#ifdef GL_ES | |
precision mediump float; | |
#endif | |
uniform sampler2D NormalMap; | |
varying vec2 TextureCoord; | |
varying mat4 TangentToEyeMatrix; | |
void main(void) | |
{ | |
const vec4 LightSourceAmbient = vec4(0.1, 0.1, 0.1, 1.0); | |
const vec4 LightSourceDiffuse = vec4(0.8, 0.8, 0.8, 1.0); | |
const vec4 LightSourceSpecular = vec4(0.8, 0.8, 0.8, 1.0); | |
const vec4 MaterialAmbient = vec4(1.0, 1.0, 1.0, 1.0); | |
const vec4 MaterialDiffuse = vec4(1.0, 1.0, 1.0, 1.0); | |
const vec4 MaterialSpecular = vec4(0.2, 0.2, 0.2, 1.0); | |
const float MaterialShininess = 100.0; | |
// Get the raw normal XYZ data from the normal map | |
vec3 normal_raw = texture2D(NormalMap, TextureCoord).xyz; | |
// Map "color" range [0, 1.0] to normal range [-1.0, 1.0] | |
vec3 normal_scaled = normal_raw * 2.0 - 1.0; | |
// The normal data is in tangent space, convert it to eye space so that | |
// lighting calculations can work (light information is in eye space). | |
vec3 N = normalize(vec3(TangentToEyeMatrix * vec4(normal_scaled, 1.0))); | |
// In the lighting model we are using here (Blinn-Phong with light at | |
// infinity, viewer at infinity), the light position/direction and the | |
// half vector is constant for the all the fragments. | |
vec3 L = normalize(LightSourcePosition.xyz); | |
vec3 H = normalize(LightSourceHalfVector); | |
// Calculate the diffuse color according to Lambertian reflectance | |
vec4 diffuse = MaterialDiffuse * LightSourceDiffuse * max(dot(N, L), 0.0); | |
// Calculate the ambient color | |
vec4 ambient = MaterialAmbient * LightSourceAmbient; | |
// Calculate the specular color according to the Blinn-Phong model | |
vec4 specular = MaterialSpecular * LightSourceSpecular * | |
pow(max(dot(N,H), 0.0), MaterialShininess); | |
// Calculate the final color | |
gl_FragColor = ambient + specular + diffuse; | |
//gl_FragColor = vec4(N, 1.0); | |
} |