blob: 3ffe9c525df61b7a020b4c6925b8688a4a761260 [file] [log] [blame]
#ifdef GL_ES
precision mediump float;
#endif
uniform sampler2D NormalMap;
varying vec2 TextureCoord;
varying mat4 TangentToEyeMatrix;
void main(void)
{
const vec4 LightSourceAmbient = vec4(0.1, 0.1, 0.1, 1.0);
const vec4 LightSourceDiffuse = vec4(0.8, 0.8, 0.8, 1.0);
const vec4 LightSourceSpecular = vec4(0.8, 0.8, 0.8, 1.0);
const vec4 MaterialAmbient = vec4(1.0, 1.0, 1.0, 1.0);
const vec4 MaterialDiffuse = vec4(1.0, 1.0, 1.0, 1.0);
const vec4 MaterialSpecular = vec4(0.2, 0.2, 0.2, 1.0);
const float MaterialShininess = 100.0;
// Get the raw normal XYZ data from the normal map
vec3 normal_raw = texture2D(NormalMap, TextureCoord).xyz;
// Map "color" range [0, 1.0] to normal range [-1.0, 1.0]
vec3 normal_scaled = normal_raw * 2.0 - 1.0;
// The normal data is in tangent space, convert it to eye space so that
// lighting calculations can work (light information is in eye space).
vec3 N = normalize(vec3(TangentToEyeMatrix * vec4(normal_scaled, 1.0)));
// In the lighting model we are using here (Blinn-Phong with light at
// infinity, viewer at infinity), the light position/direction and the
// half vector is constant for the all the fragments.
vec3 L = normalize(LightSourcePosition.xyz);
vec3 H = normalize(LightSourceHalfVector);
// Calculate the diffuse color according to Lambertian reflectance
vec4 diffuse = MaterialDiffuse * LightSourceDiffuse * max(dot(N, L), 0.0);
// Calculate the ambient color
vec4 ambient = MaterialAmbient * LightSourceAmbient;
// Calculate the specular color according to the Blinn-Phong model
vec4 specular = MaterialSpecular * LightSourceSpecular *
pow(max(dot(N,H), 0.0), MaterialShininess);
// Calculate the final color
gl_FragColor = ambient + specular + diffuse;
//gl_FragColor = vec4(N, 1.0);
}