blob: 8b4aa2b7b6e43966563cbbf1ad4ec06301950636 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_NDEBUG 1
#define LOG_TAG "camera_metadata_tests"
#include "cutils/log.h"
#include <errno.h>
#include <vector>
#include <algorithm>
#include "gtest/gtest.h"
#include "system/camera_metadata.h"
#include "camera_metadata_tests_fake_vendor.h"
#define EXPECT_NULL(x) EXPECT_EQ((void*)0, x)
#define EXPECT_NOT_NULL(x) EXPECT_NE((void*)0, x)
#define OK 0
#define ERROR 1
#define NOT_FOUND (-ENOENT)
#define _Alignas(T) \
({struct _AlignasStruct { char c; T field; }; \
offsetof(struct _AlignasStruct, field); })
#define FINISH_USING_CAMERA_METADATA(m) \
EXPECT_EQ(OK, validate_camera_metadata_structure(m, NULL)); \
free_camera_metadata(m); \
TEST(camera_metadata, allocate_normal) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 5;
const size_t data_capacity = 32;
m = allocate_camera_metadata(entry_capacity, data_capacity);
EXPECT_NOT_NULL(m);
EXPECT_EQ((size_t)0, get_camera_metadata_entry_count(m));
EXPECT_EQ(entry_capacity, get_camera_metadata_entry_capacity(m));
EXPECT_EQ((size_t)0, get_camera_metadata_data_count(m));
EXPECT_EQ(data_capacity, get_camera_metadata_data_capacity(m));
FINISH_USING_CAMERA_METADATA(m);
}
TEST(camera_metadata, allocate_nodata) {
camera_metadata_t *m = NULL;
m = allocate_camera_metadata(1, 0);
EXPECT_NOT_NULL(m);
EXPECT_EQ((size_t)0, get_camera_metadata_entry_count(m));
EXPECT_EQ((size_t)1, get_camera_metadata_entry_capacity(m));
EXPECT_EQ((size_t)0, get_camera_metadata_data_count(m));
EXPECT_EQ((size_t)0, get_camera_metadata_data_capacity(m));
FINISH_USING_CAMERA_METADATA(m);
}
TEST(camera_metadata, allocate_nothing) {
camera_metadata_t *m = NULL;
m = allocate_camera_metadata(0, 0);
EXPECT_NULL(m);
}
TEST(camera_metadata, place_normal) {
camera_metadata_t *m = NULL;
void *buf = NULL;
const size_t entry_capacity = 5;
const size_t data_capacity = 32;
size_t buf_size = calculate_camera_metadata_size(entry_capacity,
data_capacity);
EXPECT_TRUE(buf_size > 0);
buf = malloc(buf_size);
EXPECT_NOT_NULL(buf);
m = place_camera_metadata(buf, buf_size, entry_capacity, data_capacity);
EXPECT_EQ(buf, (uint8_t*)m);
EXPECT_EQ((size_t)0, get_camera_metadata_entry_count(m));
EXPECT_EQ(entry_capacity, get_camera_metadata_entry_capacity(m));
EXPECT_EQ((size_t)0, get_camera_metadata_data_count(m));
EXPECT_EQ(data_capacity, get_camera_metadata_data_capacity(m));
EXPECT_EQ(OK, validate_camera_metadata_structure(m, &buf_size));
free(buf);
}
TEST(camera_metadata, place_nospace) {
camera_metadata_t *m = NULL;
void *buf = NULL;
const size_t entry_capacity = 5;
const size_t data_capacity = 32;
size_t buf_size = calculate_camera_metadata_size(entry_capacity,
data_capacity);
EXPECT_GT(buf_size, (size_t)0);
buf_size--;
buf = malloc(buf_size);
EXPECT_NOT_NULL(buf);
m = place_camera_metadata(buf, buf_size, entry_capacity, data_capacity);
EXPECT_NULL(m);
free(buf);
}
TEST(camera_metadata, place_extraspace) {
camera_metadata_t *m = NULL;
uint8_t *buf = NULL;
const size_t entry_capacity = 5;
const size_t data_capacity = 32;
const size_t extra_space = 10;
size_t buf_size = calculate_camera_metadata_size(entry_capacity,
data_capacity);
EXPECT_GT(buf_size, (size_t)0);
buf_size += extra_space;
buf = (uint8_t*)malloc(buf_size);
EXPECT_NOT_NULL(buf);
m = place_camera_metadata(buf, buf_size, entry_capacity, data_capacity);
EXPECT_EQ((uint8_t*)m, buf);
EXPECT_EQ((size_t)0, get_camera_metadata_entry_count(m));
EXPECT_EQ(entry_capacity, get_camera_metadata_entry_capacity(m));
EXPECT_EQ((size_t)0, get_camera_metadata_data_count(m));
EXPECT_EQ(data_capacity, get_camera_metadata_data_capacity(m));
EXPECT_EQ(buf + buf_size - extra_space, (uint8_t*)m + get_camera_metadata_size(m));
EXPECT_EQ(OK, validate_camera_metadata_structure(m, &buf_size));
free(buf);
}
TEST(camera_metadata, get_size) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 5;
const size_t data_capacity = 32;
m = allocate_camera_metadata(entry_capacity, data_capacity);
EXPECT_EQ(calculate_camera_metadata_size(entry_capacity, data_capacity),
get_camera_metadata_size(m) );
EXPECT_EQ(calculate_camera_metadata_size(0,0),
get_camera_metadata_compact_size(m) );
FINISH_USING_CAMERA_METADATA(m);
}
TEST(camera_metadata, add_get_normal) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 5;
const size_t data_capacity = 80;
m = allocate_camera_metadata(entry_capacity, data_capacity);
EXPECT_EQ(OK, validate_camera_metadata_structure(m, NULL));
int result;
size_t data_used = 0;
size_t entries_used = 0;
// INT64
int64_t exposure_time = 1000000000;
result = add_camera_metadata_entry(m,
ANDROID_SENSOR_EXPOSURE_TIME,
&exposure_time, 1);
EXPECT_EQ(OK, result);
data_used += calculate_camera_metadata_entry_data_size(
get_camera_metadata_tag_type(ANDROID_SENSOR_EXPOSURE_TIME), 1);
entries_used++;
EXPECT_EQ(OK, validate_camera_metadata_structure(m, NULL));
// INT32
int32_t sensitivity = 800;
result = add_camera_metadata_entry(m,
ANDROID_SENSOR_SENSITIVITY,
&sensitivity, 1);
EXPECT_EQ(OK, result);
data_used += calculate_camera_metadata_entry_data_size(
get_camera_metadata_tag_type(ANDROID_SENSOR_SENSITIVITY), 1);
entries_used++;
EXPECT_EQ(OK, validate_camera_metadata_structure(m, NULL));
// FLOAT
float focusDistance = 0.5f;
result = add_camera_metadata_entry(m,
ANDROID_LENS_FOCUS_DISTANCE,
&focusDistance, 1);
EXPECT_EQ(OK, result);
data_used += calculate_camera_metadata_entry_data_size(
get_camera_metadata_tag_type(ANDROID_LENS_FOCUS_DISTANCE), 1);
entries_used++;
EXPECT_EQ(OK, validate_camera_metadata_structure(m, NULL));
// Array of FLOAT
float colorTransform[9] = {
0.9f, 0.0f, 0.0f,
0.2f, 0.5f, 0.0f,
0.0f, 0.1f, 0.7f
};
result = add_camera_metadata_entry(m,
ANDROID_COLOR_CORRECTION_TRANSFORM,
colorTransform, 9);
EXPECT_EQ(OK, result);
data_used += calculate_camera_metadata_entry_data_size(
get_camera_metadata_tag_type(ANDROID_COLOR_CORRECTION_TRANSFORM), 9);
entries_used++;
EXPECT_EQ(OK, validate_camera_metadata_structure(m, NULL));
// Check added entries
camera_metadata_entry entry;
result = get_camera_metadata_entry(m,
0, &entry);
EXPECT_EQ(OK, result);
EXPECT_EQ(0, (int)entry.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, entry.tag);
EXPECT_EQ(TYPE_INT64, entry.type);
EXPECT_EQ((size_t)1, entry.count);
EXPECT_EQ(exposure_time, *entry.data.i64);
result = get_camera_metadata_entry(m,
1, &entry);
EXPECT_EQ(OK, result);
EXPECT_EQ((size_t)1, entry.index);
EXPECT_EQ(ANDROID_SENSOR_SENSITIVITY, entry.tag);
EXPECT_EQ(TYPE_INT32, entry.type);
EXPECT_EQ((size_t)1, entry.count);
EXPECT_EQ(sensitivity, *entry.data.i32);
result = get_camera_metadata_entry(m,
2, &entry);
EXPECT_EQ(OK, result);
EXPECT_EQ((size_t)2, entry.index);
EXPECT_EQ(ANDROID_LENS_FOCUS_DISTANCE, entry.tag);
EXPECT_EQ(TYPE_FLOAT, entry.type);
EXPECT_EQ((size_t)1, entry.count);
EXPECT_EQ(focusDistance, *entry.data.f);
result = get_camera_metadata_entry(m,
3, &entry);
EXPECT_EQ(OK, result);
EXPECT_EQ((size_t)3, entry.index);
EXPECT_EQ(ANDROID_COLOR_CORRECTION_TRANSFORM, entry.tag);
EXPECT_EQ(TYPE_FLOAT, entry.type);
EXPECT_EQ((size_t)9, entry.count);
for (unsigned int i=0; i < entry.count; i++) {
EXPECT_EQ(colorTransform[i], entry.data.f[i] );
}
EXPECT_EQ(calculate_camera_metadata_size(entry_capacity, data_capacity),
get_camera_metadata_size(m) );
EXPECT_EQ(calculate_camera_metadata_size(entries_used, data_used),
get_camera_metadata_compact_size(m) );
IF_ALOGV() {
dump_camera_metadata(m, 0, 2);
}
FINISH_USING_CAMERA_METADATA(m);
}
void add_test_metadata(camera_metadata_t *m, int entry_count) {
EXPECT_NOT_NULL(m);
int result;
size_t data_used = 0;
size_t entries_used = 0;
int64_t exposure_time;
for (int i=0; i < entry_count; i++ ) {
exposure_time = 100 + i * 100;
result = add_camera_metadata_entry(m,
ANDROID_SENSOR_EXPOSURE_TIME,
&exposure_time, 1);
EXPECT_EQ(OK, result);
data_used += calculate_camera_metadata_entry_data_size(
get_camera_metadata_tag_type(ANDROID_SENSOR_EXPOSURE_TIME), 1);
entries_used++;
}
EXPECT_EQ(data_used, get_camera_metadata_data_count(m));
EXPECT_EQ(entries_used, get_camera_metadata_entry_count(m));
EXPECT_GE(get_camera_metadata_data_capacity(m),
get_camera_metadata_data_count(m));
}
TEST(camera_metadata, add_get_toomany) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 5;
const size_t data_capacity = 50;
int result;
m = allocate_camera_metadata(entry_capacity, data_capacity);
add_test_metadata(m, entry_capacity);
int32_t sensitivity = 100;
result = add_camera_metadata_entry(m,
ANDROID_SENSOR_SENSITIVITY,
&sensitivity, 1);
EXPECT_EQ(ERROR, result);
camera_metadata_entry entry;
for (unsigned int i=0; i < entry_capacity; i++) {
int64_t exposure_time = 100 + i * 100;
result = get_camera_metadata_entry(m,
i, &entry);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, entry.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, entry.tag);
EXPECT_EQ(TYPE_INT64, entry.type);
EXPECT_EQ((size_t)1, entry.count);
EXPECT_EQ(exposure_time, *entry.data.i64);
}
entry.tag = 1234;
entry.type = 56;
entry.data.u8 = NULL;
entry.count = 7890;
result = get_camera_metadata_entry(m,
entry_capacity, &entry);
EXPECT_EQ(ERROR, result);
EXPECT_EQ((uint32_t)1234, entry.tag);
EXPECT_EQ((uint8_t)56, entry.type);
EXPECT_EQ(NULL, entry.data.u8);
EXPECT_EQ((size_t)7890, entry.count);
IF_ALOGV() {
dump_camera_metadata(m, 0, 2);
}
FINISH_USING_CAMERA_METADATA(m);
}
TEST(camera_metadata, add_too_much_data) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 5;
int result;
size_t data_used = entry_capacity * calculate_camera_metadata_entry_data_size(
get_camera_metadata_tag_type(ANDROID_SENSOR_EXPOSURE_TIME), 1);
m = allocate_camera_metadata(entry_capacity + 1, data_used);
add_test_metadata(m, entry_capacity);
int64_t exposure_time = 12345;
result = add_camera_metadata_entry(m,
ANDROID_SENSOR_EXPOSURE_TIME,
&exposure_time, 1);
EXPECT_EQ(ERROR, result);
FINISH_USING_CAMERA_METADATA(m);
}
TEST(camera_metadata, copy_metadata) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 50;
const size_t data_capacity = 450;
int result;
m = allocate_camera_metadata(entry_capacity, data_capacity);
add_test_metadata(m, entry_capacity);
size_t buf_size = get_camera_metadata_compact_size(m);
EXPECT_LT((size_t)0, buf_size);
uint8_t *buf = (uint8_t*)malloc(buf_size);
EXPECT_NOT_NULL(buf);
camera_metadata_t *m2 = copy_camera_metadata(buf, buf_size, m);
EXPECT_NOT_NULL(m2);
EXPECT_EQ(buf, (uint8_t*)m2);
EXPECT_EQ(get_camera_metadata_entry_count(m),
get_camera_metadata_entry_count(m2));
EXPECT_EQ(get_camera_metadata_data_count(m),
get_camera_metadata_data_count(m2));
EXPECT_EQ(get_camera_metadata_entry_capacity(m2),
get_camera_metadata_entry_count(m2));
EXPECT_EQ(get_camera_metadata_data_capacity(m2),
get_camera_metadata_data_count(m2));
for (unsigned int i=0; i < get_camera_metadata_entry_count(m); i++) {
camera_metadata_entry e1, e2;
int result;
result = get_camera_metadata_entry(m, i, &e1);
EXPECT_EQ(OK, result);
result = get_camera_metadata_entry(m2, i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(e1.index, e2.index);
EXPECT_EQ(e1.tag, e2.tag);
EXPECT_EQ(e1.type, e2.type);
EXPECT_EQ(e1.count, e2.count);
for (unsigned int j=0;
j < e1.count * camera_metadata_type_size[e1.type];
j++) {
EXPECT_EQ(e1.data.u8[j], e2.data.u8[j]);
}
}
EXPECT_EQ(OK, validate_camera_metadata_structure(m2, &buf_size));
free(buf);
FINISH_USING_CAMERA_METADATA(m);
}
TEST(camera_metadata, copy_metadata_extraspace) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 12;
const size_t data_capacity = 100;
const size_t extra_space = 10;
int result;
m = allocate_camera_metadata(entry_capacity, data_capacity);
add_test_metadata(m, entry_capacity);
size_t buf_size = get_camera_metadata_compact_size(m);
EXPECT_LT((size_t)0, buf_size);
buf_size += extra_space;
uint8_t *buf = (uint8_t*)malloc(buf_size);
EXPECT_NOT_NULL(buf);
camera_metadata_t *m2 = copy_camera_metadata(buf, buf_size, m);
EXPECT_NOT_NULL(m2);
EXPECT_EQ(buf, (uint8_t*)m2);
EXPECT_EQ(get_camera_metadata_entry_count(m),
get_camera_metadata_entry_count(m2));
EXPECT_EQ(get_camera_metadata_data_count(m),
get_camera_metadata_data_count(m2));
EXPECT_EQ(get_camera_metadata_entry_capacity(m2),
get_camera_metadata_entry_count(m2));
EXPECT_EQ(get_camera_metadata_data_capacity(m2),
get_camera_metadata_data_count(m2));
EXPECT_EQ(buf + buf_size - extra_space,
(uint8_t*)m2 + get_camera_metadata_size(m2) );
for (unsigned int i=0; i < get_camera_metadata_entry_count(m); i++) {
camera_metadata_entry e1, e2;
int result;
result = get_camera_metadata_entry(m, i, &e1);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e1.index);
result = get_camera_metadata_entry(m2, i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(e1.index, e2.index);
EXPECT_EQ(e1.tag, e2.tag);
EXPECT_EQ(e1.type, e2.type);
EXPECT_EQ(e1.count, e2.count);
for (unsigned int j=0;
j < e1.count * camera_metadata_type_size[e1.type];
j++) {
EXPECT_EQ(e1.data.u8[j], e2.data.u8[j]);
}
}
EXPECT_EQ(OK, validate_camera_metadata_structure(m2, &buf_size));
free(buf);
FINISH_USING_CAMERA_METADATA(m);
}
TEST(camera_metadata, copy_metadata_nospace) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 5;
const size_t data_capacity = 50;
int result;
m = allocate_camera_metadata(entry_capacity, data_capacity);
add_test_metadata(m, entry_capacity);
size_t buf_size = get_camera_metadata_compact_size(m);
EXPECT_LT((size_t)0, buf_size);
buf_size--;
uint8_t *buf = (uint8_t*)malloc(buf_size);
EXPECT_NOT_NULL(buf);
camera_metadata_t *m2 = copy_camera_metadata(buf, buf_size, m);
EXPECT_NULL(m2);
free(buf);
FINISH_USING_CAMERA_METADATA(m);
}
TEST(camera_metadata, append_metadata) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 5;
const size_t data_capacity = 50;
int result;
m = allocate_camera_metadata(entry_capacity, data_capacity);
add_test_metadata(m, entry_capacity);
camera_metadata_t *m2 = NULL;
m2 = allocate_camera_metadata(entry_capacity*2, data_capacity*2);
EXPECT_NOT_NULL(m2);
result = append_camera_metadata(m2, m);
EXPECT_EQ(OK, result);
EXPECT_EQ(get_camera_metadata_entry_count(m),
get_camera_metadata_entry_count(m2));
EXPECT_EQ(get_camera_metadata_data_count(m),
get_camera_metadata_data_count(m2));
EXPECT_EQ(entry_capacity*2, get_camera_metadata_entry_capacity(m2));
EXPECT_EQ(data_capacity*2, get_camera_metadata_data_capacity(m2));
for (unsigned int i=0; i < get_camera_metadata_entry_count(m); i++) {
camera_metadata_entry e1, e2;
int result;
result = get_camera_metadata_entry(m, i, &e1);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e1.index);
result = get_camera_metadata_entry(m2, i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(e1.index, e2.index);
EXPECT_EQ(e1.tag, e2.tag);
EXPECT_EQ(e1.type, e2.type);
EXPECT_EQ(e1.count, e2.count);
for (unsigned int j=0;
j < e1.count * camera_metadata_type_size[e1.type];
j++) {
EXPECT_EQ(e1.data.u8[j], e2.data.u8[j]);
}
}
result = append_camera_metadata(m2, m);
EXPECT_EQ(OK, result);
EXPECT_EQ(get_camera_metadata_entry_count(m)*2,
get_camera_metadata_entry_count(m2));
EXPECT_EQ(get_camera_metadata_data_count(m)*2,
get_camera_metadata_data_count(m2));
EXPECT_EQ(entry_capacity*2, get_camera_metadata_entry_capacity(m2));
EXPECT_EQ(data_capacity*2, get_camera_metadata_data_capacity(m2));
for (unsigned int i=0; i < get_camera_metadata_entry_count(m2); i++) {
camera_metadata_entry e1, e2;
int result;
result = get_camera_metadata_entry(m,
i % entry_capacity, &e1);
EXPECT_EQ(OK, result);
EXPECT_EQ(i % entry_capacity, e1.index);
result = get_camera_metadata_entry(m2,
i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e2.index);
EXPECT_EQ(e1.tag, e2.tag);
EXPECT_EQ(e1.type, e2.type);
EXPECT_EQ(e1.count, e2.count);
for (unsigned int j=0;
j < e1.count * camera_metadata_type_size[e1.type];
j++) {
EXPECT_EQ(e1.data.u8[j], e2.data.u8[j]);
}
}
FINISH_USING_CAMERA_METADATA(m);
FINISH_USING_CAMERA_METADATA(m2);
}
TEST(camera_metadata, append_metadata_nospace) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 5;
const size_t data_capacity = 50;
int result;
m = allocate_camera_metadata(entry_capacity, data_capacity);
add_test_metadata(m, entry_capacity);
camera_metadata_t *m2 = NULL;
m2 = allocate_camera_metadata(entry_capacity-1, data_capacity);
EXPECT_NOT_NULL(m2);
result = append_camera_metadata(m2, m);
EXPECT_EQ(ERROR, result);
EXPECT_EQ((size_t)0, get_camera_metadata_entry_count(m2));
EXPECT_EQ((size_t)0, get_camera_metadata_data_count(m2));
FINISH_USING_CAMERA_METADATA(m);
FINISH_USING_CAMERA_METADATA(m2);
}
TEST(camera_metadata, append_metadata_onespace) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 5;
const size_t data_capacity = 50;
const size_t entry_capacity2 = entry_capacity * 2 - 2;
const size_t data_capacity2 = data_capacity * 2;
int result;
m = allocate_camera_metadata(entry_capacity, data_capacity);
add_test_metadata(m, entry_capacity);
camera_metadata_t *m2 = NULL;
m2 = allocate_camera_metadata(entry_capacity2, data_capacity2);
EXPECT_NOT_NULL(m2);
result = append_camera_metadata(m2, m);
EXPECT_EQ(OK, result);
EXPECT_EQ(get_camera_metadata_entry_count(m),
get_camera_metadata_entry_count(m2));
EXPECT_EQ(get_camera_metadata_data_count(m),
get_camera_metadata_data_count(m2));
EXPECT_EQ(entry_capacity2, get_camera_metadata_entry_capacity(m2));
EXPECT_EQ(data_capacity2, get_camera_metadata_data_capacity(m2));
for (unsigned int i=0; i < get_camera_metadata_entry_count(m); i++) {
camera_metadata_entry e1, e2;
int result;
result = get_camera_metadata_entry(m, i, &e1);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e1.index);
result = get_camera_metadata_entry(m2, i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(e1.index, e2.index);
EXPECT_EQ(e1.tag, e2.tag);
EXPECT_EQ(e1.type, e2.type);
EXPECT_EQ(e1.count, e2.count);
for (unsigned int j=0;
j < e1.count * camera_metadata_type_size[e1.type];
j++) {
EXPECT_EQ(e1.data.u8[j], e2.data.u8[j]);
}
}
result = append_camera_metadata(m2, m);
EXPECT_EQ(ERROR, result);
EXPECT_EQ(entry_capacity, get_camera_metadata_entry_count(m2));
EXPECT_EQ(get_camera_metadata_data_count(m),
get_camera_metadata_data_count(m2));
EXPECT_EQ(entry_capacity2, get_camera_metadata_entry_capacity(m2));
EXPECT_EQ(data_capacity2, get_camera_metadata_data_capacity(m2));
for (unsigned int i=0; i < get_camera_metadata_entry_count(m2); i++) {
camera_metadata_entry e1, e2;
int result;
result = get_camera_metadata_entry(m,
i % entry_capacity, &e1);
EXPECT_EQ(OK, result);
EXPECT_EQ(i % entry_capacity, e1.index);
result = get_camera_metadata_entry(m2, i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e2.index);
EXPECT_EQ(e1.tag, e2.tag);
EXPECT_EQ(e1.type, e2.type);
EXPECT_EQ(e1.count, e2.count);
for (unsigned int j=0;
j < e1.count * camera_metadata_type_size[e1.type];
j++) {
EXPECT_EQ(e1.data.u8[j], e2.data.u8[j]);
}
}
FINISH_USING_CAMERA_METADATA(m);
FINISH_USING_CAMERA_METADATA(m2);
}
TEST(camera_metadata, vendor_tags) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 5;
const size_t data_capacity = 50;
int result;
m = allocate_camera_metadata(entry_capacity, data_capacity);
uint8_t superMode = 5;
result = add_camera_metadata_entry(m,
FAKEVENDOR_SENSOR_SUPERMODE,
&superMode, 1);
EXPECT_EQ(ERROR, result);
EXPECT_EQ(OK, validate_camera_metadata_structure(m, NULL));
result = add_camera_metadata_entry(m,
ANDROID_REQUEST_METADATA_MODE,
&superMode, 1);
EXPECT_EQ(OK, result);
EXPECT_EQ(OK, validate_camera_metadata_structure(m, NULL));
EXPECT_NULL(get_camera_metadata_section_name(FAKEVENDOR_SENSOR_SUPERMODE));
EXPECT_NULL(get_camera_metadata_tag_name(FAKEVENDOR_SENSOR_SUPERMODE));
EXPECT_EQ(-1, get_camera_metadata_tag_type(FAKEVENDOR_SENSOR_SUPERMODE));
set_camera_metadata_vendor_tag_ops(&fakevendor_query_ops);
result = add_camera_metadata_entry(m,
FAKEVENDOR_SENSOR_SUPERMODE,
&superMode, 1);
EXPECT_EQ(OK, result);
EXPECT_EQ(OK, validate_camera_metadata_structure(m, NULL));
result = add_camera_metadata_entry(m,
ANDROID_REQUEST_METADATA_MODE,
&superMode, 1);
EXPECT_EQ(OK, result);
EXPECT_EQ(OK, validate_camera_metadata_structure(m, NULL));
result = add_camera_metadata_entry(m,
FAKEVENDOR_SCALER_END,
&superMode, 1);
EXPECT_EQ(ERROR, result);
EXPECT_EQ(OK, validate_camera_metadata_structure(m, NULL));
EXPECT_STREQ("com.fakevendor.sensor",
get_camera_metadata_section_name(FAKEVENDOR_SENSOR_SUPERMODE));
EXPECT_STREQ("superMode",
get_camera_metadata_tag_name(FAKEVENDOR_SENSOR_SUPERMODE));
EXPECT_EQ(TYPE_BYTE,
get_camera_metadata_tag_type(FAKEVENDOR_SENSOR_SUPERMODE));
EXPECT_STREQ("com.fakevendor.scaler",
get_camera_metadata_section_name(FAKEVENDOR_SCALER_END));
EXPECT_NULL(get_camera_metadata_tag_name(FAKEVENDOR_SCALER_END));
EXPECT_EQ(-1, get_camera_metadata_tag_type(FAKEVENDOR_SCALER_END));
set_camera_metadata_vendor_tag_ops(NULL);
// TODO: fix vendor ops. Then the below 3 validations should fail.
EXPECT_EQ(OK, validate_camera_metadata_structure(m, NULL));
result = add_camera_metadata_entry(m,
FAKEVENDOR_SENSOR_SUPERMODE,
&superMode, 1);
EXPECT_EQ(ERROR, result);
EXPECT_EQ(OK, validate_camera_metadata_structure(m, NULL));
result = add_camera_metadata_entry(m,
ANDROID_REQUEST_METADATA_MODE,
&superMode, 1);
EXPECT_EQ(OK, result);
EXPECT_EQ(OK, validate_camera_metadata_structure(m, NULL));
EXPECT_NULL(get_camera_metadata_section_name(FAKEVENDOR_SENSOR_SUPERMODE));
EXPECT_NULL(get_camera_metadata_tag_name(FAKEVENDOR_SENSOR_SUPERMODE));
EXPECT_EQ(-1, get_camera_metadata_tag_type(FAKEVENDOR_SENSOR_SUPERMODE));
// Remove all vendor entries so validation passes
{
camera_metadata_ro_entry_t entry;
EXPECT_EQ(OK, find_camera_metadata_ro_entry(m,
FAKEVENDOR_SENSOR_SUPERMODE,
&entry));
EXPECT_EQ(OK, delete_camera_metadata_entry(m, entry.index));
}
FINISH_USING_CAMERA_METADATA(m);
}
TEST(camera_metadata, add_all_tags) {
int total_tag_count = 0;
for (int i = 0; i < ANDROID_SECTION_COUNT; i++) {
total_tag_count += camera_metadata_section_bounds[i][1] -
camera_metadata_section_bounds[i][0];
}
int entry_data_count = 3;
int conservative_data_space = total_tag_count * entry_data_count * 8;
uint8_t data[entry_data_count * 8];
int32_t *data_int32 = (int32_t *)data;
float *data_float = (float *)data;
int64_t *data_int64 = (int64_t *)data;
double *data_double = (double *)data;
camera_metadata_rational_t *data_rational =
(camera_metadata_rational_t *)data;
camera_metadata_t *m = allocate_camera_metadata(total_tag_count,
conservative_data_space);
ASSERT_NE((void*)NULL, (void*)m);
int result;
int counter = 0;
for (int i = 0; i < ANDROID_SECTION_COUNT; i++) {
for (uint32_t tag = camera_metadata_section_bounds[i][0];
tag < camera_metadata_section_bounds[i][1];
tag++, counter++) {
int type = get_camera_metadata_tag_type(tag);
ASSERT_NE(-1, type);
switch (type) {
case TYPE_BYTE:
data[0] = tag & 0xFF;
data[1] = (tag >> 8) & 0xFF;
data[2] = (tag >> 16) & 0xFF;
break;
case TYPE_INT32:
data_int32[0] = tag;
data_int32[1] = i;
data_int32[2] = counter;
break;
case TYPE_FLOAT:
data_float[0] = tag;
data_float[1] = i;
data_float[2] = counter / (float)total_tag_count;
break;
case TYPE_INT64:
data_int64[0] = (int64_t)tag | ( (int64_t)tag << 32);
data_int64[1] = i;
data_int64[2] = counter;
break;
case TYPE_DOUBLE:
data_double[0] = tag;
data_double[1] = i;
data_double[2] = counter / (double)total_tag_count;
break;
case TYPE_RATIONAL:
data_rational[0].numerator = tag;
data_rational[0].denominator = 1;
data_rational[1].numerator = i;
data_rational[1].denominator = 1;
data_rational[2].numerator = counter;
data_rational[2].denominator = total_tag_count;
break;
default:
FAIL() << "Unknown type field encountered:" << type;
break;
}
result = add_camera_metadata_entry(m,
tag,
data,
entry_data_count);
ASSERT_EQ(OK, result);
}
}
IF_ALOGV() {
dump_camera_metadata(m, 0, 2);
}
FINISH_USING_CAMERA_METADATA(m);
}
TEST(camera_metadata, sort_metadata) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 5;
const size_t data_capacity = 100;
int result;
m = allocate_camera_metadata(entry_capacity, data_capacity);
// Add several unique entries in non-sorted order
float colorTransform[9] = {
0.9f, 0.0f, 0.0f,
0.2f, 0.5f, 0.0f,
0.0f, 0.1f, 0.7f
};
result = add_camera_metadata_entry(m,
ANDROID_COLOR_CORRECTION_TRANSFORM,
colorTransform, 9);
EXPECT_EQ(OK, result);
float focus_distance = 0.5f;
result = add_camera_metadata_entry(m,
ANDROID_LENS_FOCUS_DISTANCE,
&focus_distance, 1);
EXPECT_EQ(OK, result);
int64_t exposure_time = 1000000000;
result = add_camera_metadata_entry(m,
ANDROID_SENSOR_EXPOSURE_TIME,
&exposure_time, 1);
EXPECT_EQ(OK, result);
int32_t sensitivity = 800;
result = add_camera_metadata_entry(m,
ANDROID_SENSOR_SENSITIVITY,
&sensitivity, 1);
EXPECT_EQ(OK, result);
// Test unsorted find
camera_metadata_entry_t entry;
result = find_camera_metadata_entry(m,
ANDROID_LENS_FOCUS_DISTANCE,
&entry);
EXPECT_EQ(OK, result);
EXPECT_EQ(ANDROID_LENS_FOCUS_DISTANCE, entry.tag);
EXPECT_EQ((size_t)1, entry.index);
EXPECT_EQ(TYPE_FLOAT, entry.type);
EXPECT_EQ((size_t)1, entry.count);
EXPECT_EQ(focus_distance, *entry.data.f);
result = find_camera_metadata_entry(m,
ANDROID_NOISE_REDUCTION_STRENGTH,
&entry);
EXPECT_EQ(NOT_FOUND, result);
EXPECT_EQ((size_t)1, entry.index);
EXPECT_EQ(ANDROID_LENS_FOCUS_DISTANCE, entry.tag);
EXPECT_EQ(TYPE_FLOAT, entry.type);
EXPECT_EQ((size_t)1, entry.count);
EXPECT_EQ(focus_distance, *entry.data.f);
// Sort
IF_ALOGV() {
std::cout << "Pre-sorted metadata" << std::endl;
dump_camera_metadata(m, 0, 2);
}
result = sort_camera_metadata(m);
EXPECT_EQ(OK, result);
IF_ALOGV() {
std::cout << "Sorted metadata" << std::endl;
dump_camera_metadata(m, 0, 2);
}
// Test sorted find
size_t lensFocusIndex = -1;
{
std::vector<uint32_t> tags;
tags.push_back(ANDROID_COLOR_CORRECTION_TRANSFORM);
tags.push_back(ANDROID_LENS_FOCUS_DISTANCE);
tags.push_back(ANDROID_SENSOR_EXPOSURE_TIME);
tags.push_back(ANDROID_SENSOR_SENSITIVITY);
std::sort(tags.begin(), tags.end());
lensFocusIndex =
std::find(tags.begin(), tags.end(), ANDROID_LENS_FOCUS_DISTANCE)
- tags.begin();
}
result = find_camera_metadata_entry(m,
ANDROID_LENS_FOCUS_DISTANCE,
&entry);
EXPECT_EQ(OK, result);
EXPECT_EQ(lensFocusIndex, entry.index);
EXPECT_EQ(ANDROID_LENS_FOCUS_DISTANCE, entry.tag);
EXPECT_EQ(TYPE_FLOAT, entry.type);
EXPECT_EQ((size_t)1, (size_t)entry.count);
EXPECT_EQ(focus_distance, *entry.data.f);
result = find_camera_metadata_entry(m,
ANDROID_NOISE_REDUCTION_STRENGTH,
&entry);
EXPECT_EQ(NOT_FOUND, result);
EXPECT_EQ(lensFocusIndex, entry.index);
EXPECT_EQ(ANDROID_LENS_FOCUS_DISTANCE, entry.tag);
EXPECT_EQ(TYPE_FLOAT, entry.type);
EXPECT_EQ((size_t)1, entry.count);
EXPECT_EQ(focus_distance, *entry.data.f);
FINISH_USING_CAMERA_METADATA(m);
}
TEST(camera_metadata, delete_metadata) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 50;
const size_t data_capacity = 450;
int result;
m = allocate_camera_metadata(entry_capacity, data_capacity);
size_t num_entries = 5;
size_t data_per_entry =
calculate_camera_metadata_entry_data_size(TYPE_INT64, 1);
size_t num_data = num_entries * data_per_entry;
// Delete an entry with data
add_test_metadata(m, num_entries);
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m));
result = delete_camera_metadata_entry(m, 1);
EXPECT_EQ(OK, result);
num_entries--;
num_data -= data_per_entry;
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m));
EXPECT_EQ(entry_capacity, get_camera_metadata_entry_capacity(m));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m));
EXPECT_EQ(data_capacity, get_camera_metadata_data_capacity(m));
result = delete_camera_metadata_entry(m, 4);
EXPECT_EQ(ERROR, result);
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m));
EXPECT_EQ(entry_capacity, get_camera_metadata_entry_capacity(m));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m));
EXPECT_EQ(data_capacity, get_camera_metadata_data_capacity(m));
for (size_t i = 0; i < num_entries; i++) {
camera_metadata_entry e;
result = get_camera_metadata_entry(m, i, &e);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e.tag);
EXPECT_EQ(TYPE_INT64, e.type);
int64_t exposureTime = i < 1 ? 100 : 200 + 100 * i;
EXPECT_EQ(exposureTime, *e.data.i64);
}
// Delete an entry with no data, at end of array
int32_t frameCount = 12;
result = add_camera_metadata_entry(m,
ANDROID_REQUEST_FRAME_COUNT,
&frameCount, 1);
EXPECT_EQ(OK, result);
num_entries++;
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m));
EXPECT_EQ(entry_capacity, get_camera_metadata_entry_capacity(m));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m));
EXPECT_EQ(data_capacity, get_camera_metadata_data_capacity(m));
camera_metadata_entry e;
result = get_camera_metadata_entry(m, 4, &e);
EXPECT_EQ(OK, result);
EXPECT_EQ((size_t)4, e.index);
EXPECT_EQ(ANDROID_REQUEST_FRAME_COUNT, e.tag);
EXPECT_EQ(TYPE_INT32, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(frameCount, *e.data.i32);
result = delete_camera_metadata_entry(m, 4);
EXPECT_EQ(OK, result);
num_entries--;
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m));
EXPECT_EQ(entry_capacity, get_camera_metadata_entry_capacity(m));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m));
EXPECT_EQ(data_capacity, get_camera_metadata_data_capacity(m));
result = delete_camera_metadata_entry(m, 4);
EXPECT_EQ(ERROR, result);
result = get_camera_metadata_entry(m, 4, &e);
EXPECT_EQ(ERROR, result);
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m));
EXPECT_EQ(entry_capacity, get_camera_metadata_entry_capacity(m));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m));
EXPECT_EQ(data_capacity, get_camera_metadata_data_capacity(m));
// Delete with extra data on end of array
result = delete_camera_metadata_entry(m, 3);
EXPECT_EQ(OK, result);
num_entries--;
num_data -= data_per_entry;
for (size_t i = 0; i < num_entries; i++) {
camera_metadata_entry e2;
result = get_camera_metadata_entry(m, i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e2.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e2.tag);
EXPECT_EQ(TYPE_INT64, e2.type);
int64_t exposureTime = i < 1 ? 100 : 200 + 100 * i;
EXPECT_EQ(exposureTime, *e2.data.i64);
}
// Delete without extra data in front of array
frameCount = 1001;
result = add_camera_metadata_entry(m,
ANDROID_REQUEST_FRAME_COUNT,
&frameCount, 1);
EXPECT_EQ(OK, result);
num_entries++;
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m));
EXPECT_EQ(entry_capacity, get_camera_metadata_entry_capacity(m));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m));
EXPECT_EQ(data_capacity, get_camera_metadata_data_capacity(m));
result = sort_camera_metadata(m);
EXPECT_EQ(OK, result);
result = find_camera_metadata_entry(m,
ANDROID_REQUEST_FRAME_COUNT, &e);
EXPECT_EQ(OK, result);
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_REQUEST_FRAME_COUNT, e.tag);
EXPECT_EQ(TYPE_INT32, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(frameCount, *e.data.i32);
result = delete_camera_metadata_entry(m, e.index);
EXPECT_EQ(OK, result);
num_entries--;
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m));
EXPECT_EQ(entry_capacity, get_camera_metadata_entry_capacity(m));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m));
EXPECT_EQ(data_capacity, get_camera_metadata_data_capacity(m));
for (size_t i = 0; i < num_entries; i++) {
camera_metadata_entry e2;
result = get_camera_metadata_entry(m, i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e2.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e2.tag);
EXPECT_EQ(TYPE_INT64, e2.type);
int64_t exposureTime = i < 1 ? 100 : 200 + 100 * i;
EXPECT_EQ(exposureTime, *e2.data.i64);
}
}
TEST(camera_metadata, update_metadata) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 50;
const size_t data_capacity = 450;
int result;
m = allocate_camera_metadata(entry_capacity, data_capacity);
size_t num_entries = 5;
size_t data_per_entry =
calculate_camera_metadata_entry_data_size(TYPE_INT64, 1);
size_t num_data = num_entries * data_per_entry;
add_test_metadata(m, num_entries);
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m));
// Update with same-size data, doesn't fit in entry
int64_t newExposureTime = 1000;
camera_metadata_entry_t e;
result = update_camera_metadata_entry(m,
0, &newExposureTime, 1, &e);
EXPECT_EQ(OK, result);
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e.tag);
EXPECT_EQ(TYPE_INT64, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(newExposureTime, *e.data.i64);
e.count = 0;
result = get_camera_metadata_entry(m,
0, &e);
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e.tag);
EXPECT_EQ(TYPE_INT64, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(newExposureTime, *e.data.i64);
for (size_t i = 1; i < num_entries; i++) {
camera_metadata_entry e2;
result = get_camera_metadata_entry(m, i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e2.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e2.tag);
EXPECT_EQ(TYPE_INT64, e2.type);
int64_t exposureTime = 100 + 100 * i;
EXPECT_EQ(exposureTime, *e2.data.i64);
}
// Update with larger data
int64_t newExposures[2] = { 5000, 6000 };
result = update_camera_metadata_entry(m,
0, newExposures, 2, &e);
EXPECT_EQ(OK, result);
num_data += data_per_entry;
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m));
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e.tag);
EXPECT_EQ(TYPE_INT64, e.type);
EXPECT_EQ((size_t)2, e.count);
EXPECT_EQ(newExposures[0], e.data.i64[0]);
EXPECT_EQ(newExposures[1], e.data.i64[1]);
e.count = 0;
result = get_camera_metadata_entry(m,
0, &e);
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e.tag);
EXPECT_EQ(TYPE_INT64, e.type);
EXPECT_EQ((size_t)2, e.count);
EXPECT_EQ(newExposures[0], e.data.i64[0]);
EXPECT_EQ(newExposures[1], e.data.i64[1]);
for (size_t i = 1; i < num_entries; i++) {
camera_metadata_entry e2;
result = get_camera_metadata_entry(m, i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e2.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e2.tag);
EXPECT_EQ(TYPE_INT64, e2.type);
int64_t exposureTime = 100 + 100 * i;
EXPECT_EQ(exposureTime, *e2.data.i64);
}
// Update with smaller data
newExposureTime = 100;
result = update_camera_metadata_entry(m,
0, &newExposureTime, 1, &e);
EXPECT_EQ(OK, result);
num_data -= data_per_entry;
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m));
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e.tag);
EXPECT_EQ(TYPE_INT64, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(newExposureTime, *e.data.i64);
e.count = 0;
result = get_camera_metadata_entry(m,
0, &e);
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e.tag);
EXPECT_EQ(TYPE_INT64, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(newExposureTime, *e.data.i64);
for (size_t i = 1; i < num_entries; i++) {
camera_metadata_entry e2;
result = get_camera_metadata_entry(m, i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e2.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e2.tag);
EXPECT_EQ(TYPE_INT64, e2.type);
int64_t exposureTime = 100 + 100 * i;
EXPECT_EQ(exposureTime, *e2.data.i64);
}
// Update with size fitting in entry
int32_t frameCount = 1001;
result = add_camera_metadata_entry(m,
ANDROID_REQUEST_FRAME_COUNT,
&frameCount, 1);
EXPECT_EQ(OK, result);
num_entries++;
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m));
EXPECT_EQ(entry_capacity, get_camera_metadata_entry_capacity(m));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m));
EXPECT_EQ(data_capacity, get_camera_metadata_data_capacity(m));
result = sort_camera_metadata(m);
EXPECT_EQ(OK, result);
result = find_camera_metadata_entry(m,
ANDROID_REQUEST_FRAME_COUNT, &e);
EXPECT_EQ(OK, result);
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_REQUEST_FRAME_COUNT, e.tag);
EXPECT_EQ(TYPE_INT32, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(frameCount, *e.data.i32);
int32_t newFrameCount = 0x12349876;
result = update_camera_metadata_entry(m,
0, &newFrameCount, 1, &e);
EXPECT_EQ(OK, result);
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_REQUEST_FRAME_COUNT, e.tag);
EXPECT_EQ(TYPE_INT32, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(newFrameCount, *e.data.i32);
result = find_camera_metadata_entry(m,
ANDROID_REQUEST_FRAME_COUNT, &e);
EXPECT_EQ(OK, result);
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_REQUEST_FRAME_COUNT, e.tag);
EXPECT_EQ(TYPE_INT32, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(newFrameCount, *e.data.i32);
for (size_t i = 1; i < num_entries; i++) {
camera_metadata_entry e2;
result = get_camera_metadata_entry(m, i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e2.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e2.tag);
EXPECT_EQ(TYPE_INT64, e2.type);
int64_t exposureTime = 100 * i;
EXPECT_EQ(exposureTime, *e2.data.i64);
}
// Update to bigger than entry
int32_t newFrameCounts[4] = { 0x0, 0x1, 0x10, 0x100 };
result = update_camera_metadata_entry(m,
0, &newFrameCounts, 4, &e);
EXPECT_EQ(OK, result);
num_data += calculate_camera_metadata_entry_data_size(TYPE_INT32,
4);
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m));
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_REQUEST_FRAME_COUNT, e.tag);
EXPECT_EQ(TYPE_INT32, e.type);
EXPECT_EQ((size_t)4, e.count);
EXPECT_EQ(newFrameCounts[0], e.data.i32[0]);
EXPECT_EQ(newFrameCounts[1], e.data.i32[1]);
EXPECT_EQ(newFrameCounts[2], e.data.i32[2]);
EXPECT_EQ(newFrameCounts[3], e.data.i32[3]);
e.count = 0;
result = find_camera_metadata_entry(m,
ANDROID_REQUEST_FRAME_COUNT, &e);
EXPECT_EQ(OK, result);
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_REQUEST_FRAME_COUNT, e.tag);
EXPECT_EQ(TYPE_INT32, e.type);
EXPECT_EQ((size_t)4, e.count);
EXPECT_EQ(newFrameCounts[0], e.data.i32[0]);
EXPECT_EQ(newFrameCounts[1], e.data.i32[1]);
EXPECT_EQ(newFrameCounts[2], e.data.i32[2]);
EXPECT_EQ(newFrameCounts[3], e.data.i32[3]);
for (size_t i = 1; i < num_entries; i++) {
camera_metadata_entry e2;
result = get_camera_metadata_entry(m, i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e2.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e2.tag);
EXPECT_EQ(TYPE_INT64, e2.type);
int64_t exposureTime = 100 * i;
EXPECT_EQ(exposureTime, *e2.data.i64);
}
// Update to smaller than entry
result = update_camera_metadata_entry(m,
0, &newFrameCount, 1, &e);
EXPECT_EQ(OK, result);
num_data -= camera_metadata_type_size[TYPE_INT32] * 4;
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m));
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_REQUEST_FRAME_COUNT, e.tag);
EXPECT_EQ(TYPE_INT32, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(newFrameCount, *e.data.i32);
result = find_camera_metadata_entry(m,
ANDROID_REQUEST_FRAME_COUNT, &e);
EXPECT_EQ(OK, result);
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_REQUEST_FRAME_COUNT, e.tag);
EXPECT_EQ(TYPE_INT32, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(newFrameCount, *e.data.i32);
for (size_t i = 1; i < num_entries; i++) {
camera_metadata_entry_t e2;
result = get_camera_metadata_entry(m, i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e2.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e2.tag);
EXPECT_EQ(TYPE_INT64, e2.type);
int64_t exposureTime = 100 * i;
EXPECT_EQ(exposureTime, *e2.data.i64);
}
// Setup new buffer with no spare data space
result = update_camera_metadata_entry(m,
1, newExposures, 2, &e);
EXPECT_EQ(OK, result);
num_data += data_per_entry;
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m));
EXPECT_EQ((size_t)1, e.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e.tag);
EXPECT_EQ(TYPE_INT64, e.type);
EXPECT_EQ((size_t)2, e.count);
EXPECT_EQ(newExposures[0], e.data.i64[0]);
EXPECT_EQ(newExposures[1], e.data.i64[1]);
camera_metadata_t *m2;
m2 = allocate_camera_metadata(get_camera_metadata_entry_count(m),
get_camera_metadata_data_count(m));
EXPECT_NOT_NULL(m2);
result = append_camera_metadata(m2, m);
EXPECT_EQ(OK, result);
result = find_camera_metadata_entry(m2,
ANDROID_REQUEST_FRAME_COUNT, &e);
EXPECT_EQ(OK, result);
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_REQUEST_FRAME_COUNT, e.tag);
EXPECT_EQ(TYPE_INT32, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(newFrameCount, *e.data.i32);
// Update when there's no more room
result = update_camera_metadata_entry(m2,
0, &newFrameCounts, 4, &e);
EXPECT_EQ(ERROR, result);
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m2));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m2));
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_REQUEST_FRAME_COUNT, e.tag);
EXPECT_EQ(TYPE_INT32, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(newFrameCount, *e.data.i32);
// Update when there's no data room, but change fits into entry
newFrameCount = 5;
result = update_camera_metadata_entry(m2,
0, &newFrameCount, 1, &e);
EXPECT_EQ(OK, result);
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m2));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m2));
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_REQUEST_FRAME_COUNT, e.tag);
EXPECT_EQ(TYPE_INT32, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(newFrameCount, *e.data.i32);
result = find_camera_metadata_entry(m2,
ANDROID_REQUEST_FRAME_COUNT, &e);
EXPECT_EQ(OK, result);
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_REQUEST_FRAME_COUNT, e.tag);
EXPECT_EQ(TYPE_INT32, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(newFrameCount, *e.data.i32);
result = get_camera_metadata_entry(m2, 1, &e);
EXPECT_EQ((size_t)1, e.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e.tag);
EXPECT_EQ(TYPE_INT64, e.type);
EXPECT_EQ((size_t)2, e.count);
EXPECT_EQ(newExposures[0], e.data.i64[0]);
EXPECT_EQ(newExposures[1], e.data.i64[1]);
for (size_t i = 2; i < num_entries; i++) {
camera_metadata_entry_t e2;
result = get_camera_metadata_entry(m2, i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e2.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e2.tag);
EXPECT_EQ(TYPE_INT64, e2.type);
int64_t exposureTime = 100 * i;
EXPECT_EQ(exposureTime, *e2.data.i64);
}
// Update when there's no data room, but data size doesn't change
newExposures[0] = 1000;
result = update_camera_metadata_entry(m2,
1, newExposures, 2, &e);
EXPECT_EQ(OK, result);
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m2));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m2));
EXPECT_EQ((size_t)1, e.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e.tag);
EXPECT_EQ(TYPE_INT64, e.type);
EXPECT_EQ((size_t)2, e.count);
EXPECT_EQ(newExposures[0], e.data.i64[0]);
EXPECT_EQ(newExposures[1], e.data.i64[1]);
result = find_camera_metadata_entry(m2,
ANDROID_REQUEST_FRAME_COUNT, &e);
EXPECT_EQ(OK, result);
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_REQUEST_FRAME_COUNT, e.tag);
EXPECT_EQ(TYPE_INT32, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(newFrameCount, *e.data.i32);
for (size_t i = 2; i < num_entries; i++) {
camera_metadata_entry_t e2;
result = get_camera_metadata_entry(m2, i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e2.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e2.tag);
EXPECT_EQ(TYPE_INT64, e2.type);
int64_t exposureTime = 100 * i;
EXPECT_EQ(exposureTime, *e2.data.i64);
}
// Update when there's no data room, but data size shrinks
result = update_camera_metadata_entry(m2,
1, &newExposureTime, 1, &e);
EXPECT_EQ(OK, result);
num_data -= calculate_camera_metadata_entry_data_size(TYPE_INT64, 2);
num_data += calculate_camera_metadata_entry_data_size(TYPE_INT64, 1);
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m2));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m2));
EXPECT_EQ((size_t)1, e.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e.tag);
EXPECT_EQ(TYPE_INT64, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(newExposureTime, e.data.i64[0]);
result = find_camera_metadata_entry(m2,
ANDROID_REQUEST_FRAME_COUNT, &e);
EXPECT_EQ(OK, result);
EXPECT_EQ((size_t)0, e.index);
EXPECT_EQ(ANDROID_REQUEST_FRAME_COUNT, e.tag);
EXPECT_EQ(TYPE_INT32, e.type);
EXPECT_EQ((size_t)1, e.count);
EXPECT_EQ(newFrameCount, *e.data.i32);
for (size_t i = 2; i < num_entries; i++) {
camera_metadata_entry_t e2;
result = get_camera_metadata_entry(m2, i, &e2);
EXPECT_EQ(OK, result);
EXPECT_EQ(i, e2.index);
EXPECT_EQ(ANDROID_SENSOR_EXPOSURE_TIME, e2.tag);
EXPECT_EQ(TYPE_INT64, e2.type);
int64_t exposureTime = 100 * i;
EXPECT_EQ(exposureTime, *e2.data.i64);
}
}
TEST(camera_metadata, user_pointer) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 50;
const size_t data_capacity = 450;
int result;
m = allocate_camera_metadata(entry_capacity, data_capacity);
size_t num_entries = 5;
size_t data_per_entry =
calculate_camera_metadata_entry_data_size(TYPE_INT64, 1);
size_t num_data = num_entries * data_per_entry;
add_test_metadata(m, num_entries);
EXPECT_EQ(num_entries, get_camera_metadata_entry_count(m));
EXPECT_EQ(num_data, get_camera_metadata_data_count(m));
void* ptr;
result = get_camera_metadata_user_pointer(m, &ptr);
EXPECT_EQ(OK, result);
EXPECT_NULL(ptr);
int testValue = 10;
result = set_camera_metadata_user_pointer(m, &testValue);
EXPECT_EQ(OK, result);
result = get_camera_metadata_user_pointer(m, &ptr);
EXPECT_EQ(OK, result);
EXPECT_EQ(&testValue, (int*)ptr);
EXPECT_EQ(testValue, *(int*)ptr);
size_t buf_size = get_camera_metadata_compact_size(m);
EXPECT_LT((size_t)0, buf_size);
uint8_t *buf = (uint8_t*)malloc(buf_size);
EXPECT_NOT_NULL(buf);
camera_metadata_t *m2 = copy_camera_metadata(buf, buf_size, m);
EXPECT_NOT_NULL(m2);
result = get_camera_metadata_user_pointer(m2, &ptr);
EXPECT_NULL(ptr);
EXPECT_EQ(OK, validate_camera_metadata_structure(m2, &buf_size));
free(buf);
FINISH_USING_CAMERA_METADATA(m);
}
TEST(camera_metadata, memcpy) {
camera_metadata_t *m = NULL;
const size_t entry_capacity = 50;
const size_t data_capacity = 450;
int result;
m = allocate_camera_metadata(entry_capacity, data_capacity);
add_test_metadata(m, 5);
size_t m_size = get_camera_metadata_size(m);
uint8_t *dst = new uint8_t[m_size];
memcpy(dst, m, m_size);
camera_metadata_t *m2 = reinterpret_cast<camera_metadata_t*>(dst);
ASSERT_EQ(get_camera_metadata_size(m),
get_camera_metadata_size(m2));
EXPECT_EQ(get_camera_metadata_compact_size(m),
get_camera_metadata_compact_size(m2));
ASSERT_EQ(get_camera_metadata_entry_count(m),
get_camera_metadata_entry_count(m2));
EXPECT_EQ(get_camera_metadata_entry_capacity(m),
get_camera_metadata_entry_capacity(m2));
EXPECT_EQ(get_camera_metadata_data_count(m),
get_camera_metadata_data_count(m2));
EXPECT_EQ(get_camera_metadata_data_capacity(m),
get_camera_metadata_data_capacity(m2));
camera_metadata_entry_t e1, e2;
for (size_t i = 0; i < get_camera_metadata_entry_count(m); i++) {
result = get_camera_metadata_entry(m, i, &e1);
ASSERT_EQ(OK, result);
result = get_camera_metadata_entry(m2, i, &e2);
ASSERT_EQ(OK, result);
EXPECT_EQ(e1.index, e2.index);
EXPECT_EQ(e1.tag, e2.tag);
ASSERT_EQ(e1.type, e2.type);
ASSERT_EQ(e1.count, e2.count);
ASSERT_TRUE(!memcmp(e1.data.u8, e2.data.u8,
camera_metadata_type_size[e1.type] * e1.count));
}
// Make sure updating one metadata buffer doesn't change the other
int64_t double_exposure_time[] = { 100, 200 };
result = update_camera_metadata_entry(m, 0,
double_exposure_time,
sizeof(double_exposure_time)/sizeof(int64_t), NULL);
EXPECT_EQ(OK, result);
result = get_camera_metadata_entry(m, 0, &e1);
ASSERT_EQ(OK, result);
result = get_camera_metadata_entry(m2, 0, &e2);
ASSERT_EQ(OK, result);
EXPECT_EQ(e1.index, e2.index);
EXPECT_EQ(e1.tag, e2.tag);
ASSERT_EQ(e1.type, e2.type);
ASSERT_EQ((size_t)2, e1.count);
ASSERT_EQ((size_t)1, e2.count);
EXPECT_EQ(100, e1.data.i64[0]);
EXPECT_EQ(200, e1.data.i64[1]);
EXPECT_EQ(100, e2.data.i64[0]);
// And in the reverse direction as well
double_exposure_time[0] = 300;
result = update_camera_metadata_entry(m2, 0,
double_exposure_time,
sizeof(double_exposure_time)/sizeof(int64_t), NULL);
EXPECT_EQ(OK, result);
result = get_camera_metadata_entry(m, 0, &e1);
ASSERT_EQ(OK, result);
result = get_camera_metadata_entry(m2, 0, &e2);
ASSERT_EQ(OK, result);
EXPECT_EQ(e1.index, e2.index);
EXPECT_EQ(e1.tag, e2.tag);
ASSERT_EQ(e1.type, e2.type);
ASSERT_EQ((size_t)2, e1.count);
ASSERT_EQ((size_t)2, e2.count);
EXPECT_EQ(100, e1.data.i64[0]);
EXPECT_EQ(200, e1.data.i64[1]);
EXPECT_EQ(300, e2.data.i64[0]);
EXPECT_EQ(200, e2.data.i64[1]);
EXPECT_EQ(OK, validate_camera_metadata_structure(m2, &m_size));
delete dst;
FINISH_USING_CAMERA_METADATA(m);
}
TEST(camera_metadata, data_alignment) {
// Verify that when we store the data, the data aligned as we expect
camera_metadata_t *m = NULL;
const size_t entry_capacity = 50;
const size_t data_capacity = 450;
char dummy_data[data_capacity] = {0,};
int m_types[] = {
TYPE_BYTE,
TYPE_INT32,
TYPE_FLOAT,
TYPE_INT64,
TYPE_DOUBLE,
TYPE_RATIONAL
};
const size_t (&m_type_sizes)[NUM_TYPES] = camera_metadata_type_size;
size_t m_type_align[] = {
_Alignas(uint8_t), // BYTE
_Alignas(int32_t), // INT32
_Alignas(float), // FLOAT
_Alignas(int64_t), // INT64
_Alignas(double), // DOUBLE
_Alignas(camera_metadata_rational_t), // RATIONAL
};
/* arbitrary tags. the important thing is that their type
corresponds to m_type_sizes[i]
*/
int m_type_tags[] = {
ANDROID_REQUEST_TYPE,
ANDROID_REQUEST_ID,
ANDROID_LENS_FOCUS_DISTANCE,
ANDROID_SENSOR_EXPOSURE_TIME,
ANDROID_JPEG_GPS_COORDINATES,
ANDROID_CONTROL_AE_COMPENSATION_STEP
};
/*
if the asserts fail, its because we added more types.
this means the test should be updated to include more types.
*/
ASSERT_EQ((size_t)NUM_TYPES, sizeof(m_types)/sizeof(m_types[0]));
ASSERT_EQ((size_t)NUM_TYPES, sizeof(m_type_align)/sizeof(m_type_align[0]));
ASSERT_EQ((size_t)NUM_TYPES, sizeof(m_type_tags)/sizeof(m_type_tags[0]));
for (int m_type = 0; m_type < (int)NUM_TYPES; ++m_type) {
ASSERT_EQ(m_types[m_type],
get_camera_metadata_tag_type(m_type_tags[m_type]));
// misalignment possibilities are [0,type_size) for any type pointer
for (size_t i = 0; i < m_type_sizes[m_type]; ++i) {
/* data_count = 1, we may store data in the index.
data_count = 10, we will store data separately
*/
for (int data_count = 1; data_count <= 10; data_count += 9) {
m = allocate_camera_metadata(entry_capacity, data_capacity);
// add dummy data to test various different padding requirements
ASSERT_EQ(OK,
add_camera_metadata_entry(m,
m_type_tags[TYPE_BYTE],
&dummy_data[0],
data_count + i));
// insert the type we care to test
ASSERT_EQ(OK,
add_camera_metadata_entry(m, m_type_tags[m_type],
&dummy_data[0], data_count));
// now check the alignment for our desired type. it should be ok
camera_metadata_ro_entry_t entry = camera_metadata_ro_entry_t();
ASSERT_EQ(OK,
find_camera_metadata_ro_entry(m, m_type_tags[m_type],
&entry));
void* data_ptr = (void*)entry.data.u8;
void* aligned_ptr = (void*)((uintptr_t)data_ptr & ~(m_type_align[m_type] - 1));
EXPECT_EQ(aligned_ptr, data_ptr) <<
"Wrong alignment for type " <<
camera_metadata_type_names[m_type] <<
" with " << (data_count + i) << " dummy bytes and " <<
" data_count " << data_count <<
" expected alignment was: " << m_type_align[m_type];
FINISH_USING_CAMERA_METADATA(m);
}
}
}
}