| // |
| // Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| // |
| |
| #include "compiler/ParseHelper.h" |
| |
| #include <stdarg.h> |
| #include <stdio.h> |
| |
| #include "compiler/glslang.h" |
| #include "compiler/osinclude.h" |
| #include "compiler/InitializeParseContext.h" |
| |
| extern "C" { |
| extern int InitPreprocessor(); |
| extern int FinalizePreprocessor(); |
| extern void PredefineIntMacro(const char *name, int value); |
| } |
| |
| static void ReportInfo(TInfoSinkBase& sink, |
| TPrefixType type, TSourceLoc loc, |
| const char* reason, const char* token, |
| const char* extraInfo) |
| { |
| /* VC++ format: file(linenum) : error #: 'token' : extrainfo */ |
| sink.prefix(type); |
| sink.location(loc); |
| sink << "'" << token << "' : " << reason << " " << extraInfo << "\n"; |
| } |
| |
| static void DefineExtensionMacros(const TExtensionBehavior& extBehavior) |
| { |
| for (TExtensionBehavior::const_iterator iter = extBehavior.begin(); |
| iter != extBehavior.end(); ++iter) { |
| PredefineIntMacro(iter->first.c_str(), 1); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////// |
| // |
| // Sub- vector and matrix fields |
| // |
| //////////////////////////////////////////////////////////////////////// |
| |
| // |
| // Look at a '.' field selector string and change it into offsets |
| // for a vector. |
| // |
| bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, int line) |
| { |
| fields.num = (int) compString.size(); |
| if (fields.num > 4) { |
| error(line, "illegal vector field selection", compString.c_str(), ""); |
| return false; |
| } |
| |
| enum { |
| exyzw, |
| ergba, |
| estpq, |
| } fieldSet[4]; |
| |
| for (int i = 0; i < fields.num; ++i) { |
| switch (compString[i]) { |
| case 'x': |
| fields.offsets[i] = 0; |
| fieldSet[i] = exyzw; |
| break; |
| case 'r': |
| fields.offsets[i] = 0; |
| fieldSet[i] = ergba; |
| break; |
| case 's': |
| fields.offsets[i] = 0; |
| fieldSet[i] = estpq; |
| break; |
| case 'y': |
| fields.offsets[i] = 1; |
| fieldSet[i] = exyzw; |
| break; |
| case 'g': |
| fields.offsets[i] = 1; |
| fieldSet[i] = ergba; |
| break; |
| case 't': |
| fields.offsets[i] = 1; |
| fieldSet[i] = estpq; |
| break; |
| case 'z': |
| fields.offsets[i] = 2; |
| fieldSet[i] = exyzw; |
| break; |
| case 'b': |
| fields.offsets[i] = 2; |
| fieldSet[i] = ergba; |
| break; |
| case 'p': |
| fields.offsets[i] = 2; |
| fieldSet[i] = estpq; |
| break; |
| |
| case 'w': |
| fields.offsets[i] = 3; |
| fieldSet[i] = exyzw; |
| break; |
| case 'a': |
| fields.offsets[i] = 3; |
| fieldSet[i] = ergba; |
| break; |
| case 'q': |
| fields.offsets[i] = 3; |
| fieldSet[i] = estpq; |
| break; |
| default: |
| error(line, "illegal vector field selection", compString.c_str(), ""); |
| return false; |
| } |
| } |
| |
| for (int i = 0; i < fields.num; ++i) { |
| if (fields.offsets[i] >= vecSize) { |
| error(line, "vector field selection out of range", compString.c_str(), ""); |
| return false; |
| } |
| |
| if (i > 0) { |
| if (fieldSet[i] != fieldSet[i-1]) { |
| error(line, "illegal - vector component fields not from the same set", compString.c_str(), ""); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| // |
| // Look at a '.' field selector string and change it into offsets |
| // for a matrix. |
| // |
| bool TParseContext::parseMatrixFields(const TString& compString, int matSize, TMatrixFields& fields, int line) |
| { |
| fields.wholeRow = false; |
| fields.wholeCol = false; |
| fields.row = -1; |
| fields.col = -1; |
| |
| if (compString.size() != 2) { |
| error(line, "illegal length of matrix field selection", compString.c_str(), ""); |
| return false; |
| } |
| |
| if (compString[0] == '_') { |
| if (compString[1] < '0' || compString[1] > '3') { |
| error(line, "illegal matrix field selection", compString.c_str(), ""); |
| return false; |
| } |
| fields.wholeCol = true; |
| fields.col = compString[1] - '0'; |
| } else if (compString[1] == '_') { |
| if (compString[0] < '0' || compString[0] > '3') { |
| error(line, "illegal matrix field selection", compString.c_str(), ""); |
| return false; |
| } |
| fields.wholeRow = true; |
| fields.row = compString[0] - '0'; |
| } else { |
| if (compString[0] < '0' || compString[0] > '3' || |
| compString[1] < '0' || compString[1] > '3') { |
| error(line, "illegal matrix field selection", compString.c_str(), ""); |
| return false; |
| } |
| fields.row = compString[0] - '0'; |
| fields.col = compString[1] - '0'; |
| } |
| |
| if (fields.row >= matSize || fields.col >= matSize) { |
| error(line, "matrix field selection out of range", compString.c_str(), ""); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////// |
| // |
| // Errors |
| // |
| //////////////////////////////////////////////////////////////////////// |
| |
| // |
| // Track whether errors have occurred. |
| // |
| void TParseContext::recover() |
| { |
| recoveredFromError = true; |
| } |
| |
| // |
| // Used by flex/bison to output all syntax and parsing errors. |
| // |
| void TParseContext::error(TSourceLoc loc, |
| const char* reason, const char* token, |
| const char* extraInfoFormat, ...) |
| { |
| char extraInfo[512]; |
| va_list marker; |
| va_start(marker, extraInfoFormat); |
| vsnprintf(extraInfo, sizeof(extraInfo), extraInfoFormat, marker); |
| |
| ReportInfo(infoSink.info, EPrefixError, loc, reason, token, extraInfo); |
| |
| va_end(marker); |
| ++numErrors; |
| } |
| |
| void TParseContext::warning(TSourceLoc loc, |
| const char* reason, const char* token, |
| const char* extraInfoFormat, ...) { |
| char extraInfo[512]; |
| va_list marker; |
| va_start(marker, extraInfoFormat); |
| vsnprintf(extraInfo, sizeof(extraInfo), extraInfoFormat, marker); |
| |
| ReportInfo(infoSink.info, EPrefixWarning, loc, reason, token, extraInfo); |
| |
| va_end(marker); |
| } |
| |
| // |
| // Same error message for all places assignments don't work. |
| // |
| void TParseContext::assignError(int line, const char* op, TString left, TString right) |
| { |
| error(line, "", op, "cannot convert from '%s' to '%s'", |
| right.c_str(), left.c_str()); |
| } |
| |
| // |
| // Same error message for all places unary operations don't work. |
| // |
| void TParseContext::unaryOpError(int line, const char* op, TString operand) |
| { |
| error(line, " wrong operand type", op, |
| "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)", |
| op, operand.c_str()); |
| } |
| |
| // |
| // Same error message for all binary operations don't work. |
| // |
| void TParseContext::binaryOpError(int line, const char* op, TString left, TString right) |
| { |
| error(line, " wrong operand types ", op, |
| "no operation '%s' exists that takes a left-hand operand of type '%s' and " |
| "a right operand of type '%s' (or there is no acceptable conversion)", |
| op, left.c_str(), right.c_str()); |
| } |
| |
| bool TParseContext::precisionErrorCheck(int line, TPrecision precision, TBasicType type){ |
| switch( type ){ |
| case EbtFloat: |
| if( precision == EbpUndefined ){ |
| error( line, "No precision specified for (float)", "", "" ); |
| return true; |
| } |
| break; |
| case EbtInt: |
| if( precision == EbpUndefined ){ |
| error( line, "No precision specified (int)", "", "" ); |
| return true; |
| } |
| break; |
| } |
| return false; |
| } |
| |
| // |
| // Both test and if necessary, spit out an error, to see if the node is really |
| // an l-value that can be operated on this way. |
| // |
| // Returns true if the was an error. |
| // |
| bool TParseContext::lValueErrorCheck(int line, const char* op, TIntermTyped* node) |
| { |
| TIntermSymbol* symNode = node->getAsSymbolNode(); |
| TIntermBinary* binaryNode = node->getAsBinaryNode(); |
| |
| if (binaryNode) { |
| bool errorReturn; |
| |
| switch(binaryNode->getOp()) { |
| case EOpIndexDirect: |
| case EOpIndexIndirect: |
| case EOpIndexDirectStruct: |
| return lValueErrorCheck(line, op, binaryNode->getLeft()); |
| case EOpVectorSwizzle: |
| errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft()); |
| if (!errorReturn) { |
| int offset[4] = {0,0,0,0}; |
| |
| TIntermTyped* rightNode = binaryNode->getRight(); |
| TIntermAggregate *aggrNode = rightNode->getAsAggregate(); |
| |
| for (TIntermSequence::iterator p = aggrNode->getSequence().begin(); |
| p != aggrNode->getSequence().end(); p++) { |
| int value = (*p)->getAsTyped()->getAsConstantUnion()->getUnionArrayPointer()->getIConst(); |
| offset[value]++; |
| if (offset[value] > 1) { |
| error(line, " l-value of swizzle cannot have duplicate components", op, "", ""); |
| |
| return true; |
| } |
| } |
| } |
| |
| return errorReturn; |
| default: |
| break; |
| } |
| error(line, " l-value required", op, "", ""); |
| |
| return true; |
| } |
| |
| |
| const char* symbol = 0; |
| if (symNode != 0) |
| symbol = symNode->getSymbol().c_str(); |
| |
| const char* message = 0; |
| switch (node->getQualifier()) { |
| case EvqConst: message = "can't modify a const"; break; |
| case EvqConstReadOnly: message = "can't modify a const"; break; |
| case EvqAttribute: message = "can't modify an attribute"; break; |
| case EvqUniform: message = "can't modify a uniform"; break; |
| case EvqVaryingIn: message = "can't modify a varying"; break; |
| case EvqInput: message = "can't modify an input"; break; |
| case EvqFragCoord: message = "can't modify gl_FragCoord"; break; |
| case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break; |
| case EvqPointCoord: message = "can't modify gl_PointCoord"; break; |
| default: |
| |
| // |
| // Type that can't be written to? |
| // |
| switch (node->getBasicType()) { |
| case EbtSampler2D: |
| case EbtSamplerCube: |
| message = "can't modify a sampler"; |
| break; |
| case EbtVoid: |
| message = "can't modify void"; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (message == 0 && binaryNode == 0 && symNode == 0) { |
| error(line, " l-value required", op, "", ""); |
| |
| return true; |
| } |
| |
| |
| // |
| // Everything else is okay, no error. |
| // |
| if (message == 0) |
| return false; |
| |
| // |
| // If we get here, we have an error and a message. |
| // |
| if (symNode) |
| error(line, " l-value required", op, "\"%s\" (%s)", symbol, message); |
| else |
| error(line, " l-value required", op, "(%s)", message); |
| |
| return true; |
| } |
| |
| // |
| // Both test, and if necessary spit out an error, to see if the node is really |
| // a constant. |
| // |
| // Returns true if the was an error. |
| // |
| bool TParseContext::constErrorCheck(TIntermTyped* node) |
| { |
| if (node->getQualifier() == EvqConst) |
| return false; |
| |
| error(node->getLine(), "constant expression required", "", ""); |
| |
| return true; |
| } |
| |
| // |
| // Both test, and if necessary spit out an error, to see if the node is really |
| // an integer. |
| // |
| // Returns true if the was an error. |
| // |
| bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token) |
| { |
| if (node->getBasicType() == EbtInt && node->getNominalSize() == 1) |
| return false; |
| |
| error(node->getLine(), "integer expression required", token, ""); |
| |
| return true; |
| } |
| |
| // |
| // Both test, and if necessary spit out an error, to see if we are currently |
| // globally scoped. |
| // |
| // Returns true if the was an error. |
| // |
| bool TParseContext::globalErrorCheck(int line, bool global, const char* token) |
| { |
| if (global) |
| return false; |
| |
| error(line, "only allowed at global scope", token, ""); |
| |
| return true; |
| } |
| |
| // |
| // For now, keep it simple: if it starts "gl_", it's reserved, independent |
| // of scope. Except, if the symbol table is at the built-in push-level, |
| // which is when we are parsing built-ins. |
| // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a |
| // webgl shader. |
| // |
| // Returns true if there was an error. |
| // |
| bool TParseContext::reservedErrorCheck(int line, const TString& identifier) |
| { |
| static const char* reservedErrMsg = "reserved built-in name"; |
| if (!symbolTable.atBuiltInLevel()) { |
| if (identifier.substr(0, 3) == TString("gl_")) { |
| error(line, reservedErrMsg, "gl_", ""); |
| return true; |
| } |
| if (shaderSpec == SH_WEBGL_SPEC) { |
| if (identifier.substr(0, 6) == TString("webgl_")) { |
| error(line, reservedErrMsg, "webgl_", ""); |
| return true; |
| } |
| if (identifier.substr(0, 7) == TString("_webgl_")) { |
| error(line, reservedErrMsg, "_webgl_", ""); |
| return true; |
| } |
| } |
| if (identifier.find("__") != TString::npos) { |
| //error(line, "Two consecutive underscores are reserved for future use.", identifier.c_str(), "", ""); |
| //return true; |
| infoSink.info.message(EPrefixWarning, "Two consecutive underscores are reserved for future use.", line); |
| return false; |
| } |
| } |
| |
| return false; |
| } |
| |
| // |
| // Make sure there is enough data provided to the constructor to build |
| // something of the type of the constructor. Also returns the type of |
| // the constructor. |
| // |
| // Returns true if there was an error in construction. |
| // |
| bool TParseContext::constructorErrorCheck(int line, TIntermNode* node, TFunction& function, TOperator op, TType* type) |
| { |
| *type = function.getReturnType(); |
| |
| bool constructingMatrix = false; |
| switch(op) { |
| case EOpConstructMat2: |
| case EOpConstructMat3: |
| case EOpConstructMat4: |
| constructingMatrix = true; |
| break; |
| default: |
| break; |
| } |
| |
| // |
| // Note: It's okay to have too many components available, but not okay to have unused |
| // arguments. 'full' will go to true when enough args have been seen. If we loop |
| // again, there is an extra argument, so 'overfull' will become true. |
| // |
| |
| int size = 0; |
| bool constType = true; |
| bool full = false; |
| bool overFull = false; |
| bool matrixInMatrix = false; |
| bool arrayArg = false; |
| for (int i = 0; i < function.getParamCount(); ++i) { |
| const TParameter& param = function.getParam(i); |
| size += param.type->getObjectSize(); |
| |
| if (constructingMatrix && param.type->isMatrix()) |
| matrixInMatrix = true; |
| if (full) |
| overFull = true; |
| if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize()) |
| full = true; |
| if (param.type->getQualifier() != EvqConst) |
| constType = false; |
| if (param.type->isArray()) |
| arrayArg = true; |
| } |
| |
| if (constType) |
| type->setQualifier(EvqConst); |
| |
| if (type->isArray() && type->getArraySize() != function.getParamCount()) { |
| error(line, "array constructor needs one argument per array element", "constructor", ""); |
| return true; |
| } |
| |
| if (arrayArg && op != EOpConstructStruct) { |
| error(line, "constructing from a non-dereferenced array", "constructor", ""); |
| return true; |
| } |
| |
| if (matrixInMatrix && !type->isArray()) { |
| if (function.getParamCount() != 1) { |
| error(line, "constructing matrix from matrix can only take one argument", "constructor", ""); |
| return true; |
| } |
| } |
| |
| if (overFull) { |
| error(line, "too many arguments", "constructor", ""); |
| return true; |
| } |
| |
| if (op == EOpConstructStruct && !type->isArray() && int(type->getStruct()->size()) != function.getParamCount()) { |
| error(line, "Number of constructor parameters does not match the number of structure fields", "constructor", ""); |
| return true; |
| } |
| |
| if (!type->isMatrix()) { |
| if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) || |
| (op == EOpConstructStruct && size < type->getObjectSize())) { |
| error(line, "not enough data provided for construction", "constructor", ""); |
| return true; |
| } |
| } |
| |
| TIntermTyped* typed = node->getAsTyped(); |
| if (typed == 0) { |
| error(line, "constructor argument does not have a type", "constructor", ""); |
| return true; |
| } |
| if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) { |
| error(line, "cannot convert a sampler", "constructor", ""); |
| return true; |
| } |
| if (typed->getBasicType() == EbtVoid) { |
| error(line, "cannot convert a void", "constructor", ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // This function checks to see if a void variable has been declared and raise an error message for such a case |
| // |
| // returns true in case of an error |
| // |
| bool TParseContext::voidErrorCheck(int line, const TString& identifier, const TPublicType& pubType) |
| { |
| if (pubType.type == EbtVoid) { |
| error(line, "illegal use of type 'void'", identifier.c_str(), ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // This function checks to see if the node (for the expression) contains a scalar boolean expression or not |
| // |
| // returns true in case of an error |
| // |
| bool TParseContext::boolErrorCheck(int line, const TIntermTyped* type) |
| { |
| if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) { |
| error(line, "boolean expression expected", "", ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // This function checks to see if the node (for the expression) contains a scalar boolean expression or not |
| // |
| // returns true in case of an error |
| // |
| bool TParseContext::boolErrorCheck(int line, const TPublicType& pType) |
| { |
| if (pType.type != EbtBool || pType.array || pType.matrix || (pType.size > 1)) { |
| error(line, "boolean expression expected", "", ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool TParseContext::samplerErrorCheck(int line, const TPublicType& pType, const char* reason) |
| { |
| if (pType.type == EbtStruct) { |
| if (containsSampler(*pType.userDef)) { |
| error(line, reason, getBasicString(pType.type), "(structure contains a sampler)"); |
| |
| return true; |
| } |
| |
| return false; |
| } else if (IsSampler(pType.type)) { |
| error(line, reason, getBasicString(pType.type), ""); |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool TParseContext::structQualifierErrorCheck(int line, const TPublicType& pType) |
| { |
| if ((pType.qualifier == EvqVaryingIn || pType.qualifier == EvqVaryingOut || pType.qualifier == EvqAttribute) && |
| pType.type == EbtStruct) { |
| error(line, "cannot be used with a structure", getQualifierString(pType.qualifier), ""); |
| |
| return true; |
| } |
| |
| if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform")) |
| return true; |
| |
| return false; |
| } |
| |
| bool TParseContext::parameterSamplerErrorCheck(int line, TQualifier qualifier, const TType& type) |
| { |
| if ((qualifier == EvqOut || qualifier == EvqInOut) && |
| type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) { |
| error(line, "samplers cannot be output parameters", type.getBasicString(), ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool TParseContext::containsSampler(TType& type) |
| { |
| if (IsSampler(type.getBasicType())) |
| return true; |
| |
| if (type.getBasicType() == EbtStruct) { |
| TTypeList& structure = *type.getStruct(); |
| for (unsigned int i = 0; i < structure.size(); ++i) { |
| if (containsSampler(*structure[i].type)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // |
| // Do size checking for an array type's size. |
| // |
| // Returns true if there was an error. |
| // |
| bool TParseContext::arraySizeErrorCheck(int line, TIntermTyped* expr, int& size) |
| { |
| TIntermConstantUnion* constant = expr->getAsConstantUnion(); |
| if (constant == 0 || constant->getBasicType() != EbtInt) { |
| error(line, "array size must be a constant integer expression", "", ""); |
| return true; |
| } |
| |
| size = constant->getUnionArrayPointer()->getIConst(); |
| |
| if (size <= 0) { |
| error(line, "array size must be a positive integer", "", ""); |
| size = 1; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // |
| // See if this qualifier can be an array. |
| // |
| // Returns true if there is an error. |
| // |
| bool TParseContext::arrayQualifierErrorCheck(int line, TPublicType type) |
| { |
| if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqConst)) { |
| error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str(), ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // |
| // See if this type can be an array. |
| // |
| // Returns true if there is an error. |
| // |
| bool TParseContext::arrayTypeErrorCheck(int line, TPublicType type) |
| { |
| // |
| // Can the type be an array? |
| // |
| if (type.array) { |
| error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str(), ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // |
| // Do all the semantic checking for declaring an array, with and |
| // without a size, and make the right changes to the symbol table. |
| // |
| // size == 0 means no specified size. |
| // |
| // Returns true if there was an error. |
| // |
| bool TParseContext::arrayErrorCheck(int line, TString& identifier, TPublicType type, TVariable*& variable) |
| { |
| // |
| // Don't check for reserved word use until after we know it's not in the symbol table, |
| // because reserved arrays can be redeclared. |
| // |
| |
| bool builtIn = false; |
| bool sameScope = false; |
| TSymbol* symbol = symbolTable.find(identifier, &builtIn, &sameScope); |
| if (symbol == 0 || !sameScope) { |
| if (reservedErrorCheck(line, identifier)) |
| return true; |
| |
| variable = new TVariable(&identifier, TType(type)); |
| |
| if (type.arraySize) |
| variable->getType().setArraySize(type.arraySize); |
| |
| if (! symbolTable.insert(*variable)) { |
| delete variable; |
| error(line, "INTERNAL ERROR inserting new symbol", identifier.c_str(), ""); |
| return true; |
| } |
| } else { |
| if (! symbol->isVariable()) { |
| error(line, "variable expected", identifier.c_str(), ""); |
| return true; |
| } |
| |
| variable = static_cast<TVariable*>(symbol); |
| if (! variable->getType().isArray()) { |
| error(line, "redeclaring non-array as array", identifier.c_str(), ""); |
| return true; |
| } |
| if (variable->getType().getArraySize() > 0) { |
| error(line, "redeclaration of array with size", identifier.c_str(), ""); |
| return true; |
| } |
| |
| if (! variable->getType().sameElementType(TType(type))) { |
| error(line, "redeclaration of array with a different type", identifier.c_str(), ""); |
| return true; |
| } |
| |
| TType* t = variable->getArrayInformationType(); |
| while (t != 0) { |
| if (t->getMaxArraySize() > type.arraySize) { |
| error(line, "higher index value already used for the array", identifier.c_str(), ""); |
| return true; |
| } |
| t->setArraySize(type.arraySize); |
| t = t->getArrayInformationType(); |
| } |
| |
| if (type.arraySize) |
| variable->getType().setArraySize(type.arraySize); |
| } |
| |
| if (voidErrorCheck(line, identifier, type)) |
| return true; |
| |
| return false; |
| } |
| |
| bool TParseContext::arraySetMaxSize(TIntermSymbol *node, TType* type, int size, bool updateFlag, TSourceLoc line) |
| { |
| bool builtIn = false; |
| TSymbol* symbol = symbolTable.find(node->getSymbol(), &builtIn); |
| if (symbol == 0) { |
| error(line, " undeclared identifier", node->getSymbol().c_str(), ""); |
| return true; |
| } |
| TVariable* variable = static_cast<TVariable*>(symbol); |
| |
| type->setArrayInformationType(variable->getArrayInformationType()); |
| variable->updateArrayInformationType(type); |
| |
| // special casing to test index value of gl_FragData. If the accessed index is >= gl_MaxDrawBuffers |
| // its an error |
| if (node->getSymbol() == "gl_FragData") { |
| TSymbol* fragData = symbolTable.find("gl_MaxDrawBuffers", &builtIn); |
| if (fragData == 0) { |
| infoSink.info.message(EPrefixInternalError, "gl_MaxDrawBuffers not defined", line); |
| return true; |
| } |
| |
| int fragDataValue = static_cast<TVariable*>(fragData)->getConstPointer()[0].getIConst(); |
| if (fragDataValue <= size) { |
| error(line, "", "[", "gl_FragData can only have a max array size of up to gl_MaxDrawBuffers", ""); |
| return true; |
| } |
| } |
| |
| // we dont want to update the maxArraySize when this flag is not set, we just want to include this |
| // node type in the chain of node types so that its updated when a higher maxArraySize comes in. |
| if (!updateFlag) |
| return false; |
| |
| size++; |
| variable->getType().setMaxArraySize(size); |
| type->setMaxArraySize(size); |
| TType* tt = type; |
| |
| while(tt->getArrayInformationType() != 0) { |
| tt = tt->getArrayInformationType(); |
| tt->setMaxArraySize(size); |
| } |
| |
| return false; |
| } |
| |
| // |
| // Enforce non-initializer type/qualifier rules. |
| // |
| // Returns true if there was an error. |
| // |
| bool TParseContext::nonInitConstErrorCheck(int line, TString& identifier, TPublicType& type) |
| { |
| // |
| // Make the qualifier make sense. |
| // |
| if (type.qualifier == EvqConst) { |
| type.qualifier = EvqTemporary; |
| error(line, "variables with qualifier 'const' must be initialized", identifier.c_str(), ""); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // |
| // Do semantic checking for a variable declaration that has no initializer, |
| // and update the symbol table. |
| // |
| // Returns true if there was an error. |
| // |
| bool TParseContext::nonInitErrorCheck(int line, TString& identifier, TPublicType& type) |
| { |
| if (reservedErrorCheck(line, identifier)) |
| recover(); |
| |
| TVariable* variable = new TVariable(&identifier, TType(type)); |
| |
| if (! symbolTable.insert(*variable)) { |
| error(line, "redefinition", variable->getName().c_str(), ""); |
| delete variable; |
| return true; |
| } |
| |
| if (voidErrorCheck(line, identifier, type)) |
| return true; |
| |
| return false; |
| } |
| |
| bool TParseContext::paramErrorCheck(int line, TQualifier qualifier, TQualifier paramQualifier, TType* type) |
| { |
| if (qualifier != EvqConst && qualifier != EvqTemporary) { |
| error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier), ""); |
| return true; |
| } |
| if (qualifier == EvqConst && paramQualifier != EvqIn) { |
| error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier)); |
| return true; |
| } |
| |
| if (qualifier == EvqConst) |
| type->setQualifier(EvqConstReadOnly); |
| else |
| type->setQualifier(paramQualifier); |
| |
| return false; |
| } |
| |
| bool TParseContext::extensionErrorCheck(int line, const TString& extension) |
| { |
| TExtensionBehavior::const_iterator iter = extensionBehavior.find(extension); |
| if (iter == extensionBehavior.end()) { |
| error(line, "extension", extension.c_str(), "is not supported"); |
| return true; |
| } |
| if (iter->second == EBhDisable) { |
| error(line, "extension", extension.c_str(), "is disabled"); |
| return true; |
| } |
| if (iter->second == EBhWarn) { |
| TString msg = "extension " + extension + " is being used"; |
| infoSink.info.message(EPrefixWarning, msg.c_str(), line); |
| return false; |
| } |
| |
| return false; |
| } |
| |
| ///////////////////////////////////////////////////////////////////////////////// |
| // |
| // Non-Errors. |
| // |
| ///////////////////////////////////////////////////////////////////////////////// |
| |
| // |
| // Look up a function name in the symbol table, and make sure it is a function. |
| // |
| // Return the function symbol if found, otherwise 0. |
| // |
| const TFunction* TParseContext::findFunction(int line, TFunction* call, bool *builtIn) |
| { |
| // First find by unmangled name to check whether the function name has been |
| // hidden by a variable name or struct typename. |
| const TSymbol* symbol = symbolTable.find(call->getName(), builtIn); |
| if (symbol == 0) { |
| symbol = symbolTable.find(call->getMangledName(), builtIn); |
| } |
| |
| if (symbol == 0) { |
| error(line, "no matching overloaded function found", call->getName().c_str(), ""); |
| return 0; |
| } |
| |
| if (!symbol->isFunction()) { |
| error(line, "function name expected", call->getName().c_str(), ""); |
| return 0; |
| } |
| |
| return static_cast<const TFunction*>(symbol); |
| } |
| |
| // |
| // Initializers show up in several places in the grammar. Have one set of |
| // code to handle them here. |
| // |
| bool TParseContext::executeInitializer(TSourceLoc line, TString& identifier, TPublicType& pType, |
| TIntermTyped* initializer, TIntermNode*& intermNode, TVariable* variable) |
| { |
| TType type = TType(pType); |
| |
| if (variable == 0) { |
| if (reservedErrorCheck(line, identifier)) |
| return true; |
| |
| if (voidErrorCheck(line, identifier, pType)) |
| return true; |
| |
| // |
| // add variable to symbol table |
| // |
| variable = new TVariable(&identifier, type); |
| if (! symbolTable.insert(*variable)) { |
| error(line, "redefinition", variable->getName().c_str(), ""); |
| return true; |
| // don't delete variable, it's used by error recovery, and the pool |
| // pop will take care of the memory |
| } |
| } |
| |
| // |
| // identifier must be of type constant, a global, or a temporary |
| // |
| TQualifier qualifier = variable->getType().getQualifier(); |
| if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) { |
| error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString(), ""); |
| return true; |
| } |
| // |
| // test for and propagate constant |
| // |
| |
| if (qualifier == EvqConst) { |
| if (qualifier != initializer->getType().getQualifier()) { |
| error(line, " assigning non-constant to", "=", "'%s'", variable->getType().getCompleteString().c_str()); |
| variable->getType().setQualifier(EvqTemporary); |
| return true; |
| } |
| if (type != initializer->getType()) { |
| error(line, " non-matching types for const initializer ", |
| variable->getType().getQualifierString(), ""); |
| variable->getType().setQualifier(EvqTemporary); |
| return true; |
| } |
| if (initializer->getAsConstantUnion()) { |
| ConstantUnion* unionArray = variable->getConstPointer(); |
| |
| if (type.getObjectSize() == 1 && type.getBasicType() != EbtStruct) { |
| *unionArray = (initializer->getAsConstantUnion()->getUnionArrayPointer())[0]; |
| } else { |
| variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer()); |
| } |
| } else if (initializer->getAsSymbolNode()) { |
| const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol()); |
| const TVariable* tVar = static_cast<const TVariable*>(symbol); |
| |
| ConstantUnion* constArray = tVar->getConstPointer(); |
| variable->shareConstPointer(constArray); |
| } else { |
| error(line, " cannot assign to", "=", "'%s'", variable->getType().getCompleteString().c_str()); |
| variable->getType().setQualifier(EvqTemporary); |
| return true; |
| } |
| } |
| |
| if (qualifier != EvqConst) { |
| TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line); |
| intermNode = intermediate.addAssign(EOpInitialize, intermSymbol, initializer, line); |
| if (intermNode == 0) { |
| assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); |
| return true; |
| } |
| } else |
| intermNode = 0; |
| |
| return false; |
| } |
| |
| bool TParseContext::areAllChildConst(TIntermAggregate* aggrNode) |
| { |
| ASSERT(aggrNode != NULL); |
| if (!aggrNode->isConstructor()) |
| return false; |
| |
| bool allConstant = true; |
| |
| // check if all the child nodes are constants so that they can be inserted into |
| // the parent node |
| TIntermSequence &sequence = aggrNode->getSequence() ; |
| for (TIntermSequence::iterator p = sequence.begin(); p != sequence.end(); ++p) { |
| if (!(*p)->getAsTyped()->getAsConstantUnion()) |
| return false; |
| } |
| |
| return allConstant; |
| } |
| |
| // This function is used to test for the correctness of the parameters passed to various constructor functions |
| // and also convert them to the right datatype if it is allowed and required. |
| // |
| // Returns 0 for an error or the constructed node (aggregate or typed) for no error. |
| // |
| TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType* type, TOperator op, TFunction* fnCall, TSourceLoc line) |
| { |
| if (node == 0) |
| return 0; |
| |
| TIntermAggregate* aggrNode = node->getAsAggregate(); |
| |
| TTypeList::const_iterator memberTypes; |
| if (op == EOpConstructStruct) |
| memberTypes = type->getStruct()->begin(); |
| |
| TType elementType = *type; |
| if (type->isArray()) |
| elementType.clearArrayness(); |
| |
| bool singleArg; |
| if (aggrNode) { |
| if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1) |
| singleArg = true; |
| else |
| singleArg = false; |
| } else |
| singleArg = true; |
| |
| TIntermTyped *newNode; |
| if (singleArg) { |
| // If structure constructor or array constructor is being called |
| // for only one parameter inside the structure, we need to call constructStruct function once. |
| if (type->isArray()) |
| newNode = constructStruct(node, &elementType, 1, node->getLine(), false); |
| else if (op == EOpConstructStruct) |
| newNode = constructStruct(node, (*memberTypes).type, 1, node->getLine(), false); |
| else |
| newNode = constructBuiltIn(type, op, node, node->getLine(), false); |
| |
| if (newNode && newNode->getAsAggregate()) { |
| TIntermTyped* constConstructor = foldConstConstructor(newNode->getAsAggregate(), *type); |
| if (constConstructor) |
| return constConstructor; |
| } |
| |
| return newNode; |
| } |
| |
| // |
| // Handle list of arguments. |
| // |
| TIntermSequence &sequenceVector = aggrNode->getSequence() ; // Stores the information about the parameter to the constructor |
| // if the structure constructor contains more than one parameter, then construct |
| // each parameter |
| |
| int paramCount = 0; // keeps a track of the constructor parameter number being checked |
| |
| // for each parameter to the constructor call, check to see if the right type is passed or convert them |
| // to the right type if possible (and allowed). |
| // for structure constructors, just check if the right type is passed, no conversion is allowed. |
| |
| for (TIntermSequence::iterator p = sequenceVector.begin(); |
| p != sequenceVector.end(); p++, paramCount++) { |
| if (type->isArray()) |
| newNode = constructStruct(*p, &elementType, paramCount+1, node->getLine(), true); |
| else if (op == EOpConstructStruct) |
| newNode = constructStruct(*p, (memberTypes[paramCount]).type, paramCount+1, node->getLine(), true); |
| else |
| newNode = constructBuiltIn(type, op, *p, node->getLine(), true); |
| |
| if (newNode) { |
| *p = newNode; |
| } |
| } |
| |
| TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, line); |
| TIntermTyped* constConstructor = foldConstConstructor(constructor->getAsAggregate(), *type); |
| if (constConstructor) |
| return constConstructor; |
| |
| return constructor; |
| } |
| |
| TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type) |
| { |
| bool canBeFolded = areAllChildConst(aggrNode); |
| aggrNode->setType(type); |
| if (canBeFolded) { |
| bool returnVal = false; |
| ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()]; |
| if (aggrNode->getSequence().size() == 1) { |
| returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable, type, true); |
| } |
| else { |
| returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable, type); |
| } |
| if (returnVal) |
| return 0; |
| |
| return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine()); |
| } |
| |
| return 0; |
| } |
| |
| // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value |
| // for the parameter to the constructor (passed to this function). Essentially, it converts |
| // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a |
| // float, then float is converted to int. |
| // |
| // Returns 0 for an error or the constructed node. |
| // |
| TIntermTyped* TParseContext::constructBuiltIn(const TType* type, TOperator op, TIntermNode* node, TSourceLoc line, bool subset) |
| { |
| TIntermTyped* newNode; |
| TOperator basicOp; |
| |
| // |
| // First, convert types as needed. |
| // |
| switch (op) { |
| case EOpConstructVec2: |
| case EOpConstructVec3: |
| case EOpConstructVec4: |
| case EOpConstructMat2: |
| case EOpConstructMat3: |
| case EOpConstructMat4: |
| case EOpConstructFloat: |
| basicOp = EOpConstructFloat; |
| break; |
| |
| case EOpConstructIVec2: |
| case EOpConstructIVec3: |
| case EOpConstructIVec4: |
| case EOpConstructInt: |
| basicOp = EOpConstructInt; |
| break; |
| |
| case EOpConstructBVec2: |
| case EOpConstructBVec3: |
| case EOpConstructBVec4: |
| case EOpConstructBool: |
| basicOp = EOpConstructBool; |
| break; |
| |
| default: |
| error(line, "unsupported construction", "", ""); |
| recover(); |
| |
| return 0; |
| } |
| newNode = intermediate.addUnaryMath(basicOp, node, node->getLine(), symbolTable); |
| if (newNode == 0) { |
| error(line, "can't convert", "constructor", ""); |
| return 0; |
| } |
| |
| // |
| // Now, if there still isn't an operation to do the construction, and we need one, add one. |
| // |
| |
| // Otherwise, skip out early. |
| if (subset || (newNode != node && newNode->getType() == *type)) |
| return newNode; |
| |
| // setAggregateOperator will insert a new node for the constructor, as needed. |
| return intermediate.setAggregateOperator(newNode, op, line); |
| } |
| |
| // This function tests for the type of the parameters to the structures constructors. Raises |
| // an error message if the expected type does not match the parameter passed to the constructor. |
| // |
| // Returns 0 for an error or the input node itself if the expected and the given parameter types match. |
| // |
| TIntermTyped* TParseContext::constructStruct(TIntermNode* node, TType* type, int paramCount, TSourceLoc line, bool subset) |
| { |
| if (*type == node->getAsTyped()->getType()) { |
| if (subset) |
| return node->getAsTyped(); |
| else |
| return intermediate.setAggregateOperator(node->getAsTyped(), EOpConstructStruct, line); |
| } else { |
| error(line, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount, |
| node->getAsTyped()->getType().getBasicString(), type->getBasicString()); |
| recover(); |
| } |
| |
| return 0; |
| } |
| |
| // |
| // This function returns the tree representation for the vector field(s) being accessed from contant vector. |
| // If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is |
| // returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol |
| // node or it could be the intermediate tree representation of accessing fields in a constant structure or column of |
| // a constant matrix. |
| // |
| TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, TSourceLoc line) |
| { |
| TIntermTyped* typedNode; |
| TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); |
| |
| ConstantUnion *unionArray; |
| if (tempConstantNode) { |
| unionArray = tempConstantNode->getUnionArrayPointer(); |
| |
| if (!unionArray) { // this error message should never be raised |
| infoSink.info.message(EPrefixInternalError, "ConstantUnion not initialized in addConstVectorNode function", line); |
| recover(); |
| |
| return node; |
| } |
| } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error |
| error(line, "Cannot offset into the vector", "Error", ""); |
| recover(); |
| |
| return 0; |
| } |
| |
| ConstantUnion* constArray = new ConstantUnion[fields.num]; |
| |
| for (int i = 0; i < fields.num; i++) { |
| if (fields.offsets[i] >= node->getType().getObjectSize()) { |
| error(line, "", "[", "vector field selection out of range '%d'", fields.offsets[i]); |
| recover(); |
| fields.offsets[i] = 0; |
| } |
| |
| constArray[i] = unionArray[fields.offsets[i]]; |
| |
| } |
| typedNode = intermediate.addConstantUnion(constArray, node->getType(), line); |
| return typedNode; |
| } |
| |
| // |
| // This function returns the column being accessed from a constant matrix. The values are retrieved from |
| // the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input |
| // to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a |
| // constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure) |
| // |
| TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, TSourceLoc line) |
| { |
| TIntermTyped* typedNode; |
| TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); |
| |
| if (index >= node->getType().getNominalSize()) { |
| error(line, "", "[", "matrix field selection out of range '%d'", index); |
| recover(); |
| index = 0; |
| } |
| |
| if (tempConstantNode) { |
| ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer(); |
| int size = tempConstantNode->getType().getNominalSize(); |
| typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line); |
| } else { |
| error(line, "Cannot offset into the matrix", "Error", ""); |
| recover(); |
| |
| return 0; |
| } |
| |
| return typedNode; |
| } |
| |
| |
| // |
| // This function returns an element of an array accessed from a constant array. The values are retrieved from |
| // the symbol table and parse-tree is built for the type of the element. The input |
| // to the function could either be a symbol node (a[0] where a is a constant array)that represents a |
| // constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure) |
| // |
| TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, TSourceLoc line) |
| { |
| TIntermTyped* typedNode; |
| TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); |
| TType arrayElementType = node->getType(); |
| arrayElementType.clearArrayness(); |
| |
| if (index >= node->getType().getArraySize()) { |
| error(line, "", "[", "array field selection out of range '%d'", index); |
| recover(); |
| index = 0; |
| } |
| |
| int arrayElementSize = arrayElementType.getObjectSize(); |
| |
| if (tempConstantNode) { |
| ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer(); |
| typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line); |
| } else { |
| error(line, "Cannot offset into the array", "Error", ""); |
| recover(); |
| |
| return 0; |
| } |
| |
| return typedNode; |
| } |
| |
| |
| // |
| // This function returns the value of a particular field inside a constant structure from the symbol table. |
| // If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr |
| // function and returns the parse-tree with the values of the embedded/nested struct. |
| // |
| TIntermTyped* TParseContext::addConstStruct(TString& identifier, TIntermTyped* node, TSourceLoc line) |
| { |
| const TTypeList* fields = node->getType().getStruct(); |
| TIntermTyped *typedNode; |
| int instanceSize = 0; |
| unsigned int index = 0; |
| TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion(); |
| |
| for ( index = 0; index < fields->size(); ++index) { |
| if ((*fields)[index].type->getFieldName() == identifier) { |
| break; |
| } else { |
| instanceSize += (*fields)[index].type->getObjectSize(); |
| } |
| } |
| |
| if (tempConstantNode) { |
| ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer(); |
| |
| typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function |
| } else { |
| error(line, "Cannot offset into the structure", "Error", ""); |
| recover(); |
| |
| return 0; |
| } |
| |
| return typedNode; |
| } |
| |
| // |
| // Parse an array of strings using yyparse. |
| // |
| // Returns 0 for success. |
| // |
| int PaParseStrings(int count, const char* const string[], const int length[], |
| TParseContext* context) { |
| if ((count == 0) || (string == NULL)) |
| return 1; |
| |
| // setup preprocessor. |
| if (InitPreprocessor()) |
| return 1; |
| DefineExtensionMacros(context->extensionBehavior); |
| |
| if (glslang_initialize(context)) |
| return 1; |
| |
| glslang_scan(count, string, length, context); |
| int error = glslang_parse(context); |
| |
| glslang_finalize(context); |
| FinalizePreprocessor(); |
| return (error == 0) && (context->numErrors == 0) ? 0 : 1; |
| } |
| |
| OS_TLSIndex GlobalParseContextIndex = OS_INVALID_TLS_INDEX; |
| |
| bool InitializeParseContextIndex() |
| { |
| if (GlobalParseContextIndex != OS_INVALID_TLS_INDEX) { |
| assert(0 && "InitializeParseContextIndex(): Parse Context already initalised"); |
| return false; |
| } |
| |
| // |
| // Allocate a TLS index. |
| // |
| GlobalParseContextIndex = OS_AllocTLSIndex(); |
| |
| if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) { |
| assert(0 && "InitializeParseContextIndex(): Parse Context already initalised"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool FreeParseContextIndex() |
| { |
| OS_TLSIndex tlsiIndex = GlobalParseContextIndex; |
| |
| if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) { |
| assert(0 && "FreeParseContextIndex(): Parse Context index not initalised"); |
| return false; |
| } |
| |
| GlobalParseContextIndex = OS_INVALID_TLS_INDEX; |
| |
| return OS_FreeTLSIndex(tlsiIndex); |
| } |
| |
| bool InitializeGlobalParseContext() |
| { |
| if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) { |
| assert(0 && "InitializeGlobalParseContext(): Parse Context index not initalised"); |
| return false; |
| } |
| |
| TThreadParseContext *lpParseContext = static_cast<TThreadParseContext *>(OS_GetTLSValue(GlobalParseContextIndex)); |
| if (lpParseContext != 0) { |
| assert(0 && "InitializeParseContextIndex(): Parse Context already initalised"); |
| return false; |
| } |
| |
| TThreadParseContext *lpThreadData = new TThreadParseContext(); |
| if (lpThreadData == 0) { |
| assert(0 && "InitializeGlobalParseContext(): Unable to create thread parse context"); |
| return false; |
| } |
| |
| lpThreadData->lpGlobalParseContext = 0; |
| OS_SetTLSValue(GlobalParseContextIndex, lpThreadData); |
| |
| return true; |
| } |
| |
| bool FreeParseContext() |
| { |
| if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) { |
| assert(0 && "FreeParseContext(): Parse Context index not initalised"); |
| return false; |
| } |
| |
| TThreadParseContext *lpParseContext = static_cast<TThreadParseContext *>(OS_GetTLSValue(GlobalParseContextIndex)); |
| if (lpParseContext) |
| delete lpParseContext; |
| |
| return true; |
| } |
| |
| TParseContextPointer& GetGlobalParseContext() |
| { |
| // |
| // Minimal error checking for speed |
| // |
| |
| TThreadParseContext *lpParseContext = static_cast<TThreadParseContext *>(OS_GetTLSValue(GlobalParseContextIndex)); |
| |
| return lpParseContext->lpGlobalParseContext; |
| } |
| |