blob: e5534928f2274038627320ffb254ca5fbfccfd74 [file] [log] [blame]
/*
* Copyright (C) 2009, 2010 University of Szeged
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY UNIVERSITY OF SZEGED ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UNIVERSITY OF SZEGED OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef ARMAssembler_h
#define ARMAssembler_h
#if ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)
#include "AssemblerBufferWithConstantPool.h"
#include <wtf/Assertions.h>
namespace JSC {
typedef uint32_t ARMWord;
namespace ARMRegisters {
typedef enum {
r0 = 0,
r1,
r2,
r3, S0 = r3,
r4,
r5,
r6,
r7,
r8, S1 = r8,
r9,
r10,
r11,
r12,
r13, sp = r13,
r14, lr = r14,
r15, pc = r15
} RegisterID;
typedef enum {
d0,
d1,
d2,
d3, SD0 = d3,
d4,
d5,
d6,
d7,
d8,
d9,
d10,
d11,
d12,
d13,
d14,
d15,
d16,
d17,
d18,
d19,
d20,
d21,
d22,
d23,
d24,
d25,
d26,
d27,
d28,
d29,
d30,
d31
} FPRegisterID;
} // namespace ARMRegisters
class ARMAssembler {
public:
typedef ARMRegisters::RegisterID RegisterID;
typedef ARMRegisters::FPRegisterID FPRegisterID;
typedef AssemblerBufferWithConstantPool<2048, 4, 4, ARMAssembler> ARMBuffer;
typedef SegmentedVector<int, 64> Jumps;
ARMAssembler() { }
// ARM conditional constants
typedef enum {
EQ = 0x00000000, // Zero
NE = 0x10000000, // Non-zero
CS = 0x20000000,
CC = 0x30000000,
MI = 0x40000000,
PL = 0x50000000,
VS = 0x60000000,
VC = 0x70000000,
HI = 0x80000000,
LS = 0x90000000,
GE = 0xa0000000,
LT = 0xb0000000,
GT = 0xc0000000,
LE = 0xd0000000,
AL = 0xe0000000
} Condition;
// ARM instruction constants
enum {
AND = (0x0 << 21),
EOR = (0x1 << 21),
SUB = (0x2 << 21),
RSB = (0x3 << 21),
ADD = (0x4 << 21),
ADC = (0x5 << 21),
SBC = (0x6 << 21),
RSC = (0x7 << 21),
TST = (0x8 << 21),
TEQ = (0x9 << 21),
CMP = (0xa << 21),
CMN = (0xb << 21),
ORR = (0xc << 21),
MOV = (0xd << 21),
BIC = (0xe << 21),
MVN = (0xf << 21),
MUL = 0x00000090,
MULL = 0x00c00090,
VADD_F64 = 0x0e300b00,
VDIV_F64 = 0x0e800b00,
VSUB_F64 = 0x0e300b40,
VMUL_F64 = 0x0e200b00,
VCMP_F64 = 0x0eb40b40,
VSQRT_F64 = 0x0eb10bc0,
DTR = 0x05000000,
LDRH = 0x00100090,
STRH = 0x00000090,
STMDB = 0x09200000,
LDMIA = 0x08b00000,
FDTR = 0x0d000b00,
B = 0x0a000000,
BL = 0x0b000000,
#if WTF_ARM_ARCH_AT_LEAST(5) || defined(__ARM_ARCH_4T__)
BX = 0x012fff10,
#endif
VMOV_VFP = 0x0e000a10,
VMOV_ARM = 0x0e100a10,
VCVT_F64_S32 = 0x0eb80bc0,
VCVT_S32_F64 = 0x0ebd0b40,
VCVTR_S32_F64 = 0x0ebd0bc0,
VMRS_APSR = 0x0ef1fa10,
#if WTF_ARM_ARCH_AT_LEAST(5)
CLZ = 0x016f0f10,
BKPT = 0xe1200070,
BLX = 0x012fff30,
#endif
#if WTF_ARM_ARCH_AT_LEAST(7)
MOVW = 0x03000000,
MOVT = 0x03400000,
#endif
};
enum {
OP2_IMM = (1 << 25),
OP2_IMMh = (1 << 22),
OP2_INV_IMM = (1 << 26),
SET_CC = (1 << 20),
OP2_OFSREG = (1 << 25),
DT_UP = (1 << 23),
DT_BYTE = (1 << 22),
DT_WB = (1 << 21),
// This flag is inlcuded in LDR and STR
DT_PRE = (1 << 24),
HDT_UH = (1 << 5),
DT_LOAD = (1 << 20),
};
// Masks of ARM instructions
enum {
BRANCH_MASK = 0x00ffffff,
NONARM = 0xf0000000,
SDT_MASK = 0x0c000000,
SDT_OFFSET_MASK = 0xfff,
};
enum {
BOFFSET_MIN = -0x00800000,
BOFFSET_MAX = 0x007fffff,
SDT = 0x04000000,
};
enum {
padForAlign8 = 0x00,
padForAlign16 = 0x0000,
padForAlign32 = 0xe12fff7f // 'bkpt 0xffff' instruction.
};
static const ARMWord INVALID_IMM = 0xf0000000;
static const ARMWord InvalidBranchTarget = 0xffffffff;
static const int DefaultPrefetching = 2;
class JmpSrc {
friend class ARMAssembler;
public:
JmpSrc()
: m_offset(-1)
{
}
private:
JmpSrc(int offset)
: m_offset(offset)
{
}
int m_offset;
};
class JmpDst {
friend class ARMAssembler;
public:
JmpDst()
: m_offset(-1)
, m_used(false)
{
}
bool isUsed() const { return m_used; }
bool isSet() const { return (m_offset != -1); }
void used() { m_used = true; }
private:
JmpDst(int offset)
: m_offset(offset)
, m_used(false)
{
ASSERT(m_offset == offset);
}
signed int m_offset : 31;
int m_used : 1;
};
// Instruction formating
void emitInst(ARMWord op, int rd, int rn, ARMWord op2)
{
ASSERT(((op2 & ~OP2_IMM) <= 0xfff) || (((op2 & ~OP2_IMMh) <= 0xfff)));
m_buffer.putInt(op | RN(rn) | RD(rd) | op2);
}
void emitDoublePrecisionInst(ARMWord op, int dd, int dn, int dm)
{
ASSERT((dd >= 0 && dd <= 31) && (dn >= 0 && dn <= 31) && (dm >= 0 && dm <= 31));
m_buffer.putInt(op | ((dd & 0xf) << 12) | ((dd & 0x10) << (22 - 4))
| ((dn & 0xf) << 16) | ((dn & 0x10) << (7 - 4))
| (dm & 0xf) | ((dm & 0x10) << (5 - 4)));
}
void emitSinglePrecisionInst(ARMWord op, int sd, int sn, int sm)
{
ASSERT((sd >= 0 && sd <= 31) && (sn >= 0 && sn <= 31) && (sm >= 0 && sm <= 31));
m_buffer.putInt(op | ((sd >> 1) << 12) | ((sd & 0x1) << 22)
| ((sn >> 1) << 16) | ((sn & 0x1) << 7)
| (sm >> 1) | ((sm & 0x1) << 5));
}
void and_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | AND, rd, rn, op2);
}
void ands_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | AND | SET_CC, rd, rn, op2);
}
void eor_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | EOR, rd, rn, op2);
}
void eors_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | EOR | SET_CC, rd, rn, op2);
}
void sub_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | SUB, rd, rn, op2);
}
void subs_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | SUB | SET_CC, rd, rn, op2);
}
void rsb_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | RSB, rd, rn, op2);
}
void rsbs_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | RSB | SET_CC, rd, rn, op2);
}
void add_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | ADD, rd, rn, op2);
}
void adds_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | ADD | SET_CC, rd, rn, op2);
}
void adc_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | ADC, rd, rn, op2);
}
void adcs_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | ADC | SET_CC, rd, rn, op2);
}
void sbc_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | SBC, rd, rn, op2);
}
void sbcs_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | SBC | SET_CC, rd, rn, op2);
}
void rsc_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | RSC, rd, rn, op2);
}
void rscs_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | RSC | SET_CC, rd, rn, op2);
}
void tst_r(int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | TST | SET_CC, 0, rn, op2);
}
void teq_r(int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | TEQ | SET_CC, 0, rn, op2);
}
void cmp_r(int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | CMP | SET_CC, 0, rn, op2);
}
void cmn_r(int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | CMN | SET_CC, 0, rn, op2);
}
void orr_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | ORR, rd, rn, op2);
}
void orrs_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | ORR | SET_CC, rd, rn, op2);
}
void mov_r(int rd, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | MOV, rd, ARMRegisters::r0, op2);
}
#if WTF_ARM_ARCH_AT_LEAST(7)
void movw_r(int rd, ARMWord op2, Condition cc = AL)
{
ASSERT((op2 | 0xf0fff) == 0xf0fff);
m_buffer.putInt(static_cast<ARMWord>(cc) | MOVW | RD(rd) | op2);
}
void movt_r(int rd, ARMWord op2, Condition cc = AL)
{
ASSERT((op2 | 0xf0fff) == 0xf0fff);
m_buffer.putInt(static_cast<ARMWord>(cc) | MOVT | RD(rd) | op2);
}
#endif
void movs_r(int rd, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | MOV | SET_CC, rd, ARMRegisters::r0, op2);
}
void bic_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | BIC, rd, rn, op2);
}
void bics_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | BIC | SET_CC, rd, rn, op2);
}
void mvn_r(int rd, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | MVN, rd, ARMRegisters::r0, op2);
}
void mvns_r(int rd, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | MVN | SET_CC, rd, ARMRegisters::r0, op2);
}
void mul_r(int rd, int rn, int rm, Condition cc = AL)
{
m_buffer.putInt(static_cast<ARMWord>(cc) | MUL | RN(rd) | RS(rn) | RM(rm));
}
void muls_r(int rd, int rn, int rm, Condition cc = AL)
{
m_buffer.putInt(static_cast<ARMWord>(cc) | MUL | SET_CC | RN(rd) | RS(rn) | RM(rm));
}
void mull_r(int rdhi, int rdlo, int rn, int rm, Condition cc = AL)
{
m_buffer.putInt(static_cast<ARMWord>(cc) | MULL | RN(rdhi) | RD(rdlo) | RS(rn) | RM(rm));
}
void vadd_f64_r(int dd, int dn, int dm, Condition cc = AL)
{
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VADD_F64, dd, dn, dm);
}
void vdiv_f64_r(int dd, int dn, int dm, Condition cc = AL)
{
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VDIV_F64, dd, dn, dm);
}
void vsub_f64_r(int dd, int dn, int dm, Condition cc = AL)
{
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VSUB_F64, dd, dn, dm);
}
void vmul_f64_r(int dd, int dn, int dm, Condition cc = AL)
{
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VMUL_F64, dd, dn, dm);
}
void vcmp_f64_r(int dd, int dm, Condition cc = AL)
{
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VCMP_F64, dd, 0, dm);
}
void vsqrt_f64_r(int dd, int dm, Condition cc = AL)
{
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VSQRT_F64, dd, 0, dm);
}
void ldr_imm(int rd, ARMWord imm, Condition cc = AL)
{
m_buffer.putIntWithConstantInt(static_cast<ARMWord>(cc) | DTR | DT_LOAD | DT_UP | RN(ARMRegisters::pc) | RD(rd), imm, true);
}
void ldr_un_imm(int rd, ARMWord imm, Condition cc = AL)
{
m_buffer.putIntWithConstantInt(static_cast<ARMWord>(cc) | DTR | DT_LOAD | DT_UP | RN(ARMRegisters::pc) | RD(rd), imm);
}
void dtr_u(bool isLoad, int rd, int rb, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | DTR | (isLoad ? DT_LOAD : 0) | DT_UP, rd, rb, op2);
}
void dtr_ur(bool isLoad, int rd, int rb, int rm, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | DTR | (isLoad ? DT_LOAD : 0) | DT_UP | OP2_OFSREG, rd, rb, rm);
}
void dtr_d(bool isLoad, int rd, int rb, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | DTR | (isLoad ? DT_LOAD : 0), rd, rb, op2);
}
void dtr_dr(bool isLoad, int rd, int rb, int rm, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | DTR | (isLoad ? DT_LOAD : 0) | OP2_OFSREG, rd, rb, rm);
}
void ldrh_r(int rd, int rn, int rm, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | LDRH | HDT_UH | DT_UP | DT_PRE, rd, rn, rm);
}
void ldrh_d(int rd, int rb, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | LDRH | HDT_UH | DT_PRE, rd, rb, op2);
}
void ldrh_u(int rd, int rb, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | LDRH | HDT_UH | DT_UP | DT_PRE, rd, rb, op2);
}
void strh_r(int rn, int rm, int rd, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | STRH | HDT_UH | DT_UP | DT_PRE, rd, rn, rm);
}
void fdtr_u(bool isLoad, int rd, int rb, ARMWord op2, Condition cc = AL)
{
ASSERT(op2 <= 0xff);
emitInst(static_cast<ARMWord>(cc) | FDTR | DT_UP | (isLoad ? DT_LOAD : 0), rd, rb, op2);
}
void fdtr_d(bool isLoad, int rd, int rb, ARMWord op2, Condition cc = AL)
{
ASSERT(op2 <= 0xff);
emitInst(static_cast<ARMWord>(cc) | FDTR | (isLoad ? DT_LOAD : 0), rd, rb, op2);
}
void push_r(int reg, Condition cc = AL)
{
ASSERT(ARMWord(reg) <= 0xf);
m_buffer.putInt(cc | DTR | DT_WB | RN(ARMRegisters::sp) | RD(reg) | 0x4);
}
void pop_r(int reg, Condition cc = AL)
{
ASSERT(ARMWord(reg) <= 0xf);
m_buffer.putInt(cc | (DTR ^ DT_PRE) | DT_LOAD | DT_UP | RN(ARMRegisters::sp) | RD(reg) | 0x4);
}
inline void poke_r(int reg, Condition cc = AL)
{
dtr_d(false, ARMRegisters::sp, 0, reg, cc);
}
inline void peek_r(int reg, Condition cc = AL)
{
dtr_u(true, reg, ARMRegisters::sp, 0, cc);
}
void vmov_vfp_r(int sn, int rt, Condition cc = AL)
{
ASSERT(rt <= 15);
emitSinglePrecisionInst(static_cast<ARMWord>(cc) | VMOV_VFP, rt << 1, sn, 0);
}
void vmov_arm_r(int rt, int sn, Condition cc = AL)
{
ASSERT(rt <= 15);
emitSinglePrecisionInst(static_cast<ARMWord>(cc) | VMOV_ARM, rt << 1, sn, 0);
}
void vcvt_f64_s32_r(int dd, int sm, Condition cc = AL)
{
ASSERT(!(sm & 0x1)); // sm must be divisible by 2
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VCVT_F64_S32, dd, 0, (sm >> 1));
}
void vcvt_s32_f64_r(int sd, int dm, Condition cc = AL)
{
ASSERT(!(sd & 0x1)); // sd must be divisible by 2
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VCVT_S32_F64, (sd >> 1), 0, dm);
}
void vcvtr_s32_f64_r(int sd, int dm, Condition cc = AL)
{
ASSERT(!(sd & 0x1)); // sd must be divisible by 2
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VCVTR_S32_F64, (sd >> 1), 0, dm);
}
void vmrs_apsr(Condition cc = AL)
{
m_buffer.putInt(static_cast<ARMWord>(cc) | VMRS_APSR);
}
#if WTF_ARM_ARCH_AT_LEAST(5)
void clz_r(int rd, int rm, Condition cc = AL)
{
m_buffer.putInt(static_cast<ARMWord>(cc) | CLZ | RD(rd) | RM(rm));
}
#endif
void bkpt(ARMWord value)
{
#if WTF_ARM_ARCH_AT_LEAST(5)
m_buffer.putInt(BKPT | ((value & 0xff0) << 4) | (value & 0xf));
#else
// Cannot access to Zero memory address
dtr_dr(true, ARMRegisters::S0, ARMRegisters::S0, ARMRegisters::S0);
#endif
}
void bx(int rm, Condition cc = AL)
{
#if WTF_ARM_ARCH_AT_LEAST(5) || defined(__ARM_ARCH_4T__)
emitInst(static_cast<ARMWord>(cc) | BX, 0, 0, RM(rm));
#else
mov_r(ARMRegisters::pc, RM(rm), cc);
#endif
}
JmpSrc blx(int rm, Condition cc = AL)
{
#if WTF_ARM_ARCH_AT_LEAST(5)
emitInst(static_cast<ARMWord>(cc) | BLX, 0, 0, RM(rm));
#else
ASSERT(rm != 14);
ensureSpace(2 * sizeof(ARMWord), 0);
mov_r(ARMRegisters::lr, ARMRegisters::pc, cc);
bx(rm, cc);
#endif
return JmpSrc(m_buffer.uncheckedSize());
}
static ARMWord lsl(int reg, ARMWord value)
{
ASSERT(reg <= ARMRegisters::pc);
ASSERT(value <= 0x1f);
return reg | (value << 7) | 0x00;
}
static ARMWord lsr(int reg, ARMWord value)
{
ASSERT(reg <= ARMRegisters::pc);
ASSERT(value <= 0x1f);
return reg | (value << 7) | 0x20;
}
static ARMWord asr(int reg, ARMWord value)
{
ASSERT(reg <= ARMRegisters::pc);
ASSERT(value <= 0x1f);
return reg | (value << 7) | 0x40;
}
static ARMWord lsl_r(int reg, int shiftReg)
{
ASSERT(reg <= ARMRegisters::pc);
ASSERT(shiftReg <= ARMRegisters::pc);
return reg | (shiftReg << 8) | 0x10;
}
static ARMWord lsr_r(int reg, int shiftReg)
{
ASSERT(reg <= ARMRegisters::pc);
ASSERT(shiftReg <= ARMRegisters::pc);
return reg | (shiftReg << 8) | 0x30;
}
static ARMWord asr_r(int reg, int shiftReg)
{
ASSERT(reg <= ARMRegisters::pc);
ASSERT(shiftReg <= ARMRegisters::pc);
return reg | (shiftReg << 8) | 0x50;
}
// General helpers
int size()
{
return m_buffer.size();
}
void ensureSpace(int insnSpace, int constSpace)
{
m_buffer.ensureSpace(insnSpace, constSpace);
}
int sizeOfConstantPool()
{
return m_buffer.sizeOfConstantPool();
}
JmpDst label()
{
return JmpDst(m_buffer.size());
}
JmpDst align(int alignment)
{
while (!m_buffer.isAligned(alignment))
mov_r(ARMRegisters::r0, ARMRegisters::r0);
return label();
}
JmpSrc loadBranchTarget(int rd, Condition cc = AL, int useConstantPool = 0)
{
ensureSpace(sizeof(ARMWord), sizeof(ARMWord));
m_jumps.append(m_buffer.uncheckedSize() | (useConstantPool & 0x1));
ldr_un_imm(rd, InvalidBranchTarget, cc);
return JmpSrc(m_buffer.uncheckedSize());
}
JmpSrc jmp(Condition cc = AL, int useConstantPool = 0)
{
return loadBranchTarget(ARMRegisters::pc, cc, useConstantPool);
}
void* executableCopy(ExecutablePool* allocator);
#ifndef NDEBUG
unsigned debugOffset() { return m_formatter.debugOffset(); }
#endif
// Patching helpers
static ARMWord* getLdrImmAddress(ARMWord* insn)
{
#if WTF_ARM_ARCH_AT_LEAST(5)
// Check for call
if ((*insn & 0x0f7f0000) != 0x051f0000) {
// Must be BLX
ASSERT((*insn & 0x012fff30) == 0x012fff30);
insn--;
}
#endif
// Must be an ldr ..., [pc +/- imm]
ASSERT((*insn & 0x0f7f0000) == 0x051f0000);
ARMWord addr = reinterpret_cast<ARMWord>(insn) + DefaultPrefetching * sizeof(ARMWord);
if (*insn & DT_UP)
return reinterpret_cast<ARMWord*>(addr + (*insn & SDT_OFFSET_MASK));
return reinterpret_cast<ARMWord*>(addr - (*insn & SDT_OFFSET_MASK));
}
static ARMWord* getLdrImmAddressOnPool(ARMWord* insn, uint32_t* constPool)
{
// Must be an ldr ..., [pc +/- imm]
ASSERT((*insn & 0x0f7f0000) == 0x051f0000);
if (*insn & 0x1)
return reinterpret_cast<ARMWord*>(constPool + ((*insn & SDT_OFFSET_MASK) >> 1));
return getLdrImmAddress(insn);
}
static void patchPointerInternal(intptr_t from, void* to)
{
ARMWord* insn = reinterpret_cast<ARMWord*>(from);
ARMWord* addr = getLdrImmAddress(insn);
*addr = reinterpret_cast<ARMWord>(to);
}
static ARMWord patchConstantPoolLoad(ARMWord load, ARMWord value)
{
value = (value << 1) + 1;
ASSERT(!(value & ~0xfff));
return (load & ~0xfff) | value;
}
static void patchConstantPoolLoad(void* loadAddr, void* constPoolAddr);
// Patch pointers
static void linkPointer(void* code, JmpDst from, void* to)
{
patchPointerInternal(reinterpret_cast<intptr_t>(code) + from.m_offset, to);
}
static void repatchInt32(void* from, int32_t to)
{
patchPointerInternal(reinterpret_cast<intptr_t>(from), reinterpret_cast<void*>(to));
}
static void repatchPointer(void* from, void* to)
{
patchPointerInternal(reinterpret_cast<intptr_t>(from), to);
}
// Linkers
static intptr_t getAbsoluteJumpAddress(void* base, int offset = 0)
{
return reinterpret_cast<intptr_t>(base) + offset - sizeof(ARMWord);
}
void linkJump(JmpSrc from, JmpDst to)
{
ARMWord* insn = reinterpret_cast<ARMWord*>(getAbsoluteJumpAddress(m_buffer.data(), from.m_offset));
ARMWord* addr = getLdrImmAddressOnPool(insn, m_buffer.poolAddress());
*addr = static_cast<ARMWord>(to.m_offset);
}
static void linkJump(void* code, JmpSrc from, void* to)
{
patchPointerInternal(getAbsoluteJumpAddress(code, from.m_offset), to);
}
static void relinkJump(void* from, void* to)
{
patchPointerInternal(getAbsoluteJumpAddress(from), to);
}
static void linkCall(void* code, JmpSrc from, void* to)
{
patchPointerInternal(getAbsoluteJumpAddress(code, from.m_offset), to);
}
static void relinkCall(void* from, void* to)
{
patchPointerInternal(getAbsoluteJumpAddress(from), to);
}
// Address operations
static void* getRelocatedAddress(void* code, JmpSrc jump)
{
return reinterpret_cast<void*>(reinterpret_cast<char*>(code) + jump.m_offset);
}
static void* getRelocatedAddress(void* code, JmpDst label)
{
return reinterpret_cast<void*>(reinterpret_cast<char*>(code) + label.m_offset);
}
// Address differences
static int getDifferenceBetweenLabels(JmpDst from, JmpSrc to)
{
return to.m_offset - from.m_offset;
}
static int getDifferenceBetweenLabels(JmpDst from, JmpDst to)
{
return to.m_offset - from.m_offset;
}
static unsigned getCallReturnOffset(JmpSrc call)
{
return call.m_offset;
}
// Handle immediates
static ARMWord getOp2Byte(ARMWord imm)
{
ASSERT(imm <= 0xff);
return OP2_IMMh | (imm & 0x0f) | ((imm & 0xf0) << 4) ;
}
static ARMWord getOp2(ARMWord imm);
#if WTF_ARM_ARCH_AT_LEAST(7)
static ARMWord getImm16Op2(ARMWord imm)
{
if (imm <= 0xffff)
return (imm & 0xf000) << 4 | (imm & 0xfff);
return INVALID_IMM;
}
#endif
ARMWord getImm(ARMWord imm, int tmpReg, bool invert = false);
void moveImm(ARMWord imm, int dest);
ARMWord encodeComplexImm(ARMWord imm, int dest);
ARMWord getOffsetForHalfwordDataTransfer(ARMWord imm, int tmpReg)
{
// Encode immediate data in the instruction if it is possible
if (imm <= 0xff)
return getOp2Byte(imm);
// Otherwise, store the data in a temporary register
return encodeComplexImm(imm, tmpReg);
}
// Memory load/store helpers
void dataTransfer32(bool isLoad, RegisterID srcDst, RegisterID base, int32_t offset, bool bytes = false);
void baseIndexTransfer32(bool isLoad, RegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset);
void doubleTransfer(bool isLoad, FPRegisterID srcDst, RegisterID base, int32_t offset);
// Constant pool hnadlers
static ARMWord placeConstantPoolBarrier(int offset)
{
offset = (offset - sizeof(ARMWord)) >> 2;
ASSERT((offset <= BOFFSET_MAX && offset >= BOFFSET_MIN));
return AL | B | (offset & BRANCH_MASK);
}
private:
ARMWord RM(int reg)
{
ASSERT(reg <= ARMRegisters::pc);
return reg;
}
ARMWord RS(int reg)
{
ASSERT(reg <= ARMRegisters::pc);
return reg << 8;
}
ARMWord RD(int reg)
{
ASSERT(reg <= ARMRegisters::pc);
return reg << 12;
}
ARMWord RN(int reg)
{
ASSERT(reg <= ARMRegisters::pc);
return reg << 16;
}
static ARMWord getConditionalField(ARMWord i)
{
return i & 0xf0000000;
}
int genInt(int reg, ARMWord imm, bool positive);
ARMBuffer m_buffer;
Jumps m_jumps;
};
} // namespace JSC
#endif // ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)
#endif // ARMAssembler_h