| /* libs/pixelflinger/codeflinger/GGLAssembler.cpp |
| ** |
| ** Copyright 2006, The Android Open Source Project |
| ** |
| ** Licensed under the Apache License, Version 2.0 (the "License"); |
| ** you may not use this file except in compliance with the License. |
| ** You may obtain a copy of the License at |
| ** |
| ** http://www.apache.org/licenses/LICENSE-2.0 |
| ** |
| ** Unless required by applicable law or agreed to in writing, software |
| ** distributed under the License is distributed on an "AS IS" BASIS, |
| ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| ** See the License for the specific language governing permissions and |
| ** limitations under the License. |
| */ |
| |
| #define LOG_TAG "GGLAssembler" |
| |
| #include <assert.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <sys/types.h> |
| #include <cutils/log.h> |
| |
| #include "codeflinger/GGLAssembler.h" |
| |
| namespace android { |
| |
| // ---------------------------------------------------------------------------- |
| |
| GGLAssembler::GGLAssembler(ARMAssemblerInterface* target) |
| : ARMAssemblerProxy(target), |
| RegisterAllocator(ARMAssemblerProxy::getCodegenArch()), mOptLevel(7) |
| { |
| } |
| |
| GGLAssembler::~GGLAssembler() |
| { |
| } |
| |
| void GGLAssembler::prolog() |
| { |
| ARMAssemblerProxy::prolog(); |
| } |
| |
| void GGLAssembler::epilog(uint32_t touched) |
| { |
| ARMAssemblerProxy::epilog(touched); |
| } |
| |
| void GGLAssembler::reset(int opt_level) |
| { |
| ARMAssemblerProxy::reset(); |
| RegisterAllocator::reset(); |
| mOptLevel = opt_level; |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| int GGLAssembler::scanline(const needs_t& needs, context_t const* c) |
| { |
| int err = 0; |
| int opt_level = mOptLevel; |
| while (opt_level >= 0) { |
| reset(opt_level); |
| err = scanline_core(needs, c); |
| if (err == 0) |
| break; |
| opt_level--; |
| } |
| |
| // XXX: in theory, pcForLabel is not valid before generate() |
| uint32_t* fragment_start_pc = pcForLabel("fragment_loop"); |
| uint32_t* fragment_end_pc = pcForLabel("epilog"); |
| const int per_fragment_ops = int(fragment_end_pc - fragment_start_pc); |
| |
| // build a name for our pipeline |
| char name[64]; |
| sprintf(name, |
| "scanline__%08X:%08X_%08X_%08X [%3d ipp]", |
| needs.p, needs.n, needs.t[0], needs.t[1], per_fragment_ops); |
| |
| if (err) { |
| ALOGE("Error while generating ""%s""\n", name); |
| disassemble(name); |
| return -1; |
| } |
| |
| return generate(name); |
| } |
| |
| int GGLAssembler::scanline_core(const needs_t& needs, context_t const* c) |
| { |
| int64_t duration = ggl_system_time(); |
| |
| mBlendFactorCached = 0; |
| mBlending = 0; |
| mMasking = 0; |
| mAA = GGL_READ_NEEDS(P_AA, needs.p); |
| mDithering = GGL_READ_NEEDS(P_DITHER, needs.p); |
| mAlphaTest = GGL_READ_NEEDS(P_ALPHA_TEST, needs.p) + GGL_NEVER; |
| mDepthTest = GGL_READ_NEEDS(P_DEPTH_TEST, needs.p) + GGL_NEVER; |
| mFog = GGL_READ_NEEDS(P_FOG, needs.p) != 0; |
| mSmooth = GGL_READ_NEEDS(SHADE, needs.n) != 0; |
| mBuilderContext.needs = needs; |
| mBuilderContext.c = c; |
| mBuilderContext.Rctx = reserveReg(R0); // context always in R0 |
| mCbFormat = c->formats[ GGL_READ_NEEDS(CB_FORMAT, needs.n) ]; |
| |
| // ------------------------------------------------------------------------ |
| |
| decodeLogicOpNeeds(needs); |
| |
| decodeTMUNeeds(needs, c); |
| |
| mBlendSrc = ggl_needs_to_blendfactor(GGL_READ_NEEDS(BLEND_SRC, needs.n)); |
| mBlendDst = ggl_needs_to_blendfactor(GGL_READ_NEEDS(BLEND_DST, needs.n)); |
| mBlendSrcA = ggl_needs_to_blendfactor(GGL_READ_NEEDS(BLEND_SRCA, needs.n)); |
| mBlendDstA = ggl_needs_to_blendfactor(GGL_READ_NEEDS(BLEND_DSTA, needs.n)); |
| |
| if (!mCbFormat.c[GGLFormat::ALPHA].h) { |
| if ((mBlendSrc == GGL_ONE_MINUS_DST_ALPHA) || |
| (mBlendSrc == GGL_DST_ALPHA)) { |
| mBlendSrc = GGL_ONE; |
| } |
| if ((mBlendSrcA == GGL_ONE_MINUS_DST_ALPHA) || |
| (mBlendSrcA == GGL_DST_ALPHA)) { |
| mBlendSrcA = GGL_ONE; |
| } |
| if ((mBlendDst == GGL_ONE_MINUS_DST_ALPHA) || |
| (mBlendDst == GGL_DST_ALPHA)) { |
| mBlendDst = GGL_ONE; |
| } |
| if ((mBlendDstA == GGL_ONE_MINUS_DST_ALPHA) || |
| (mBlendDstA == GGL_DST_ALPHA)) { |
| mBlendDstA = GGL_ONE; |
| } |
| } |
| |
| // if we need the framebuffer, read it now |
| const int blending = blending_codes(mBlendSrc, mBlendDst) | |
| blending_codes(mBlendSrcA, mBlendDstA); |
| |
| // XXX: handle special cases, destination not modified... |
| if ((mBlendSrc==GGL_ZERO) && (mBlendSrcA==GGL_ZERO) && |
| (mBlendDst==GGL_ONE) && (mBlendDstA==GGL_ONE)) { |
| // Destination unmodified (beware of logic ops) |
| } else if ((mBlendSrc==GGL_ZERO) && (mBlendSrcA==GGL_ZERO) && |
| (mBlendDst==GGL_ZERO) && (mBlendDstA==GGL_ZERO)) { |
| // Destination is zero (beware of logic ops) |
| } |
| |
| int fbComponents = 0; |
| const int masking = GGL_READ_NEEDS(MASK_ARGB, needs.n); |
| for (int i=0 ; i<4 ; i++) { |
| const int mask = 1<<i; |
| component_info_t& info = mInfo[i]; |
| int fs = i==GGLFormat::ALPHA ? mBlendSrcA : mBlendSrc; |
| int fd = i==GGLFormat::ALPHA ? mBlendDstA : mBlendDst; |
| if (fs==GGL_SRC_ALPHA_SATURATE && i==GGLFormat::ALPHA) |
| fs = GGL_ONE; |
| info.masked = !!(masking & mask); |
| info.inDest = !info.masked && mCbFormat.c[i].h && |
| ((mLogicOp & LOGIC_OP_SRC) || (!mLogicOp)); |
| if (mCbFormat.components >= GGL_LUMINANCE && |
| (i==GGLFormat::GREEN || i==GGLFormat::BLUE)) { |
| info.inDest = false; |
| } |
| info.needed = (i==GGLFormat::ALPHA) && |
| (isAlphaSourceNeeded() || mAlphaTest != GGL_ALWAYS); |
| info.replaced = !!(mTextureMachine.replaced & mask); |
| info.iterated = (!info.replaced && (info.inDest || info.needed)); |
| info.smooth = mSmooth && info.iterated; |
| info.fog = mFog && info.inDest && (i != GGLFormat::ALPHA); |
| info.blend = (fs != int(GGL_ONE)) || (fd > int(GGL_ZERO)); |
| |
| mBlending |= (info.blend ? mask : 0); |
| mMasking |= (mCbFormat.c[i].h && info.masked) ? mask : 0; |
| fbComponents |= mCbFormat.c[i].h ? mask : 0; |
| } |
| |
| mAllMasked = (mMasking == fbComponents); |
| if (mAllMasked) { |
| mDithering = 0; |
| } |
| |
| fragment_parts_t parts; |
| |
| // ------------------------------------------------------------------------ |
| prolog(); |
| // ------------------------------------------------------------------------ |
| |
| build_scanline_prolog(parts, needs); |
| |
| if (registerFile().status()) |
| return registerFile().status(); |
| |
| // ------------------------------------------------------------------------ |
| label("fragment_loop"); |
| // ------------------------------------------------------------------------ |
| { |
| Scratch regs(registerFile()); |
| |
| if (mDithering) { |
| // update the dither index. |
| MOV(AL, 0, parts.count.reg, |
| reg_imm(parts.count.reg, ROR, GGL_DITHER_ORDER_SHIFT)); |
| ADD(AL, 0, parts.count.reg, parts.count.reg, |
| imm( 1 << (32 - GGL_DITHER_ORDER_SHIFT))); |
| MOV(AL, 0, parts.count.reg, |
| reg_imm(parts.count.reg, ROR, 32 - GGL_DITHER_ORDER_SHIFT)); |
| } |
| |
| // XXX: could we do an early alpha-test here in some cases? |
| // It would probaly be used only with smooth-alpha and no texture |
| // (or no alpha component in the texture). |
| |
| // Early z-test |
| if (mAlphaTest==GGL_ALWAYS) { |
| build_depth_test(parts, Z_TEST|Z_WRITE); |
| } else { |
| // we cannot do the z-write here, because |
| // it might be killed by the alpha-test later |
| build_depth_test(parts, Z_TEST); |
| } |
| |
| { // texture coordinates |
| Scratch scratches(registerFile()); |
| |
| // texel generation |
| build_textures(parts, regs); |
| if (registerFile().status()) |
| return registerFile().status(); |
| } |
| |
| if ((blending & (FACTOR_DST|BLEND_DST)) || |
| (mMasking && !mAllMasked) || |
| (mLogicOp & LOGIC_OP_DST)) |
| { |
| // blending / logic_op / masking need the framebuffer |
| mDstPixel.setTo(regs.obtain(), &mCbFormat); |
| |
| // load the framebuffer pixel |
| comment("fetch color-buffer"); |
| load(parts.cbPtr, mDstPixel); |
| } |
| |
| if (registerFile().status()) |
| return registerFile().status(); |
| |
| pixel_t pixel; |
| int directTex = mTextureMachine.directTexture; |
| if (directTex | parts.packed) { |
| // note: we can't have both here |
| // iterated color or direct texture |
| pixel = directTex ? parts.texel[directTex-1] : parts.iterated; |
| pixel.flags &= ~CORRUPTIBLE; |
| } else { |
| if (mDithering) { |
| const int ctxtReg = mBuilderContext.Rctx; |
| const int mask = GGL_DITHER_SIZE-1; |
| parts.dither = reg_t(regs.obtain()); |
| AND(AL, 0, parts.dither.reg, parts.count.reg, imm(mask)); |
| ADD(AL, 0, parts.dither.reg, parts.dither.reg, ctxtReg); |
| LDRB(AL, parts.dither.reg, parts.dither.reg, |
| immed12_pre(GGL_OFFSETOF(ditherMatrix))); |
| } |
| |
| // allocate a register for the resulting pixel |
| pixel.setTo(regs.obtain(), &mCbFormat, FIRST); |
| |
| build_component(pixel, parts, GGLFormat::ALPHA, regs); |
| |
| if (mAlphaTest!=GGL_ALWAYS) { |
| // only handle the z-write part here. We know z-test |
| // was successful, as well as alpha-test. |
| build_depth_test(parts, Z_WRITE); |
| } |
| |
| build_component(pixel, parts, GGLFormat::RED, regs); |
| build_component(pixel, parts, GGLFormat::GREEN, regs); |
| build_component(pixel, parts, GGLFormat::BLUE, regs); |
| |
| pixel.flags |= CORRUPTIBLE; |
| } |
| |
| if (registerFile().status()) |
| return registerFile().status(); |
| |
| if (pixel.reg == -1) { |
| // be defensive here. if we're here it's probably |
| // that this whole fragment is a no-op. |
| pixel = mDstPixel; |
| } |
| |
| if (!mAllMasked) { |
| // logic operation |
| build_logic_op(pixel, regs); |
| |
| // masking |
| build_masking(pixel, regs); |
| |
| comment("store"); |
| store(parts.cbPtr, pixel, WRITE_BACK); |
| } |
| } |
| |
| if (registerFile().status()) |
| return registerFile().status(); |
| |
| // update the iterated color... |
| if (parts.reload != 3) { |
| build_smooth_shade(parts); |
| } |
| |
| // update iterated z |
| build_iterate_z(parts); |
| |
| // update iterated fog |
| build_iterate_f(parts); |
| |
| SUB(AL, S, parts.count.reg, parts.count.reg, imm(1<<16)); |
| B(PL, "fragment_loop"); |
| label("epilog"); |
| epilog(registerFile().touched()); |
| |
| if ((mAlphaTest!=GGL_ALWAYS) || (mDepthTest!=GGL_ALWAYS)) { |
| if (mDepthTest!=GGL_ALWAYS) { |
| label("discard_before_textures"); |
| build_iterate_texture_coordinates(parts); |
| } |
| label("discard_after_textures"); |
| build_smooth_shade(parts); |
| build_iterate_z(parts); |
| build_iterate_f(parts); |
| if (!mAllMasked) { |
| ADD(AL, 0, parts.cbPtr.reg, parts.cbPtr.reg, imm(parts.cbPtr.size>>3)); |
| } |
| SUB(AL, S, parts.count.reg, parts.count.reg, imm(1<<16)); |
| B(PL, "fragment_loop"); |
| epilog(registerFile().touched()); |
| } |
| |
| return registerFile().status(); |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void GGLAssembler::build_scanline_prolog( |
| fragment_parts_t& parts, const needs_t& needs) |
| { |
| Scratch scratches(registerFile()); |
| int Rctx = mBuilderContext.Rctx; |
| |
| // compute count |
| comment("compute ct (# of pixels to process)"); |
| parts.count.setTo(obtainReg()); |
| int Rx = scratches.obtain(); |
| int Ry = scratches.obtain(); |
| CONTEXT_LOAD(Rx, iterators.xl); |
| CONTEXT_LOAD(parts.count.reg, iterators.xr); |
| CONTEXT_LOAD(Ry, iterators.y); |
| |
| // parts.count = iterators.xr - Rx |
| SUB(AL, 0, parts.count.reg, parts.count.reg, Rx); |
| SUB(AL, 0, parts.count.reg, parts.count.reg, imm(1)); |
| |
| if (mDithering) { |
| // parts.count.reg = 0xNNNNXXDD |
| // NNNN = count-1 |
| // DD = dither offset |
| // XX = 0xxxxxxx (x = garbage) |
| Scratch scratches(registerFile()); |
| int tx = scratches.obtain(); |
| int ty = scratches.obtain(); |
| AND(AL, 0, tx, Rx, imm(GGL_DITHER_MASK)); |
| AND(AL, 0, ty, Ry, imm(GGL_DITHER_MASK)); |
| ADD(AL, 0, tx, tx, reg_imm(ty, LSL, GGL_DITHER_ORDER_SHIFT)); |
| ORR(AL, 0, parts.count.reg, tx, reg_imm(parts.count.reg, LSL, 16)); |
| } else { |
| // parts.count.reg = 0xNNNN0000 |
| // NNNN = count-1 |
| MOV(AL, 0, parts.count.reg, reg_imm(parts.count.reg, LSL, 16)); |
| } |
| |
| if (!mAllMasked) { |
| // compute dst ptr |
| comment("compute color-buffer pointer"); |
| const int cb_bits = mCbFormat.size*8; |
| int Rs = scratches.obtain(); |
| parts.cbPtr.setTo(obtainReg(), cb_bits); |
| CONTEXT_LOAD(Rs, state.buffers.color.stride); |
| CONTEXT_LOAD(parts.cbPtr.reg, state.buffers.color.data); |
| SMLABB(AL, Rs, Ry, Rs, Rx); // Rs = Rx + Ry*Rs |
| base_offset(parts.cbPtr, parts.cbPtr, Rs); |
| scratches.recycle(Rs); |
| } |
| |
| // init fog |
| const int need_fog = GGL_READ_NEEDS(P_FOG, needs.p); |
| if (need_fog) { |
| comment("compute initial fog coordinate"); |
| Scratch scratches(registerFile()); |
| int dfdx = scratches.obtain(); |
| int ydfdy = scratches.obtain(); |
| int f = ydfdy; |
| CONTEXT_LOAD(dfdx, generated_vars.dfdx); |
| CONTEXT_LOAD(ydfdy, iterators.ydfdy); |
| MLA(AL, 0, f, Rx, dfdx, ydfdy); |
| CONTEXT_STORE(f, generated_vars.f); |
| } |
| |
| // init Z coordinate |
| if ((mDepthTest != GGL_ALWAYS) || GGL_READ_NEEDS(P_MASK_Z, needs.p)) { |
| parts.z = reg_t(obtainReg()); |
| comment("compute initial Z coordinate"); |
| Scratch scratches(registerFile()); |
| int dzdx = scratches.obtain(); |
| int ydzdy = parts.z.reg; |
| CONTEXT_LOAD(dzdx, generated_vars.dzdx); // 1.31 fixed-point |
| CONTEXT_LOAD(ydzdy, iterators.ydzdy); // 1.31 fixed-point |
| MLA(AL, 0, parts.z.reg, Rx, dzdx, ydzdy); |
| |
| // we're going to index zbase of parts.count |
| // zbase = base + (xl-count + stride*y)*2 |
| int Rs = dzdx; |
| int zbase = scratches.obtain(); |
| CONTEXT_LOAD(Rs, state.buffers.depth.stride); |
| CONTEXT_LOAD(zbase, state.buffers.depth.data); |
| SMLABB(AL, Rs, Ry, Rs, Rx); |
| ADD(AL, 0, Rs, Rs, reg_imm(parts.count.reg, LSR, 16)); |
| ADD(AL, 0, zbase, zbase, reg_imm(Rs, LSL, 1)); |
| CONTEXT_STORE(zbase, generated_vars.zbase); |
| } |
| |
| // init texture coordinates |
| init_textures(parts.coords, reg_t(Rx), reg_t(Ry)); |
| scratches.recycle(Ry); |
| |
| // iterated color |
| init_iterated_color(parts, reg_t(Rx)); |
| |
| // init coverage factor application (anti-aliasing) |
| if (mAA) { |
| parts.covPtr.setTo(obtainReg(), 16); |
| CONTEXT_LOAD(parts.covPtr.reg, state.buffers.coverage); |
| ADD(AL, 0, parts.covPtr.reg, parts.covPtr.reg, reg_imm(Rx, LSL, 1)); |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void GGLAssembler::build_component( pixel_t& pixel, |
| const fragment_parts_t& parts, |
| int component, |
| Scratch& regs) |
| { |
| static char const * comments[] = {"alpha", "red", "green", "blue"}; |
| comment(comments[component]); |
| |
| // local register file |
| Scratch scratches(registerFile()); |
| const int dst_component_size = pixel.component_size(component); |
| |
| component_t temp(-1); |
| build_incoming_component( temp, dst_component_size, |
| parts, component, scratches, regs); |
| |
| if (mInfo[component].inDest) { |
| |
| // blending... |
| build_blending( temp, mDstPixel, component, scratches ); |
| |
| // downshift component and rebuild pixel... |
| downshift(pixel, component, temp, parts.dither); |
| } |
| } |
| |
| void GGLAssembler::build_incoming_component( |
| component_t& temp, |
| int dst_size, |
| const fragment_parts_t& parts, |
| int component, |
| Scratch& scratches, |
| Scratch& global_regs) |
| { |
| const uint32_t component_mask = 1<<component; |
| |
| // Figure out what we need for the blending stage... |
| int fs = component==GGLFormat::ALPHA ? mBlendSrcA : mBlendSrc; |
| int fd = component==GGLFormat::ALPHA ? mBlendDstA : mBlendDst; |
| if (fs==GGL_SRC_ALPHA_SATURATE && component==GGLFormat::ALPHA) { |
| fs = GGL_ONE; |
| } |
| |
| // Figure out what we need to extract and for what reason |
| const int blending = blending_codes(fs, fd); |
| |
| // Are we actually going to blend? |
| const int need_blending = (fs != int(GGL_ONE)) || (fd > int(GGL_ZERO)); |
| |
| // expand the source if the destination has more bits |
| int need_expander = false; |
| for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT-1 ; i++) { |
| texture_unit_t& tmu = mTextureMachine.tmu[i]; |
| if ((tmu.format_idx) && |
| (parts.texel[i].component_size(component) < dst_size)) { |
| need_expander = true; |
| } |
| } |
| |
| // do we need to extract this component? |
| const bool multiTexture = mTextureMachine.activeUnits > 1; |
| const int blend_needs_alpha_source = (component==GGLFormat::ALPHA) && |
| (isAlphaSourceNeeded()); |
| int need_extract = mInfo[component].needed; |
| if (mInfo[component].inDest) |
| { |
| need_extract |= ((need_blending ? |
| (blending & (BLEND_SRC|FACTOR_SRC)) : need_expander)); |
| need_extract |= (mTextureMachine.mask != mTextureMachine.replaced); |
| need_extract |= mInfo[component].smooth; |
| need_extract |= mInfo[component].fog; |
| need_extract |= mDithering; |
| need_extract |= multiTexture; |
| } |
| |
| if (need_extract) { |
| Scratch& regs = blend_needs_alpha_source ? global_regs : scratches; |
| component_t fragment; |
| |
| // iterated color |
| build_iterated_color(fragment, parts, component, regs); |
| |
| // texture environement (decal, modulate, replace) |
| build_texture_environment(fragment, parts, component, regs); |
| |
| // expand the source if the destination has more bits |
| if (need_expander && (fragment.size() < dst_size)) { |
| // we're here only if we fetched a texel |
| // (so we know for sure fragment is CORRUPTIBLE) |
| expand(fragment, fragment, dst_size); |
| } |
| |
| // We have a few specific things to do for the alpha-channel |
| if ((component==GGLFormat::ALPHA) && |
| (mInfo[component].needed || fragment.size()<dst_size)) |
| { |
| // convert to integer_t first and make sure |
| // we don't corrupt a needed register |
| if (fragment.l) { |
| component_t incoming(fragment); |
| modify(fragment, regs); |
| MOV(AL, 0, fragment.reg, reg_imm(incoming.reg, LSR, incoming.l)); |
| fragment.h -= fragment.l; |
| fragment.l = 0; |
| } |
| |
| // coverage factor application |
| build_coverage_application(fragment, parts, regs); |
| |
| // alpha-test |
| build_alpha_test(fragment, parts); |
| |
| if (blend_needs_alpha_source) { |
| // We keep only 8 bits for the blending stage |
| const int shift = fragment.h <= 8 ? 0 : fragment.h-8; |
| if (fragment.flags & CORRUPTIBLE) { |
| fragment.flags &= ~CORRUPTIBLE; |
| mAlphaSource.setTo(fragment.reg, |
| fragment.size(), fragment.flags); |
| if (shift) { |
| MOV(AL, 0, mAlphaSource.reg, |
| reg_imm(mAlphaSource.reg, LSR, shift)); |
| } |
| } else { |
| // XXX: it would better to do this in build_blend_factor() |
| // so we can avoid the extra MOV below. |
| mAlphaSource.setTo(regs.obtain(), |
| fragment.size(), CORRUPTIBLE); |
| if (shift) { |
| MOV(AL, 0, mAlphaSource.reg, |
| reg_imm(fragment.reg, LSR, shift)); |
| } else { |
| MOV(AL, 0, mAlphaSource.reg, fragment.reg); |
| } |
| } |
| mAlphaSource.s -= shift; |
| } |
| } |
| |
| // fog... |
| build_fog( fragment, component, regs ); |
| |
| temp = fragment; |
| } else { |
| if (mInfo[component].inDest) { |
| // extraction not needed and replace |
| // we just select the right component |
| if ((mTextureMachine.replaced & component_mask) == 0) { |
| // component wasn't replaced, so use it! |
| temp = component_t(parts.iterated, component); |
| } |
| for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) { |
| const texture_unit_t& tmu = mTextureMachine.tmu[i]; |
| if ((tmu.mask & component_mask) && |
| ((tmu.replaced & component_mask) == 0)) { |
| temp = component_t(parts.texel[i], component); |
| } |
| } |
| } |
| } |
| } |
| |
| bool GGLAssembler::isAlphaSourceNeeded() const |
| { |
| // XXX: also needed for alpha-test |
| const int bs = mBlendSrc; |
| const int bd = mBlendDst; |
| return bs==GGL_SRC_ALPHA_SATURATE || |
| bs==GGL_SRC_ALPHA || bs==GGL_ONE_MINUS_SRC_ALPHA || |
| bd==GGL_SRC_ALPHA || bd==GGL_ONE_MINUS_SRC_ALPHA ; |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void GGLAssembler::build_smooth_shade(const fragment_parts_t& parts) |
| { |
| if (mSmooth && !parts.iterated_packed) { |
| // update the iterated color in a pipelined way... |
| comment("update iterated color"); |
| Scratch scratches(registerFile()); |
| |
| const int reload = parts.reload; |
| for (int i=0 ; i<4 ; i++) { |
| if (!mInfo[i].iterated) |
| continue; |
| |
| int c = parts.argb[i].reg; |
| int dx = parts.argb_dx[i].reg; |
| |
| if (reload & 1) { |
| c = scratches.obtain(); |
| CONTEXT_LOAD(c, generated_vars.argb[i].c); |
| } |
| if (reload & 2) { |
| dx = scratches.obtain(); |
| CONTEXT_LOAD(dx, generated_vars.argb[i].dx); |
| } |
| |
| if (mSmooth) { |
| ADD(AL, 0, c, c, dx); |
| } |
| |
| if (reload & 1) { |
| CONTEXT_STORE(c, generated_vars.argb[i].c); |
| scratches.recycle(c); |
| } |
| if (reload & 2) { |
| scratches.recycle(dx); |
| } |
| } |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void GGLAssembler::build_coverage_application(component_t& fragment, |
| const fragment_parts_t& parts, Scratch& regs) |
| { |
| // here fragment.l is guarenteed to be 0 |
| if (mAA) { |
| // coverages are 1.15 fixed-point numbers |
| comment("coverage application"); |
| |
| component_t incoming(fragment); |
| modify(fragment, regs); |
| |
| Scratch scratches(registerFile()); |
| int cf = scratches.obtain(); |
| LDRH(AL, cf, parts.covPtr.reg, immed8_post(2)); |
| if (fragment.h > 31) { |
| fragment.h--; |
| SMULWB(AL, fragment.reg, incoming.reg, cf); |
| } else { |
| MOV(AL, 0, fragment.reg, reg_imm(incoming.reg, LSL, 1)); |
| SMULWB(AL, fragment.reg, fragment.reg, cf); |
| } |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void GGLAssembler::build_alpha_test(component_t& fragment, |
| const fragment_parts_t& parts) |
| { |
| if (mAlphaTest != GGL_ALWAYS) { |
| comment("Alpha Test"); |
| Scratch scratches(registerFile()); |
| int ref = scratches.obtain(); |
| const int shift = GGL_COLOR_BITS-fragment.size(); |
| CONTEXT_LOAD(ref, state.alpha_test.ref); |
| if (shift) CMP(AL, fragment.reg, reg_imm(ref, LSR, shift)); |
| else CMP(AL, fragment.reg, ref); |
| int cc = NV; |
| switch (mAlphaTest) { |
| case GGL_NEVER: cc = NV; break; |
| case GGL_LESS: cc = LT; break; |
| case GGL_EQUAL: cc = EQ; break; |
| case GGL_LEQUAL: cc = LS; break; |
| case GGL_GREATER: cc = HI; break; |
| case GGL_NOTEQUAL: cc = NE; break; |
| case GGL_GEQUAL: cc = HS; break; |
| } |
| B(cc^1, "discard_after_textures"); |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void GGLAssembler::build_depth_test( |
| const fragment_parts_t& parts, uint32_t mask) |
| { |
| mask &= Z_TEST|Z_WRITE; |
| const needs_t& needs = mBuilderContext.needs; |
| const int zmask = GGL_READ_NEEDS(P_MASK_Z, needs.p); |
| Scratch scratches(registerFile()); |
| |
| if (mDepthTest != GGL_ALWAYS || zmask) { |
| int cc=AL, ic=AL; |
| switch (mDepthTest) { |
| case GGL_LESS: ic = HI; break; |
| case GGL_EQUAL: ic = EQ; break; |
| case GGL_LEQUAL: ic = HS; break; |
| case GGL_GREATER: ic = LT; break; |
| case GGL_NOTEQUAL: ic = NE; break; |
| case GGL_GEQUAL: ic = LS; break; |
| case GGL_NEVER: |
| // this never happens, because it's taken care of when |
| // computing the needs. but we keep it for completness. |
| comment("Depth Test (NEVER)"); |
| B(AL, "discard_before_textures"); |
| return; |
| case GGL_ALWAYS: |
| // we're here because zmask is enabled |
| mask &= ~Z_TEST; // test always passes. |
| break; |
| } |
| |
| // inverse the condition |
| cc = ic^1; |
| |
| if ((mask & Z_WRITE) && !zmask) { |
| mask &= ~Z_WRITE; |
| } |
| |
| if (!mask) |
| return; |
| |
| comment("Depth Test"); |
| |
| int zbase = scratches.obtain(); |
| int depth = scratches.obtain(); |
| int z = parts.z.reg; |
| |
| CONTEXT_LOAD(zbase, generated_vars.zbase); // stall |
| SUB(AL, 0, zbase, zbase, reg_imm(parts.count.reg, LSR, 15)); |
| // above does zbase = zbase + ((count >> 16) << 1) |
| |
| if (mask & Z_TEST) { |
| LDRH(AL, depth, zbase); // stall |
| CMP(AL, depth, reg_imm(z, LSR, 16)); |
| B(cc, "discard_before_textures"); |
| } |
| if (mask & Z_WRITE) { |
| if (mask == Z_WRITE) { |
| // only z-write asked, cc is meaningless |
| ic = AL; |
| } |
| MOV(AL, 0, depth, reg_imm(z, LSR, 16)); |
| STRH(ic, depth, zbase); |
| } |
| } |
| } |
| |
| void GGLAssembler::build_iterate_z(const fragment_parts_t& parts) |
| { |
| const needs_t& needs = mBuilderContext.needs; |
| if ((mDepthTest != GGL_ALWAYS) || GGL_READ_NEEDS(P_MASK_Z, needs.p)) { |
| Scratch scratches(registerFile()); |
| int dzdx = scratches.obtain(); |
| CONTEXT_LOAD(dzdx, generated_vars.dzdx); // stall |
| ADD(AL, 0, parts.z.reg, parts.z.reg, dzdx); |
| } |
| } |
| |
| void GGLAssembler::build_iterate_f(const fragment_parts_t& parts) |
| { |
| const needs_t& needs = mBuilderContext.needs; |
| if (GGL_READ_NEEDS(P_FOG, needs.p)) { |
| Scratch scratches(registerFile()); |
| int dfdx = scratches.obtain(); |
| int f = scratches.obtain(); |
| CONTEXT_LOAD(f, generated_vars.f); |
| CONTEXT_LOAD(dfdx, generated_vars.dfdx); // stall |
| ADD(AL, 0, f, f, dfdx); |
| CONTEXT_STORE(f, generated_vars.f); |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void GGLAssembler::build_logic_op(pixel_t& pixel, Scratch& regs) |
| { |
| const needs_t& needs = mBuilderContext.needs; |
| const int opcode = GGL_READ_NEEDS(LOGIC_OP, needs.n) | GGL_CLEAR; |
| if (opcode == GGL_COPY) |
| return; |
| |
| comment("logic operation"); |
| |
| pixel_t s(pixel); |
| if (!(pixel.flags & CORRUPTIBLE)) { |
| pixel.reg = regs.obtain(); |
| pixel.flags |= CORRUPTIBLE; |
| } |
| |
| pixel_t d(mDstPixel); |
| switch(opcode) { |
| case GGL_CLEAR: MOV(AL, 0, pixel.reg, imm(0)); break; |
| case GGL_AND: AND(AL, 0, pixel.reg, s.reg, d.reg); break; |
| case GGL_AND_REVERSE: BIC(AL, 0, pixel.reg, s.reg, d.reg); break; |
| case GGL_COPY: break; |
| case GGL_AND_INVERTED: BIC(AL, 0, pixel.reg, d.reg, s.reg); break; |
| case GGL_NOOP: MOV(AL, 0, pixel.reg, d.reg); break; |
| case GGL_XOR: EOR(AL, 0, pixel.reg, s.reg, d.reg); break; |
| case GGL_OR: ORR(AL, 0, pixel.reg, s.reg, d.reg); break; |
| case GGL_NOR: ORR(AL, 0, pixel.reg, s.reg, d.reg); |
| MVN(AL, 0, pixel.reg, pixel.reg); break; |
| case GGL_EQUIV: EOR(AL, 0, pixel.reg, s.reg, d.reg); |
| MVN(AL, 0, pixel.reg, pixel.reg); break; |
| case GGL_INVERT: MVN(AL, 0, pixel.reg, d.reg); break; |
| case GGL_OR_REVERSE: // s | ~d == ~(~s & d) |
| BIC(AL, 0, pixel.reg, d.reg, s.reg); |
| MVN(AL, 0, pixel.reg, pixel.reg); break; |
| case GGL_COPY_INVERTED: MVN(AL, 0, pixel.reg, s.reg); break; |
| case GGL_OR_INVERTED: // ~s | d == ~(s & ~d) |
| BIC(AL, 0, pixel.reg, s.reg, d.reg); |
| MVN(AL, 0, pixel.reg, pixel.reg); break; |
| case GGL_NAND: AND(AL, 0, pixel.reg, s.reg, d.reg); |
| MVN(AL, 0, pixel.reg, pixel.reg); break; |
| case GGL_SET: MVN(AL, 0, pixel.reg, imm(0)); break; |
| }; |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| static uint32_t find_bottom(uint32_t val) |
| { |
| uint32_t i = 0; |
| while (!(val & (3<<i))) |
| i+= 2; |
| return i; |
| } |
| |
| static void normalize(uint32_t& val, uint32_t& rot) |
| { |
| rot = 0; |
| while (!(val&3) || (val & 0xFC000000)) { |
| uint32_t newval; |
| newval = val >> 2; |
| newval |= (val&3) << 30; |
| val = newval; |
| rot += 2; |
| if (rot == 32) { |
| rot = 0; |
| break; |
| } |
| } |
| } |
| |
| void GGLAssembler::build_and_immediate(int d, int s, uint32_t mask, int bits) |
| { |
| uint32_t rot; |
| uint32_t size = ((bits>=32) ? 0 : (1LU << bits)) - 1; |
| mask &= size; |
| |
| if (mask == size) { |
| if (d != s) |
| MOV( AL, 0, d, s); |
| return; |
| } |
| |
| if (getCodegenArch() == CODEGEN_ARCH_MIPS) { |
| // MIPS can do 16-bit imm in 1 instr, 32-bit in 3 instr |
| // the below ' while (mask)' code is buggy on mips |
| // since mips returns true on isValidImmediate() |
| // then we get multiple AND instr (positive logic) |
| AND( AL, 0, d, s, imm(mask) ); |
| return; |
| } |
| |
| int negative_logic = !isValidImmediate(mask); |
| if (negative_logic) { |
| mask = ~mask & size; |
| } |
| normalize(mask, rot); |
| |
| if (mask) { |
| while (mask) { |
| uint32_t bitpos = find_bottom(mask); |
| int shift = rot + bitpos; |
| uint32_t m = mask & (0xff << bitpos); |
| mask &= ~m; |
| m >>= bitpos; |
| int32_t newMask = (m<<shift) | (m>>(32-shift)); |
| if (!negative_logic) { |
| AND( AL, 0, d, s, imm(newMask) ); |
| } else { |
| BIC( AL, 0, d, s, imm(newMask) ); |
| } |
| s = d; |
| } |
| } else { |
| MOV( AL, 0, d, imm(0)); |
| } |
| } |
| |
| void GGLAssembler::build_masking(pixel_t& pixel, Scratch& regs) |
| { |
| if (!mMasking || mAllMasked) { |
| return; |
| } |
| |
| comment("color mask"); |
| |
| pixel_t fb(mDstPixel); |
| pixel_t s(pixel); |
| if (!(pixel.flags & CORRUPTIBLE)) { |
| pixel.reg = regs.obtain(); |
| pixel.flags |= CORRUPTIBLE; |
| } |
| |
| int mask = 0; |
| for (int i=0 ; i<4 ; i++) { |
| const int component_mask = 1<<i; |
| const int h = fb.format.c[i].h; |
| const int l = fb.format.c[i].l; |
| if (h && (!(mMasking & component_mask))) { |
| mask |= ((1<<(h-l))-1) << l; |
| } |
| } |
| |
| // There is no need to clear the masked components of the source |
| // (unless we applied a logic op), because they're already zeroed |
| // by construction (masked components are not computed) |
| |
| if (mLogicOp) { |
| const needs_t& needs = mBuilderContext.needs; |
| const int opcode = GGL_READ_NEEDS(LOGIC_OP, needs.n) | GGL_CLEAR; |
| if (opcode != GGL_CLEAR) { |
| // clear masked component of source |
| build_and_immediate(pixel.reg, s.reg, mask, fb.size()); |
| s = pixel; |
| } |
| } |
| |
| // clear non masked components of destination |
| build_and_immediate(fb.reg, fb.reg, ~mask, fb.size()); |
| |
| // or back the channels that were masked |
| if (s.reg == fb.reg) { |
| // this is in fact a MOV |
| if (s.reg == pixel.reg) { |
| // ugh. this in in fact a nop |
| } else { |
| MOV(AL, 0, pixel.reg, fb.reg); |
| } |
| } else { |
| ORR(AL, 0, pixel.reg, s.reg, fb.reg); |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void GGLAssembler::base_offset( |
| const pointer_t& d, const pointer_t& b, const reg_t& o) |
| { |
| switch (b.size) { |
| case 32: |
| ADD(AL, 0, d.reg, b.reg, reg_imm(o.reg, LSL, 2)); |
| break; |
| case 24: |
| if (d.reg == b.reg) { |
| ADD(AL, 0, d.reg, b.reg, reg_imm(o.reg, LSL, 1)); |
| ADD(AL, 0, d.reg, d.reg, o.reg); |
| } else { |
| ADD(AL, 0, d.reg, o.reg, reg_imm(o.reg, LSL, 1)); |
| ADD(AL, 0, d.reg, d.reg, b.reg); |
| } |
| break; |
| case 16: |
| ADD(AL, 0, d.reg, b.reg, reg_imm(o.reg, LSL, 1)); |
| break; |
| case 8: |
| ADD(AL, 0, d.reg, b.reg, o.reg); |
| break; |
| } |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // cheezy register allocator... |
| // ---------------------------------------------------------------------------- |
| |
| // Modified to support MIPS processors, in a very simple way. We retain the |
| // (Arm) limit of 16 total registers, but shift the mapping of those registers |
| // from 0-15, to 2-17. Register 0 on Mips cannot be used as GP registers, and |
| // register 1 has a traditional use as a temp). |
| |
| RegisterAllocator::RegisterAllocator(int arch) : mRegs(arch) |
| { |
| } |
| |
| void RegisterAllocator::reset() |
| { |
| mRegs.reset(); |
| } |
| |
| int RegisterAllocator::reserveReg(int reg) |
| { |
| return mRegs.reserve(reg); |
| } |
| |
| int RegisterAllocator::obtainReg() |
| { |
| return mRegs.obtain(); |
| } |
| |
| void RegisterAllocator::recycleReg(int reg) |
| { |
| mRegs.recycle(reg); |
| } |
| |
| RegisterAllocator::RegisterFile& RegisterAllocator::registerFile() |
| { |
| return mRegs; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| RegisterAllocator::RegisterFile::RegisterFile(int codegen_arch) |
| : mRegs(0), mTouched(0), mStatus(0), mArch(codegen_arch), mRegisterOffset(0) |
| { |
| if (mArch == ARMAssemblerInterface::CODEGEN_ARCH_MIPS) { |
| mRegisterOffset = 2; // ARM has regs 0..15, MIPS offset to 2..17 |
| } |
| reserve(ARMAssemblerInterface::SP); |
| reserve(ARMAssemblerInterface::PC); |
| } |
| |
| RegisterAllocator::RegisterFile::RegisterFile(const RegisterFile& rhs, int codegen_arch) |
| : mRegs(rhs.mRegs), mTouched(rhs.mTouched), mArch(codegen_arch), mRegisterOffset(0) |
| { |
| if (mArch == ARMAssemblerInterface::CODEGEN_ARCH_MIPS) { |
| mRegisterOffset = 2; // ARM has regs 0..15, MIPS offset to 2..17 |
| } |
| } |
| |
| RegisterAllocator::RegisterFile::~RegisterFile() |
| { |
| } |
| |
| bool RegisterAllocator::RegisterFile::operator == (const RegisterFile& rhs) const |
| { |
| return (mRegs == rhs.mRegs); |
| } |
| |
| void RegisterAllocator::RegisterFile::reset() |
| { |
| mRegs = mTouched = mStatus = 0; |
| reserve(ARMAssemblerInterface::SP); |
| reserve(ARMAssemblerInterface::PC); |
| } |
| |
| // RegisterFile::reserve() take a register parameter in the |
| // range 0-15 (Arm compatible), but on a Mips processor, will |
| // return the actual allocated register in the range 2-17. |
| int RegisterAllocator::RegisterFile::reserve(int reg) |
| { |
| reg += mRegisterOffset; |
| LOG_ALWAYS_FATAL_IF(isUsed(reg), |
| "reserving register %d, but already in use", |
| reg); |
| mRegs |= (1<<reg); |
| mTouched |= mRegs; |
| return reg; |
| } |
| |
| // This interface uses regMask in range 2-17 on MIPS, no translation. |
| void RegisterAllocator::RegisterFile::reserveSeveral(uint32_t regMask) |
| { |
| mRegs |= regMask; |
| mTouched |= regMask; |
| } |
| |
| int RegisterAllocator::RegisterFile::isUsed(int reg) const |
| { |
| LOG_ALWAYS_FATAL_IF(reg>=16+(int)mRegisterOffset, "invalid register %d", reg); |
| return mRegs & (1<<reg); |
| } |
| |
| int RegisterAllocator::RegisterFile::obtain() |
| { |
| const char priorityList[14] = { 0, 1, 2, 3, |
| 12, 14, 4, 5, |
| 6, 7, 8, 9, |
| 10, 11 }; |
| const int nbreg = sizeof(priorityList); |
| int i, r, reg; |
| for (i=0 ; i<nbreg ; i++) { |
| r = priorityList[i]; |
| if (!isUsed(r + mRegisterOffset)) { |
| break; |
| } |
| } |
| // this is not an error anymore because, we'll try again with |
| // a lower optimization level. |
| //ALOGE_IF(i >= nbreg, "pixelflinger ran out of registers\n"); |
| if (i >= nbreg) { |
| mStatus |= OUT_OF_REGISTERS; |
| // we return SP so we can more easily debug things |
| // the code will never be run anyway. |
| return ARMAssemblerInterface::SP; |
| } |
| reg = reserve(r); // Param in Arm range 0-15, returns range 2-17 on Mips. |
| return reg; |
| } |
| |
| bool RegisterAllocator::RegisterFile::hasFreeRegs() const |
| { |
| uint32_t regs = mRegs >> mRegisterOffset; // MIPS fix. |
| return ((regs & 0xFFFF) == 0xFFFF) ? false : true; |
| } |
| |
| int RegisterAllocator::RegisterFile::countFreeRegs() const |
| { |
| uint32_t regs = mRegs >> mRegisterOffset; // MIPS fix. |
| int f = ~regs & 0xFFFF; |
| // now count number of 1 |
| f = (f & 0x5555) + ((f>>1) & 0x5555); |
| f = (f & 0x3333) + ((f>>2) & 0x3333); |
| f = (f & 0x0F0F) + ((f>>4) & 0x0F0F); |
| f = (f & 0x00FF) + ((f>>8) & 0x00FF); |
| return f; |
| } |
| |
| void RegisterAllocator::RegisterFile::recycle(int reg) |
| { |
| // commented out, since common failure of running out of regs |
| // triggers this assertion. Since the code is not execectued |
| // in that case, it does not matter. No reason to FATAL err. |
| // LOG_FATAL_IF(!isUsed(reg), |
| // "recycling unallocated register %d", |
| // reg); |
| mRegs &= ~(1<<reg); |
| } |
| |
| void RegisterAllocator::RegisterFile::recycleSeveral(uint32_t regMask) |
| { |
| // commented out, since common failure of running out of regs |
| // triggers this assertion. Since the code is not execectued |
| // in that case, it does not matter. No reason to FATAL err. |
| // LOG_FATAL_IF((mRegs & regMask)!=regMask, |
| // "recycling unallocated registers " |
| // "(recycle=%08x, allocated=%08x, unallocated=%08x)", |
| // regMask, mRegs, mRegs®Mask); |
| mRegs &= ~regMask; |
| } |
| |
| uint32_t RegisterAllocator::RegisterFile::touched() const |
| { |
| return mTouched; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| }; // namespace android |
| |