint8_t *const dict) { |
| const int headerValue = readHeaderValueInt(dict, "MULTIPLE_WORDS_DEMOTION_RATE"); |
| if (headerValue == S_INT_MIN) { |
| return 1.0f; |
| } |
| if (headerValue <= 0) { |
| return static_cast<float>(MAX_VALUE_FOR_WEIGHTING); |
| } |
| return 100.0f / static_cast<float>(headerValue); |
| } |
| |
| inline uint8_t BinaryFormat::getFlagsAndForwardPointer(const uint8_t *const dict, int *pos) { |
| return dict[(*pos)++]; |
| } |
| |
| AK_FORCE_INLINE int BinaryFormat::getCodePointAndForwardPointer(const uint8_t *const dict, |
| int *pos) { |
| const int origin = *pos; |
| const int codePoint = dict[origin]; |
| if (codePoint < MINIMAL_ONE_BYTE_CHARACTER_VALUE) { |
| if (codePoint == CHARACTER_ARRAY_TERMINATOR) { |
| *pos = origin + 1; |
| return NOT_A_CODE_POINT; |
| } else { |
| *pos = origin + 3; |
| const int char_1 = codePoint << 16; |
| const int char_2 = char_1 + (dict[origin + 1] << 8); |
| return char_2 + dict[origin + 2]; |
| } |
| } else { |
| *pos = origin + 1; |
| return codePoint; |
| } |
| } |
| |
| inline int BinaryFormat::readProbabilityWithoutMovingPointer(const uint8_t *const dict, |
| const int pos) { |
| return dict[pos]; |
| } |
| |
| AK_FORCE_INLINE int BinaryFormat::skipOtherCharacters(const uint8_t *const dict, const int pos) { |
| int currentPos = pos; |
| int character = dict[currentPos++]; |
| while (CHARACTER_ARRAY_TERMINATOR != character) { |
| if (character < MINIMAL_ONE_BYTE_CHARACTER_VALUE) { |
| currentPos += MULTIPLE_BYTE_CHARACTER_ADDITIONAL_SIZE; |
| } |
| character = dict[currentPos++]; |
| } |
| return currentPos; |
| } |
| |
| static inline int attributeAddressSize(const uint8_t flags) { |
| static const int ATTRIBUTE_ADDRESS_SHIFT = 4; |
| return (flags & BinaryFormat::MASK_ATTRIBUTE_ADDRESS_TYPE) >> ATTRIBUTE_ADDRESS_SHIFT; |
| /* Note: this is a value-dependant optimization of what may probably be |
| more readably written this way: |
| switch (flags * BinaryFormat::MASK_ATTRIBUTE_ADDRESS_TYPE) { |
| case FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE: return 1; |
| case FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES: return 2; |
| case FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTE: return 3; |
| default: return 0; |
| } |
| */ |
| } |
| |
| static AK_FORCE_INLINE int skipExistingBigrams(const uint8_t *const dict, const int pos) { |
| int currentPos = pos; |
| uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(dict, ¤tPos); |
| while (flags & BinaryFormat::FLAG_ATTRIBUTE_HAS_NEXT) { |
| currentPos += attributeAddressSize(flags); |
| flags = BinaryFormat::getFlagsAndForwardPointer(dict, ¤tPos); |
| } |
| currentPos += attributeAddressSize(flags); |
| return currentPos; |
| } |
| |
| static inline int childrenAddressSize(const uint8_t flags) { |
| static const int CHILDREN_ADDRESS_SHIFT = 6; |
| return (BinaryFormat::MASK_GROUP_ADDRESS_TYPE & flags) >> CHILDREN_ADDRESS_SHIFT; |
| /* See the note in attributeAddressSize. The same applies here */ |
| } |
| |
| static AK_FORCE_INLINE int shortcutByteSize(const uint8_t *const dict, const int pos) { |
| return (static_cast<int>(dict[pos] << 8)) + (dict[pos + 1]); |
| } |
| |
| inline int BinaryFormat::skipChildrenPosition(const uint8_t flags, const int pos) { |
| return pos + childrenAddressSize(flags); |
| } |
| |
| inline int BinaryFormat::skipProbability(const uint8_t flags, const int pos) { |
| return FLAG_IS_TERMINAL & flags ? pos + 1 : pos; |
| } |
| |
| AK_FORCE_INLINE int BinaryFormat::skipShortcuts(const uint8_t *const dict, const uint8_t flags, |
| const int pos) { |
| if (FLAG_HAS_SHORTCUT_TARGETS & flags) { |
| return pos + shortcutByteSize(dict, pos); |
| } else { |
| return pos; |
| } |
| } |
| |
| AK_FORCE_INLINE int BinaryFormat::skipBigrams(const uint8_t *const dict, const uint8_t flags, |
| const int pos) { |
| if (FLAG_HAS_BIGRAMS & flags) { |
| return skipExistingBigrams(dict, pos); |
| } else { |
| return pos; |
| } |
| } |
| |
| AK_FORCE_INLINE int BinaryFormat::skipAllAttributes(const uint8_t *const dict, const uint8_t flags, |
| const int pos) { |
| // This function skips all attributes: shortcuts and bigrams. |
| int newPos = pos; |
| newPos = skipShortcuts(dict, flags, newPos); |
| newPos = skipBigrams(dict, flags, newPos); |
| return newPos; |
| } |
| |
| AK_FORCE_INLINE int BinaryFormat::skipChildrenPosAndAttributes(const uint8_t *const dict, |
| const uint8_t flags, const int pos) { |
| int currentPos = pos; |
| currentPos = skipChildrenPosition(flags, currentPos); |
| currentPos = skipAllAttributes(dict, flags, currentPos); |
| return currentPos; |
| } |
| |
| AK_FORCE_INLINE int BinaryFormat::readChildrenPosition(const uint8_t *const dict, |
| const uint8_t flags, const int pos) { |
| int offset = 0; |
| switch (MASK_GROUP_ADDRESS_TYPE & flags) { |
| case FLAG_GROUP_ADDRESS_TYPE_ONEBYTE: |
| offset = dict[pos]; |
| break; |
| case FLAG_GROUP_ADDRESS_TYPE_TWOBYTES: |
| offset = dict[pos] << 8; |
| offset += dict[pos + 1]; |
| break; |
| case FLAG_GROUP_ADDRESS_TYPE_THREEBYTES: |
| offset = dict[pos] << 16; |
| offset += dict[pos + 1] << 8; |
| offset += dict[pos + 2]; |
| break; |
| default: |
| // If we come here, it means we asked for the children of a word with |
| // no children. |
| return -1; |
| } |
| return pos + offset; |
| } |
| |
| inline bool BinaryFormat::hasChildrenInFlags(const uint8_t flags) { |
| return (FLAG_GROUP_ADDRESS_TYPE_NOADDRESS != (MASK_GROUP_ADDRESS_TYPE & flags)); |
| } |
| |
| AK_FORCE_INLINE int BinaryFormat::getAttributeAddressAndForwardPointer(const uint8_t *const dict, |
| const uint8_t flags, int *pos) { |
| int offset = 0; |
| const int origin = *pos; |
| switch (MASK_ATTRIBUTE_ADDRESS_TYPE & flags) { |
| case FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE: |
| offset = dict[origin]; |
| *pos = origin + 1; |
| break; |
| case FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES: |
| offset = dict[origin] << 8; |
| offset += dict[origin + 1]; |
| *pos = origin + 2; |
| break; |
| case FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES: |
| offset = dict[origin] << 16; |
| offset += dict[origin + 1] << 8; |
| offset += dict[origin + 2]; |
| *pos = origin + 3; |
| break; |
| } |
| if (FLAG_ATTRIBUTE_OFFSET_NEGATIVE & flags) { |
| return origin - offset; |
| } else { |
| return origin + offset; |
| } |
| } |
| |
| inline int BinaryFormat::getAttributeProbabilityFromFlags(const int flags) { |
| return flags & MASK_ATTRIBUTE_PROBABILITY; |
| } |
| |
| // This function gets the byte position of the last chargroup of the exact matching word in the |
| // dictionary. If no match is found, it returns NOT_VALID_WORD. |
| AK_FORCE_INLINE int BinaryFormat::getTerminalPosition(const uint8_t *const root, |
| const int *const inWord, const int length, const bool forceLowerCaseSearch) { |
| int pos = 0; |
| int wordPos = 0; |
| |
| while (true) { |
| // If we already traversed the tree further than the word is long, there means |
| // there was no match (or we would have found it). |
| if (wordPos >= length) return NOT_VALID_WORD; |
| int charGroupCount = BinaryFormat::getGroupCountAndForwardPointer(root, &pos); |
| const int wChar = forceLowerCaseSearch ? toLowerCase(inWord[wordPos]) : inWord[wordPos]; |
| while (true) { |
| // If there are no more character groups in this node, it means we could not |
| // find a matching character for this depth, therefore there is no match. |
| if (0 >= charGroupCount) return NOT_VALID_WORD; |
| const int charGroupPos = pos; |
| const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos); |
| int character = BinaryFormat::getCodePointAndForwardPointer(root, &pos); |
| if (character == wChar) { |
| // This is the correct node. Only one character group may start with the same |
| // char within a node, so either we found our match in this node, or there is |
| // no match and we can return NOT_VALID_WORD. So we will check all the characters |
| // in this character group indeed does match. |
| if (FLAG_HAS_MULTIPLE_CHARS & flags) { |
| character = BinaryFormat::getCodePointAndForwardPointer(root, &pos); |
| while (NOT_A_CODE_POINT != character) { |
| ++wordPos; |
| // If we shoot the length of the word we search for, or if we find a single |
| // character that does not match, as explained above, it means the word is |
| // not in the dictionary (by virtue of this chargroup being the only one to |
| // match the word on the first character, but not matching the whole word). |
| if (wordPos >= length) return NOT_VALID_WORD; |
| if (inWord[wordPos] != character) return NOT_VALID_WORD; |
| character = BinaryFormat::getCodePointAndForwardPointer(root, &pos); |
| } |
| } |
| // If we come here we know that so far, we do match. Either we are on a terminal |
| // and we match the length, in which case we found it, or we traverse children. |
| // If we don't match the length AND don't have children, then a word in the |
| // dictionary fully matches a prefix of the searched word but not the full word. |
| ++wordPos; |
| if (FLAG_IS_TERMINAL & flags) { |
| if (wordPos == length) { |
| return charGroupPos; |
| } |
| pos = BinaryFormat::skipProbability(FLAG_IS_TERMINAL, pos); |
| } |
| if (FLAG_GROUP_ADDRESS_TYPE_NOADDRESS == (MASK_GROUP_ADDRESS_TYPE & flags)) { |
| return NOT_VALID_WORD; |
| } |
| // We have children and we are still shorter than the word we are searching for, so |
| // we need to traverse children. Put the pointer on the children position, and |
| // break |
| pos = BinaryFormat::readChildrenPosition(root, flags, pos); |
| break; |
| } else { |
| // This chargroup does not match, so skip the remaining part and go to the next. |
| if (FLAG_HAS_MULTIPLE_CHARS & flags) { |
| pos = BinaryFormat::skipOtherCharacters(root, pos); |
| } |
| pos = BinaryFormat::skipProbability(flags, pos); |
| pos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos); |
| } |
| --charGroupCount; |
| } |
| } |
| } |
| |
| // This function searches for a terminal in the dictionary by its address. |
| // Due to the fact that words are ordered in the dictionary in a strict breadth-first order, |
| // it is possible to check for this with advantageous complexity. For each node, we search |
| // for groups with children and compare the children address with the address we look for. |
| // When we shoot the address we look for, it means the word we look for is in the children |
| // of the previous group. The only tricky part is the fact that if we arrive at the end of a |
| // node with the last group's children address still less than what we are searching for, we |
| // must descend the last group's children (for example, if the word we are searching for starts |
| // with a z, it's the last group of the root node, so all children addresses will be smaller |
| // than the address we look for, and we have to descend the z node). |
| /* Parameters : |
| * root: the dictionary buffer |
| * address: the byte position of the last chargroup of the word we are searching for (this is |
| * what is stored as the "bigram address" in each bigram) |
| * outword: an array to write the found word, with MAX_WORD_LENGTH size. |
| * outUnigramProbability: a pointer to an int to write the probability into. |
| * Return value : the length of the word, of 0 if the word was not found. |
| */ |
| AK_FORCE_INLINE int BinaryFormat::getWordAtAddress(const uint8_t *const root, const int address, |
| const int maxDepth, int *outWord, int *outUnigramProbability) { |
| int pos = 0; |
| int wordPos = 0; |
| |
| // One iteration of the outer loop iterates through nodes. As stated above, we will only |
| // traverse nodes that are actually a part of the terminal we are searching, so each time |
| // we enter this loop we are one depth level further than last time. |
| // The only reason we count nodes is because we want to reduce the probability of infinite |
| // looping in case there is a bug. Since we know there is an upper bound to the depth we are |
| // supposed to traverse, it does not hurt to count iterations. |
| for (int loopCount = maxDepth; loopCount > 0; --loopCount) { |
| int lastCandidateGroupPos = 0; |
| // Let's loop through char groups in this node searching for either the terminal |
| // or one of its ascendants. |
| for (int charGroupCount = getGroupCountAndForwardPointer(root, &pos); charGroupCount > 0; |
| --charGroupCount) { |
| const int startPos = pos; |
| const uint8_t flags = getFlagsAndForwardPointer(root, &pos); |
| const int character = getCodePointAndForwardPointer(root, &pos); |
| if (address == startPos) { |
| // We found the address. Copy the rest of the word in the buffer and return |
| // the length. |
| outWord[wordPos] = character; |
| if (FLAG_HAS_MULTIPLE_CHARS & flags) { |
| int nextChar = getCodePointAndForwardPointer(root, &pos); |
| // We count chars in order to avoid infinite loops if the file is broken or |
| // if there is some other bug |
| int charCount = maxDepth; |
| while (NOT_A_CODE_POINT != nextChar && --charCount > 0) { |
| outWord[++wordPos] = nextChar; |
| nextChar = getCodePointAndForwardPointer(root, &pos); |
| } |
| } |
| *outUnigramProbability = readProbabilityWithoutMovingPointer(root, pos); |
| return ++wordPos; |
| } |
| // We need to skip past this char group, so skip any remaining chars after the |
| // first and possibly the probability. |
| if (FLAG_HAS_MULTIPLE_CHARS & flags) { |
| pos = skipOtherCharacters(root, pos); |
| } |
| pos = skipProbability(flags, pos); |
| |
| // The fact that this group has children is very important. Since we already know |
| // that this group does not match, if it has no children we know it is irrelevant |
| // to what we are searching for. |
| const bool hasChildren = (FLAG_GROUP_ADDRESS_TYPE_NOADDRESS != |
| (MASK_GROUP_ADDRESS_TYPE & flags)); |
| // We will write in `found' whether we have passed the children address we are |
| // searching for. For example if we search for "beer", the children of b are less |
| // than the address we are searching for and the children of c are greater. When we |
| // come here for c, we realize this is too big, and that we should descend b. |
| bool found; |
| if (hasChildren) { |
| // Here comes the tricky part. First, read the children position. |
| const int childrenPos = readChildrenPosition(root, flags, pos); |
| if (childrenPos > address) { |
| // If the children pos is greater than address, it means the previous chargroup, |
| // which address is stored in lastCandidateGroupPos, was the right one. |
| found = true; |
| } else if (1 >= charGroupCount) { |
| // However if we are on the LAST group of this node, and we have NOT shot the |
| // address we should descend THIS node. So we trick the lastCandidateGroupPos |
| // so that we will descend this node, not the previous one. |
| lastCandidateGroupPos = startPos; |
| found = true; |
| } else { |
| // Else, we should continue looking. |
| found = false; |
| } |
| } else { |
| // Even if we don't have children here, we could still be on the last group of this |
| // node. If this is the case, we should descend the last group that had children, |
| // and their address is already in lastCandidateGroup. |
| found = (1 >= charGroupCount); |
| } |
| |
| if (found) { |
| // Okay, we found the group we should descend. Its address is in |
| // the lastCandidateGroupPos variable, so we just re-read it. |
| if (0 != lastCandidateGroupPos) { |
| const uint8_t lastFlags = |
| getFlagsAndForwardPointer(root, &lastCandidateGroupPos); |
| const int lastChar = |
| getCodePointAndForwardPointer(root, &lastCandidateGroupPos); |
| // We copy all the characters in this group to the buffer |
| outWord[wordPos] = lastChar; |
| if (FLAG_HAS_MULTIPLE_CHARS & lastFlags) { |
| int nextChar = getCodePointAndForwardPointer(root, &lastCandidateGroupPos); |
| int charCount = maxDepth; |
| while (-1 != nextChar && --charCount > 0) { |
| outWord[++wordPos] = nextChar; |
| nextChar = getCodePointAndForwardPointer(root, &lastCandidateGroupPos); |
| } |
| } |
| ++wordPos; |
| // Now we only need to branch to the children address. Skip the probability if |
| // it's there, read pos, and break to resume the search at pos. |
| lastCandidateGroupPos = skipProbability(lastFlags, lastCandidateGroupPos); |
| pos = readChildrenPosition(root, lastFlags, lastCandidateGroupPos); |
| break; |
| } else { |
| // Here is a little tricky part: we come here if we found out that all children |
| // addresses in this group are bigger than the address we are searching for. |
| // Should we conclude the word is not in the dictionary? No! It could still be |
| // one of the remaining chargroups in this node, so we have to keep looking in |
| // this node until we find it (or we realize it's not there either, in which |
| // case it's actually not in the dictionary). Pass the end of this group, ready |
| // to start the next one. |
| pos = skipChildrenPosAndAttributes(root, flags, pos); |
| } |
| } else { |
| // If we did not find it, we should record the last children address for the next |
| // iteration. |
| if (hasChildren) lastCandidateGroupPos = startPos; |
| // Now skip the end of this group (children pos and the attributes if any) so that |
| // our pos is after the end of this char group, at the start of the next one. |
| pos = skipChildrenPosAndAttributes(root, flags, pos); |
| } |
| |
| } |
| } |
| // If we have looked through all the chargroups and found no match, the address is |
| // not the address of a terminal in this dictionary. |
| return 0; |
| } |
| |
| static inline int backoff(const int unigramProbability) { |
| return unigramProbability; |
| // For some reason, applying the backoff weight gives bad results in tests. To apply the |
| // backoff weight, we divide the probability by 2, which in our storing format means |
| // decreasing the score by 8. |
| // TODO: figure out what's wrong with this. |
| // return unigramProbability > 8 ? unigramProbability - 8 : (0 == unigramProbability ? 0 : 8); |
| } |
| |
| inline int BinaryFormat::computeProbabilityForBigram( |
| const int unigramProbability, const int bigramProbability) { |
| // We divide the range [unigramProbability..255] in 16.5 steps - in other words, we want the |
| // unigram probability to be the median value of the 17th step from the top. A value of |
| // 0 for the bigram probability represents the middle of the 16th step from the top, |
| // while a value of 15 represents the middle of the top step. |
| // See makedict.BinaryDictInputOutput for details. |
| const float stepSize = static_cast<float>(MAX_PROBABILITY - unigramProbability) |
| / (1.5f + MAX_BIGRAM_ENCODED_PROBABILITY); |
| return unigramProbability |
| + static_cast<int>(static_cast<float>(bigramProbability + 1) * stepSize); |
| } |
| |
| // This returns a probability in log space. |
| inline int BinaryFormat::getProbability(const int position, const std::map<int, int> *bigramMap, |
| const uint8_t *bigramFilter, const int unigramProbability) { |
| if (!bigramMap || !bigramFilter) return backoff(unigramProbability); |
| if (!isInFilter(bigramFilter, position)) return backoff(unigramProbability); |
| const std::map<int, int>::const_iterator bigramProbabilityIt = bigramMap->find(position); |
| if (bigramProbabilityIt != bigramMap->end()) { |
| const int bigramProbability = bigramProbabilityIt->second; |
| return computeProbabilityForBigram(unigramProbability, bigramProbability); |
| } |
| return backoff(unigramProbability); |
| } |
| |
| // This returns a probability in log space. |
| inline int BinaryFormat::getBigramProbabilityFromHashMap(const int position, |
| const hash_map_compat<int, int> *bigramMap, const int unigramProbability) { |
| if (!bigramMap) return backoff(unigramProbability); |
| const hash_map_compat<int, int>::const_iterator bigramProbabilityIt = bigramMap->find(position); |
| if (bigramProbabilityIt != bigramMap->end()) { |
| const int bigramProbability = bigramProbabilityIt->second; |
| return computeProbabilityForBigram(unigramProbability, bigramProbability); |
| } |
| return backoff(unigramProbability); |
| } |
| |
| AK_FORCE_INLINE void BinaryFormat::fillBigramProbabilityToHashMap( |
| const uint8_t *const root, int position, hash_map_compat<int, int> *bigramMap) { |
| position = getBigramListPositionForWordPosition(root, position); |
| if (0 == position) return; |
| |
| uint8_t bigramFlags; |
| do { |
| bigramFlags = getFlagsAndForwardPointer(root, &position); |
| const int probability = MASK_ATTRIBUTE_PROBABILITY & bigramFlags; |
| const int bigramPos = getAttributeAddressAndForwardPointer(root, bigramFlags, |
| &position); |
| (*bigramMap)[bigramPos] = probability; |
| } while (FLAG_ATTRIBUTE_HAS_NEXT & bigramFlags); |
| } |
| |
| AK_FORCE_INLINE int BinaryFormat::getBigramProbability(const uint8_t *const root, int position, |
| const int nextPosition, const int unigramProbability) { |
| position = getBigramListPositionForWordPosition(root, position); |
| if (0 == position) return backoff(unigramProbability); |
| |
| uint8_t bigramFlags; |
| do { |
| bigramFlags = getFlagsAndForwardPointer(root, &position); |
| const int bigramPos = getAttributeAddressAndForwardPointer( |
| root, bigramFlags, &position); |
| if (bigramPos == nextPosition) { |
| const int bigramProbability = MASK_ATTRIBUTE_PROBABILITY & bigramFlags; |
| return computeProbabilityForBigram(unigramProbability, bigramProbability); |
| } |
| } while (FLAG_ATTRIBUTE_HAS_NEXT & bigramFlags); |
| return backoff(unigramProbability); |
| } |
| |
| // Returns a pointer to the start of the bigram list. |
| AK_FORCE_INLINE int BinaryFormat::getBigramListPositionForWordPosition( |
| const uint8_t *const root, int position) { |
| if (NOT_VALID_WORD == position) return 0; |
| const uint8_t flags = getFlagsAndForwardPointer(root, &position); |
| if (!(flags & FLAG_HAS_BIGRAMS)) return 0; |
| if (flags & FLAG_HAS_MULTIPLE_CHARS) { |
| position = skipOtherCharacters(root, position); |
| } else { |
| getCodePointAndForwardPointer(root, &position); |
| } |
| position = skipProbability(flags, position); |
| position = skipChildrenPosition(flags, position); |
| position = skipShortcuts(root, flags, position); |
| return position; |
| } |
| |
| } // namespace latinime |
| #endif // LATINIME_BINARY_FORMAT_H |