| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #include <errno.h> |
| #include <string.h> |
| #include <stdint.h> |
| |
| #include <keystore/keystore.h> |
| |
| #include <hardware/hardware.h> |
| #include <hardware/keymaster.h> |
| |
| #include <openssl/evp.h> |
| #include <openssl/bio.h> |
| #include <openssl/rsa.h> |
| #include <openssl/err.h> |
| #include <openssl/x509.h> |
| |
| #include <utils/UniquePtr.h> |
| |
| // For debugging |
| //#define LOG_NDEBUG 0 |
| |
| #define LOG_TAG "OpenSSLKeyMaster" |
| #include <cutils/log.h> |
| |
| struct BIGNUM_Delete { |
| void operator()(BIGNUM* p) const { |
| BN_free(p); |
| } |
| }; |
| typedef UniquePtr<BIGNUM, BIGNUM_Delete> Unique_BIGNUM; |
| |
| struct EVP_PKEY_Delete { |
| void operator()(EVP_PKEY* p) const { |
| EVP_PKEY_free(p); |
| } |
| }; |
| typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY; |
| |
| struct PKCS8_PRIV_KEY_INFO_Delete { |
| void operator()(PKCS8_PRIV_KEY_INFO* p) const { |
| PKCS8_PRIV_KEY_INFO_free(p); |
| } |
| }; |
| typedef UniquePtr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_Delete> Unique_PKCS8_PRIV_KEY_INFO; |
| |
| struct RSA_Delete { |
| void operator()(RSA* p) const { |
| RSA_free(p); |
| } |
| }; |
| typedef UniquePtr<RSA, RSA_Delete> Unique_RSA; |
| |
| typedef UniquePtr<keymaster_device_t> Unique_keymaster_device_t; |
| |
| /** |
| * Many OpenSSL APIs take ownership of an argument on success but don't free the argument |
| * on failure. This means we need to tell our scoped pointers when we've transferred ownership, |
| * without triggering a warning by not using the result of release(). |
| */ |
| #define OWNERSHIP_TRANSFERRED(obj) \ |
| typeof (obj.release()) _dummy __attribute__((unused)) = obj.release() |
| |
| |
| /* |
| * Checks this thread's OpenSSL error queue and logs if |
| * necessary. |
| */ |
| static void logOpenSSLError(const char* location) { |
| int error = ERR_get_error(); |
| |
| if (error != 0) { |
| char message[256]; |
| ERR_error_string_n(error, message, sizeof(message)); |
| ALOGE("OpenSSL error in %s %d: %s", location, error, message); |
| } |
| |
| ERR_clear_error(); |
| ERR_remove_state(0); |
| } |
| |
| static int wrap_key(EVP_PKEY* pkey, int type, uint8_t** keyBlob, size_t* keyBlobLength) { |
| /* Find the length of each size */ |
| int publicLen = i2d_PublicKey(pkey, NULL); |
| int privateLen = i2d_PrivateKey(pkey, NULL); |
| |
| if (privateLen <= 0 || publicLen <= 0) { |
| ALOGE("private or public key size was too big"); |
| return -1; |
| } |
| |
| /* int type + int size + private key data + int size + public key data */ |
| *keyBlobLength = get_softkey_header_size() + sizeof(int) + sizeof(int) + privateLen |
| + sizeof(int) + publicLen; |
| |
| UniquePtr<unsigned char[]> derData(new unsigned char[*keyBlobLength]); |
| if (derData.get() == NULL) { |
| ALOGE("could not allocate memory for key blob"); |
| return -1; |
| } |
| unsigned char* p = derData.get(); |
| |
| /* Write the magic value for software keys. */ |
| p = add_softkey_header(p, *keyBlobLength); |
| |
| /* Write key type to allocated buffer */ |
| for (int i = sizeof(int) - 1; i >= 0; i--) { |
| *p++ = (type >> (8*i)) & 0xFF; |
| } |
| |
| /* Write public key to allocated buffer */ |
| for (int i = sizeof(int) - 1; i >= 0; i--) { |
| *p++ = (publicLen >> (8*i)) & 0xFF; |
| } |
| if (i2d_PublicKey(pkey, &p) != publicLen) { |
| logOpenSSLError("wrap_key"); |
| return -1; |
| } |
| |
| /* Write private key to allocated buffer */ |
| for (int i = sizeof(int) - 1; i >= 0; i--) { |
| *p++ = (privateLen >> (8*i)) & 0xFF; |
| } |
| if (i2d_PrivateKey(pkey, &p) != privateLen) { |
| logOpenSSLError("wrap_key"); |
| return -1; |
| } |
| |
| *keyBlob = derData.release(); |
| |
| return 0; |
| } |
| |
| static EVP_PKEY* unwrap_key(const uint8_t* keyBlob, const size_t keyBlobLength) { |
| long publicLen = 0; |
| long privateLen = 0; |
| const uint8_t* p = keyBlob; |
| const uint8_t *const end = keyBlob + keyBlobLength; |
| |
| if (keyBlob == NULL) { |
| ALOGE("supplied key blob was NULL"); |
| return NULL; |
| } |
| |
| // Should be large enough for: |
| // int32 magic, int32 type, int32 pubLen, char* pub, int32 privLen, char* priv |
| if (keyBlobLength < (get_softkey_header_size() + sizeof(int) + sizeof(int) + 1 |
| + sizeof(int) + 1)) { |
| ALOGE("key blob appears to be truncated"); |
| return NULL; |
| } |
| |
| if (!is_softkey(p, keyBlobLength)) { |
| ALOGE("cannot read key; it was not made by this keymaster"); |
| return NULL; |
| } |
| p += get_softkey_header_size(); |
| |
| int type = 0; |
| for (size_t i = 0; i < sizeof(int); i++) { |
| type = (type << 8) | *p++; |
| } |
| |
| Unique_EVP_PKEY pkey(EVP_PKEY_new()); |
| if (pkey.get() == NULL) { |
| logOpenSSLError("unwrap_key"); |
| return NULL; |
| } |
| |
| for (size_t i = 0; i < sizeof(int); i++) { |
| publicLen = (publicLen << 8) | *p++; |
| } |
| if (p + publicLen > end) { |
| ALOGE("public key length encoding error: size=%ld, end=%d", publicLen, end - p); |
| return NULL; |
| } |
| EVP_PKEY* tmp = pkey.get(); |
| d2i_PublicKey(type, &tmp, &p, publicLen); |
| |
| if (end - p < 2) { |
| ALOGE("private key truncated"); |
| return NULL; |
| } |
| for (size_t i = 0; i < sizeof(int); i++) { |
| privateLen = (privateLen << 8) | *p++; |
| } |
| if (p + privateLen > end) { |
| ALOGE("private key length encoding error: size=%ld, end=%d", privateLen, end - p); |
| return NULL; |
| } |
| d2i_PrivateKey(type, &tmp, &p, privateLen); |
| |
| return pkey.release(); |
| } |
| |
| static int openssl_generate_keypair(const keymaster_device_t* dev, |
| const keymaster_keypair_t key_type, const void* key_params, |
| uint8_t** keyBlob, size_t* keyBlobLength) { |
| ssize_t privateLen, publicLen; |
| |
| if (key_type != TYPE_RSA) { |
| ALOGW("Unsupported key type %d", key_type); |
| return -1; |
| } else if (key_params == NULL) { |
| ALOGW("key_params == null"); |
| return -1; |
| } |
| |
| keymaster_rsa_keygen_params_t* rsa_params = (keymaster_rsa_keygen_params_t*) key_params; |
| |
| Unique_BIGNUM bn(BN_new()); |
| if (bn.get() == NULL) { |
| logOpenSSLError("openssl_generate_keypair"); |
| return -1; |
| } |
| |
| if (BN_set_word(bn.get(), rsa_params->public_exponent) == 0) { |
| logOpenSSLError("openssl_generate_keypair"); |
| return -1; |
| } |
| |
| /* initialize RSA */ |
| Unique_RSA rsa(RSA_new()); |
| if (rsa.get() == NULL) { |
| logOpenSSLError("openssl_generate_keypair"); |
| return -1; |
| } |
| |
| if (!RSA_generate_key_ex(rsa.get(), rsa_params->modulus_size, bn.get(), NULL) |
| || RSA_check_key(rsa.get()) < 0) { |
| logOpenSSLError("openssl_generate_keypair"); |
| return -1; |
| } |
| |
| /* assign to EVP */ |
| Unique_EVP_PKEY pkey(EVP_PKEY_new()); |
| if (pkey.get() == NULL) { |
| logOpenSSLError("openssl_generate_keypair"); |
| return -1; |
| } |
| |
| if (EVP_PKEY_assign_RSA(pkey.get(), rsa.get()) == 0) { |
| logOpenSSLError("openssl_generate_keypair"); |
| return -1; |
| } |
| OWNERSHIP_TRANSFERRED(rsa); |
| |
| if (wrap_key(pkey.get(), EVP_PKEY_RSA, keyBlob, keyBlobLength)) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int openssl_import_keypair(const keymaster_device_t* dev, |
| const uint8_t* key, const size_t key_length, |
| uint8_t** key_blob, size_t* key_blob_length) { |
| int response = -1; |
| |
| if (key == NULL) { |
| ALOGW("input key == NULL"); |
| return -1; |
| } else if (key_blob == NULL || key_blob_length == NULL) { |
| ALOGW("output key blob or length == NULL"); |
| return -1; |
| } |
| |
| Unique_PKCS8_PRIV_KEY_INFO pkcs8(d2i_PKCS8_PRIV_KEY_INFO(NULL, &key, key_length)); |
| if (pkcs8.get() == NULL) { |
| logOpenSSLError("openssl_import_keypair"); |
| return -1; |
| } |
| |
| /* assign to EVP */ |
| Unique_EVP_PKEY pkey(EVP_PKCS82PKEY(pkcs8.get())); |
| if (pkey.get() == NULL) { |
| logOpenSSLError("openssl_import_keypair"); |
| return -1; |
| } |
| OWNERSHIP_TRANSFERRED(pkcs8); |
| |
| if (wrap_key(pkey.get(), EVP_PKEY_type(pkey->type), key_blob, key_blob_length)) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int openssl_get_keypair_public(const struct keymaster_device* dev, |
| const uint8_t* key_blob, const size_t key_blob_length, |
| uint8_t** x509_data, size_t* x509_data_length) { |
| |
| if (x509_data == NULL || x509_data_length == NULL) { |
| ALOGW("output public key buffer == NULL"); |
| return -1; |
| } |
| |
| Unique_EVP_PKEY pkey(unwrap_key(key_blob, key_blob_length)); |
| if (pkey.get() == NULL) { |
| return -1; |
| } |
| |
| int len = i2d_PUBKEY(pkey.get(), NULL); |
| if (len <= 0) { |
| logOpenSSLError("openssl_get_keypair_public"); |
| return -1; |
| } |
| |
| UniquePtr<uint8_t> key(static_cast<uint8_t*>(malloc(len))); |
| if (key.get() == NULL) { |
| ALOGE("Could not allocate memory for public key data"); |
| return -1; |
| } |
| |
| unsigned char* tmp = reinterpret_cast<unsigned char*>(key.get()); |
| if (i2d_PUBKEY(pkey.get(), &tmp) != len) { |
| logOpenSSLError("openssl_get_keypair_public"); |
| return -1; |
| } |
| |
| ALOGV("Length of x509 data is %d", len); |
| *x509_data_length = len; |
| *x509_data = key.release(); |
| |
| return 0; |
| } |
| |
| static int openssl_sign_data(const keymaster_device_t* dev, |
| const void* params, |
| const uint8_t* keyBlob, const size_t keyBlobLength, |
| const uint8_t* data, const size_t dataLength, |
| uint8_t** signedData, size_t* signedDataLength) { |
| |
| int result = -1; |
| EVP_MD_CTX ctx; |
| size_t maxSize; |
| |
| if (data == NULL) { |
| ALOGW("input data to sign == NULL"); |
| return -1; |
| } else if (signedData == NULL || signedDataLength == NULL) { |
| ALOGW("output signature buffer == NULL"); |
| return -1; |
| } |
| |
| Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength)); |
| if (pkey.get() == NULL) { |
| return -1; |
| } |
| |
| if (EVP_PKEY_type(pkey->type) != EVP_PKEY_RSA) { |
| ALOGW("Cannot handle non-RSA keys yet"); |
| return -1; |
| } |
| |
| keymaster_rsa_sign_params_t* sign_params = (keymaster_rsa_sign_params_t*) params; |
| if (sign_params->digest_type != DIGEST_NONE) { |
| ALOGW("Cannot handle digest type %d", sign_params->digest_type); |
| return -1; |
| } else if (sign_params->padding_type != PADDING_NONE) { |
| ALOGW("Cannot handle padding type %d", sign_params->padding_type); |
| return -1; |
| } |
| |
| Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey.get())); |
| if (rsa.get() == NULL) { |
| logOpenSSLError("openssl_sign_data"); |
| return -1; |
| } |
| |
| UniquePtr<uint8_t> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(dataLength))); |
| if (signedDataPtr.get() == NULL) { |
| logOpenSSLError("openssl_sign_data"); |
| return -1; |
| } |
| |
| unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get()); |
| if (RSA_private_encrypt(dataLength, data, tmp, rsa.get(), RSA_NO_PADDING) <= 0) { |
| logOpenSSLError("openssl_sign_data"); |
| return -1; |
| } |
| |
| *signedDataLength = dataLength; |
| *signedData = signedDataPtr.release(); |
| return 0; |
| } |
| |
| static int openssl_verify_data(const keymaster_device_t* dev, |
| const void* params, |
| const uint8_t* keyBlob, const size_t keyBlobLength, |
| const uint8_t* signedData, const size_t signedDataLength, |
| const uint8_t* signature, const size_t signatureLength) { |
| |
| if (signedData == NULL || signature == NULL) { |
| ALOGW("data or signature buffers == NULL"); |
| return -1; |
| } |
| |
| Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength)); |
| if (pkey.get() == NULL) { |
| return -1; |
| } |
| |
| if (EVP_PKEY_type(pkey->type) != EVP_PKEY_RSA) { |
| ALOGW("Cannot handle non-RSA keys yet"); |
| return -1; |
| } |
| |
| keymaster_rsa_sign_params_t* sign_params = (keymaster_rsa_sign_params_t*) params; |
| if (sign_params->digest_type != DIGEST_NONE) { |
| ALOGW("Cannot handle digest type %d", sign_params->digest_type); |
| return -1; |
| } else if (sign_params->padding_type != PADDING_NONE) { |
| ALOGW("Cannot handle padding type %d", sign_params->padding_type); |
| return -1; |
| } else if (signatureLength != signedDataLength) { |
| ALOGW("signed data length must be signature length"); |
| return -1; |
| } |
| |
| Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey.get())); |
| if (rsa.get() == NULL) { |
| logOpenSSLError("openssl_verify_data"); |
| return -1; |
| } |
| |
| UniquePtr<uint8_t> dataPtr(reinterpret_cast<uint8_t*>(malloc(signedDataLength))); |
| if (dataPtr.get() == NULL) { |
| logOpenSSLError("openssl_verify_data"); |
| return -1; |
| } |
| |
| unsigned char* tmp = reinterpret_cast<unsigned char*>(dataPtr.get()); |
| if (!RSA_public_decrypt(signatureLength, signature, tmp, rsa.get(), RSA_NO_PADDING)) { |
| logOpenSSLError("openssl_verify_data"); |
| return -1; |
| } |
| |
| int result = 0; |
| for (size_t i = 0; i < signedDataLength; i++) { |
| result |= tmp[i] ^ signedData[i]; |
| } |
| |
| return result == 0 ? 0 : -1; |
| } |
| |
| /* Close an opened OpenSSL instance */ |
| static int openssl_close(hw_device_t *dev) { |
| free(dev); |
| return 0; |
| } |
| |
| /* |
| * Generic device handling |
| */ |
| static int openssl_open(const hw_module_t* module, const char* name, |
| hw_device_t** device) { |
| if (strcmp(name, KEYSTORE_KEYMASTER) != 0) |
| return -EINVAL; |
| |
| Unique_keymaster_device_t dev(new keymaster_device_t); |
| if (dev.get() == NULL) |
| return -ENOMEM; |
| |
| dev->common.tag = HARDWARE_DEVICE_TAG; |
| dev->common.version = 1; |
| dev->common.module = (struct hw_module_t*) module; |
| dev->common.close = openssl_close; |
| |
| dev->flags = KEYMASTER_SOFTWARE_ONLY; |
| |
| dev->generate_keypair = openssl_generate_keypair; |
| dev->import_keypair = openssl_import_keypair; |
| dev->get_keypair_public = openssl_get_keypair_public; |
| dev->delete_keypair = NULL; |
| dev->delete_all = NULL; |
| dev->sign_data = openssl_sign_data; |
| dev->verify_data = openssl_verify_data; |
| |
| ERR_load_crypto_strings(); |
| ERR_load_BIO_strings(); |
| |
| *device = reinterpret_cast<hw_device_t*>(dev.release()); |
| |
| return 0; |
| } |
| |
| static struct hw_module_methods_t keystore_module_methods = { |
| open: openssl_open, |
| }; |
| |
| struct keystore_module HAL_MODULE_INFO_SYM |
| __attribute__ ((visibility ("default"))) = { |
| common: { |
| tag: HARDWARE_MODULE_TAG, |
| version_major: 1, |
| version_minor: 0, |
| id: KEYSTORE_HARDWARE_MODULE_ID, |
| name: "Keymaster OpenSSL HAL", |
| author: "The Android Open Source Project", |
| methods: &keystore_module_methods, |
| dso: 0, |
| reserved: {}, |
| }, |
| }; |