| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/compressed_row_sparse_matrix.h" |
| |
| #include "ceres/casts.h" |
| #include "ceres/crs_matrix.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/internal/scoped_ptr.h" |
| #include "ceres/linear_least_squares_problems.h" |
| #include "ceres/matrix_proto.h" |
| #include "ceres/triplet_sparse_matrix.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) { |
| EXPECT_EQ(a->num_rows(), b->num_rows()); |
| EXPECT_EQ(a->num_cols(), b->num_cols()); |
| |
| int num_rows = a->num_rows(); |
| int num_cols = a->num_cols(); |
| |
| for (int i = 0; i < num_cols; ++i) { |
| Vector x = Vector::Zero(num_cols); |
| x(i) = 1.0; |
| |
| Vector y_a = Vector::Zero(num_rows); |
| Vector y_b = Vector::Zero(num_rows); |
| |
| a->RightMultiply(x.data(), y_a.data()); |
| b->RightMultiply(x.data(), y_b.data()); |
| |
| EXPECT_EQ((y_a - y_b).norm(), 0); |
| } |
| } |
| |
| class CompressedRowSparseMatrixTest : public ::testing::Test { |
| protected : |
| virtual void SetUp() { |
| scoped_ptr<LinearLeastSquaresProblem> problem( |
| CreateLinearLeastSquaresProblemFromId(1)); |
| |
| CHECK_NOTNULL(problem.get()); |
| |
| tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); |
| crsm.reset(new CompressedRowSparseMatrix(*tsm)); |
| |
| num_rows = tsm->num_rows(); |
| num_cols = tsm->num_cols(); |
| } |
| |
| int num_rows; |
| int num_cols; |
| |
| scoped_ptr<TripletSparseMatrix> tsm; |
| scoped_ptr<CompressedRowSparseMatrix> crsm; |
| }; |
| |
| TEST_F(CompressedRowSparseMatrixTest, RightMultiply) { |
| CompareMatrices(tsm.get(), crsm.get()); |
| } |
| |
| TEST_F(CompressedRowSparseMatrixTest, LeftMultiply) { |
| for (int i = 0; i < num_rows; ++i) { |
| Vector a = Vector::Zero(num_rows); |
| a(i) = 1.0; |
| |
| Vector b1 = Vector::Zero(num_cols); |
| Vector b2 = Vector::Zero(num_cols); |
| |
| tsm->LeftMultiply(a.data(), b1.data()); |
| crsm->LeftMultiply(a.data(), b2.data()); |
| |
| EXPECT_EQ((b1 - b2).norm(), 0); |
| } |
| } |
| |
| TEST_F(CompressedRowSparseMatrixTest, ColumnNorm) { |
| Vector b1 = Vector::Zero(num_cols); |
| Vector b2 = Vector::Zero(num_cols); |
| |
| tsm->SquaredColumnNorm(b1.data()); |
| crsm->SquaredColumnNorm(b2.data()); |
| |
| EXPECT_EQ((b1 - b2).norm(), 0); |
| } |
| |
| TEST_F(CompressedRowSparseMatrixTest, Scale) { |
| Vector scale(num_cols); |
| for (int i = 0; i < num_cols; ++i) { |
| scale(i) = i + 1; |
| } |
| |
| tsm->ScaleColumns(scale.data()); |
| crsm->ScaleColumns(scale.data()); |
| CompareMatrices(tsm.get(), crsm.get()); |
| } |
| |
| TEST_F(CompressedRowSparseMatrixTest, DeleteRows) { |
| for (int i = 0; i < num_rows; ++i) { |
| tsm->Resize(num_rows - i, num_cols); |
| crsm->DeleteRows(crsm->num_rows() - tsm->num_rows()); |
| CompareMatrices(tsm.get(), crsm.get()); |
| } |
| } |
| |
| TEST_F(CompressedRowSparseMatrixTest, AppendRows) { |
| for (int i = 0; i < num_rows; ++i) { |
| TripletSparseMatrix tsm_appendage(*tsm); |
| tsm_appendage.Resize(i, num_cols); |
| |
| tsm->AppendRows(tsm_appendage); |
| CompressedRowSparseMatrix crsm_appendage(tsm_appendage); |
| crsm->AppendRows(crsm_appendage); |
| |
| CompareMatrices(tsm.get(), crsm.get()); |
| } |
| } |
| |
| #ifndef CERES_NO_PROTOCOL_BUFFERS |
| TEST_F(CompressedRowSparseMatrixTest, Serialization) { |
| SparseMatrixProto proto; |
| crsm->ToProto(&proto); |
| |
| CompressedRowSparseMatrix n(proto); |
| ASSERT_EQ(n.num_rows(), crsm->num_rows()); |
| ASSERT_EQ(n.num_cols(), crsm->num_cols()); |
| ASSERT_EQ(n.num_nonzeros(), crsm->num_nonzeros()); |
| |
| for (int i = 0; i < n.num_rows() + 1; ++i) { |
| ASSERT_EQ(crsm->rows()[i], proto.compressed_row_matrix().rows(i)); |
| ASSERT_EQ(crsm->rows()[i], n.rows()[i]); |
| } |
| |
| for (int i = 0; i < crsm->num_nonzeros(); ++i) { |
| ASSERT_EQ(crsm->cols()[i], proto.compressed_row_matrix().cols(i)); |
| ASSERT_EQ(crsm->cols()[i], n.cols()[i]); |
| ASSERT_EQ(crsm->values()[i], proto.compressed_row_matrix().values(i)); |
| ASSERT_EQ(crsm->values()[i], n.values()[i]); |
| } |
| } |
| #endif |
| |
| TEST_F(CompressedRowSparseMatrixTest, ToDenseMatrix) { |
| Matrix tsm_dense; |
| Matrix crsm_dense; |
| |
| tsm->ToDenseMatrix(&tsm_dense); |
| crsm->ToDenseMatrix(&crsm_dense); |
| |
| EXPECT_EQ((tsm_dense - crsm_dense).norm(), 0.0); |
| } |
| |
| TEST_F(CompressedRowSparseMatrixTest, ToCRSMatrix) { |
| CRSMatrix crs_matrix; |
| crsm->ToCRSMatrix(&crs_matrix); |
| EXPECT_EQ(crsm->num_rows(), crs_matrix.num_rows); |
| EXPECT_EQ(crsm->num_cols(), crs_matrix.num_cols); |
| EXPECT_EQ(crsm->num_rows() + 1, crs_matrix.rows.size()); |
| EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.cols.size()); |
| EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.values.size()); |
| |
| for (int i = 0; i < crsm->num_rows() + 1; ++i) { |
| EXPECT_EQ(crsm->rows()[i], crs_matrix.rows[i]); |
| } |
| |
| for (int i = 0; i < crsm->num_nonzeros(); ++i) { |
| EXPECT_EQ(crsm->cols()[i], crs_matrix.cols[i]); |
| EXPECT_EQ(crsm->values()[i], crs_matrix.values[i]); |
| } |
| } |
| |
| } // namespace internal |
| } // namespace ceres |