blob: 5eae4b56ce5a097d2ad36e0b2fee70e004da0579 [file] [log] [blame]
/*
//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
This file contains the Yacc grammar for GLSL ES.
Based on ANSI C Yacc grammar:
http://www.lysator.liu.se/c/ANSI-C-grammar-y.html
IF YOU MODIFY THIS FILE YOU ALSO NEED TO RUN generate_glslang_parser.sh,
WHICH GENERATES THE GLSL ES PARSER (glslang_tab.cpp AND glslang_tab.h).
*/
%{
//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// This file is auto-generated by generate_glslang_parser.sh. DO NOT EDIT!
#include "compiler/SymbolTable.h"
#include "compiler/ParseHelper.h"
#include "GLSLANG/ShaderLang.h"
#define YYLEX_PARAM context->scanner
%}
%expect 1 /* One shift reduce conflict because of if | else */
%pure-parser
%parse-param {TParseContext* context}
%union {
struct {
TSourceLoc line;
union {
TString *string;
float f;
int i;
bool b;
};
TSymbol* symbol;
} lex;
struct {
TSourceLoc line;
TOperator op;
union {
TIntermNode* intermNode;
TIntermNodePair nodePair;
TIntermTyped* intermTypedNode;
TIntermAggregate* intermAggregate;
};
union {
TPublicType type;
TPrecision precision;
TQualifier qualifier;
TFunction* function;
TParameter param;
TTypeLine typeLine;
TTypeList* typeList;
};
} interm;
}
%{
extern int yylex(YYSTYPE* yylval_param, void* yyscanner);
extern void yyerror(TParseContext* context, const char* reason);
#define FRAG_VERT_ONLY(S, L) { \
if (context->shaderType != SH_FRAGMENT_SHADER && \
context->shaderType != SH_VERTEX_SHADER) { \
context->error(L, " supported in vertex/fragment shaders only ", S, "", ""); \
context->recover(); \
} \
}
#define VERTEX_ONLY(S, L) { \
if (context->shaderType != SH_VERTEX_SHADER) { \
context->error(L, " supported in vertex shaders only ", S, "", ""); \
context->recover(); \
} \
}
#define FRAG_ONLY(S, L) { \
if (context->shaderType != SH_FRAGMENT_SHADER) { \
context->error(L, " supported in fragment shaders only ", S, "", ""); \
context->recover(); \
} \
}
%}
%token <lex> INVARIANT HIGH_PRECISION MEDIUM_PRECISION LOW_PRECISION PRECISION
%token <lex> ATTRIBUTE CONST_QUAL BOOL_TYPE FLOAT_TYPE INT_TYPE
%token <lex> BREAK CONTINUE DO ELSE FOR IF DISCARD RETURN
%token <lex> BVEC2 BVEC3 BVEC4 IVEC2 IVEC3 IVEC4 VEC2 VEC3 VEC4
%token <lex> MATRIX2 MATRIX3 MATRIX4 IN_QUAL OUT_QUAL INOUT_QUAL UNIFORM VARYING
%token <lex> STRUCT VOID_TYPE WHILE
%token <lex> SAMPLER2D SAMPLERCUBE
%token <lex> IDENTIFIER TYPE_NAME FLOATCONSTANT INTCONSTANT BOOLCONSTANT
%token <lex> FIELD_SELECTION
%token <lex> LEFT_OP RIGHT_OP
%token <lex> INC_OP DEC_OP LE_OP GE_OP EQ_OP NE_OP
%token <lex> AND_OP OR_OP XOR_OP MUL_ASSIGN DIV_ASSIGN ADD_ASSIGN
%token <lex> MOD_ASSIGN LEFT_ASSIGN RIGHT_ASSIGN AND_ASSIGN XOR_ASSIGN OR_ASSIGN
%token <lex> SUB_ASSIGN
%token <lex> LEFT_PAREN RIGHT_PAREN LEFT_BRACKET RIGHT_BRACKET LEFT_BRACE RIGHT_BRACE DOT
%token <lex> COMMA COLON EQUAL SEMICOLON BANG DASH TILDE PLUS STAR SLASH PERCENT
%token <lex> LEFT_ANGLE RIGHT_ANGLE VERTICAL_BAR CARET AMPERSAND QUESTION
%type <interm> assignment_operator unary_operator
%type <interm.intermTypedNode> variable_identifier primary_expression postfix_expression
%type <interm.intermTypedNode> expression integer_expression assignment_expression
%type <interm.intermTypedNode> unary_expression multiplicative_expression additive_expression
%type <interm.intermTypedNode> relational_expression equality_expression
%type <interm.intermTypedNode> conditional_expression constant_expression
%type <interm.intermTypedNode> logical_or_expression logical_xor_expression logical_and_expression
%type <interm.intermTypedNode> shift_expression and_expression exclusive_or_expression inclusive_or_expression
%type <interm.intermTypedNode> function_call initializer condition conditionopt
%type <interm.intermNode> translation_unit function_definition
%type <interm.intermNode> statement simple_statement
%type <interm.intermAggregate> statement_list compound_statement
%type <interm.intermNode> declaration_statement selection_statement expression_statement
%type <interm.intermNode> declaration external_declaration
%type <interm.intermNode> for_init_statement compound_statement_no_new_scope
%type <interm.nodePair> selection_rest_statement for_rest_statement
%type <interm.intermNode> iteration_statement jump_statement statement_no_new_scope
%type <interm> single_declaration init_declarator_list
%type <interm> parameter_declaration parameter_declarator parameter_type_specifier
%type <interm.qualifier> parameter_qualifier
%type <interm.precision> precision_qualifier
%type <interm.type> type_qualifier fully_specified_type type_specifier
%type <interm.type> type_specifier_no_prec type_specifier_nonarray
%type <interm.type> struct_specifier
%type <interm.typeLine> struct_declarator
%type <interm.typeList> struct_declarator_list struct_declaration struct_declaration_list
%type <interm.function> function_header function_declarator function_identifier
%type <interm.function> function_header_with_parameters function_call_header
%type <interm> function_call_header_with_parameters function_call_header_no_parameters function_call_generic function_prototype
%type <interm> function_call_or_method
%start translation_unit
%%
variable_identifier
: IDENTIFIER {
// The symbol table search was done in the lexical phase
const TSymbol* symbol = $1.symbol;
const TVariable* variable;
if (symbol == 0) {
context->error($1.line, "undeclared identifier", $1.string->c_str(), "");
context->recover();
TType type(EbtFloat, EbpUndefined);
TVariable* fakeVariable = new TVariable($1.string, type);
context->symbolTable.insert(*fakeVariable);
variable = fakeVariable;
} else {
// This identifier can only be a variable type symbol
if (! symbol->isVariable()) {
context->error($1.line, "variable expected", $1.string->c_str(), "");
context->recover();
}
variable = static_cast<const TVariable*>(symbol);
}
// don't delete $1.string, it's used by error recovery, and the pool
// pop will reclaim the memory
if (variable->getType().getQualifier() == EvqConst ) {
ConstantUnion* constArray = variable->getConstPointer();
TType t(variable->getType());
$$ = context->intermediate.addConstantUnion(constArray, t, $1.line);
} else
$$ = context->intermediate.addSymbol(variable->getUniqueId(),
variable->getName(),
variable->getType(), $1.line);
}
;
primary_expression
: variable_identifier {
$$ = $1;
}
| INTCONSTANT {
//
// INT_TYPE is only 16-bit plus sign bit for vertex/fragment shaders,
// check for overflow for constants
//
if (abs($1.i) >= (1 << 16)) {
context->error($1.line, " integer constant overflow", "", "");
context->recover();
}
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setIConst($1.i);
$$ = context->intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), $1.line);
}
| FLOATCONSTANT {
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setFConst($1.f);
$$ = context->intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpUndefined, EvqConst), $1.line);
}
| BOOLCONSTANT {
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setBConst($1.b);
$$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $1.line);
}
| LEFT_PAREN expression RIGHT_PAREN {
$$ = $2;
}
;
postfix_expression
: primary_expression {
$$ = $1;
}
| postfix_expression LEFT_BRACKET integer_expression RIGHT_BRACKET {
if (!$1->isArray() && !$1->isMatrix() && !$1->isVector()) {
if ($1->getAsSymbolNode())
context->error($2.line, " left of '[' is not of type array, matrix, or vector ", $1->getAsSymbolNode()->getSymbol().c_str(), "");
else
context->error($2.line, " left of '[' is not of type array, matrix, or vector ", "expression", "");
context->recover();
}
if ($1->getType().getQualifier() == EvqConst && $3->getQualifier() == EvqConst) {
if ($1->isArray()) { // constant folding for arrays
$$ = context->addConstArrayNode($3->getAsConstantUnion()->getUnionArrayPointer()->getIConst(), $1, $2.line);
} else if ($1->isVector()) { // constant folding for vectors
TVectorFields fields;
fields.num = 1;
fields.offsets[0] = $3->getAsConstantUnion()->getUnionArrayPointer()->getIConst(); // need to do it this way because v.xy sends fields integer array
$$ = context->addConstVectorNode(fields, $1, $2.line);
} else if ($1->isMatrix()) { // constant folding for matrices
$$ = context->addConstMatrixNode($3->getAsConstantUnion()->getUnionArrayPointer()->getIConst(), $1, $2.line);
}
} else {
if ($3->getQualifier() == EvqConst) {
if (($1->isVector() || $1->isMatrix()) && $1->getType().getNominalSize() <= $3->getAsConstantUnion()->getUnionArrayPointer()->getIConst() && !$1->isArray() ) {
context->error($2.line, "", "[", "field selection out of range '%d'", $3->getAsConstantUnion()->getUnionArrayPointer()->getIConst());
context->recover();
} else {
if ($1->isArray()) {
if ($1->getType().getArraySize() == 0) {
if ($1->getType().getMaxArraySize() <= $3->getAsConstantUnion()->getUnionArrayPointer()->getIConst()) {
if (context->arraySetMaxSize($1->getAsSymbolNode(), $1->getTypePointer(), $3->getAsConstantUnion()->getUnionArrayPointer()->getIConst(), true, $2.line))
context->recover();
} else {
if (context->arraySetMaxSize($1->getAsSymbolNode(), $1->getTypePointer(), 0, false, $2.line))
context->recover();
}
} else if ( $3->getAsConstantUnion()->getUnionArrayPointer()->getIConst() >= $1->getType().getArraySize()) {
context->error($2.line, "", "[", "array index out of range '%d'", $3->getAsConstantUnion()->getUnionArrayPointer()->getIConst());
context->recover();
}
}
$$ = context->intermediate.addIndex(EOpIndexDirect, $1, $3, $2.line);
}
} else {
if ($1->isArray() && $1->getType().getArraySize() == 0) {
context->error($2.line, "", "[", "array must be redeclared with a size before being indexed with a variable");
context->recover();
}
$$ = context->intermediate.addIndex(EOpIndexIndirect, $1, $3, $2.line);
}
}
if ($$ == 0) {
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setFConst(0.0f);
$$ = context->intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst), $2.line);
} else if ($1->isArray()) {
if ($1->getType().getStruct())
$$->setType(TType($1->getType().getStruct(), $1->getType().getTypeName()));
else
$$->setType(TType($1->getBasicType(), $1->getPrecision(), EvqTemporary, $1->getNominalSize(), $1->isMatrix()));
if ($1->getType().getQualifier() == EvqConst)
$$->getTypePointer()->setQualifier(EvqConst);
} else if ($1->isMatrix() && $1->getType().getQualifier() == EvqConst)
$$->setType(TType($1->getBasicType(), $1->getPrecision(), EvqConst, $1->getNominalSize()));
else if ($1->isMatrix())
$$->setType(TType($1->getBasicType(), $1->getPrecision(), EvqTemporary, $1->getNominalSize()));
else if ($1->isVector() && $1->getType().getQualifier() == EvqConst)
$$->setType(TType($1->getBasicType(), $1->getPrecision(), EvqConst));
else if ($1->isVector())
$$->setType(TType($1->getBasicType(), $1->getPrecision(), EvqTemporary));
else
$$->setType($1->getType());
}
| function_call {
$$ = $1;
}
| postfix_expression DOT FIELD_SELECTION {
if ($1->isArray()) {
context->error($3.line, "cannot apply dot operator to an array", ".", "");
context->recover();
}
if ($1->isVector()) {
TVectorFields fields;
if (! context->parseVectorFields(*$3.string, $1->getNominalSize(), fields, $3.line)) {
fields.num = 1;
fields.offsets[0] = 0;
context->recover();
}
if ($1->getType().getQualifier() == EvqConst) { // constant folding for vector fields
$$ = context->addConstVectorNode(fields, $1, $3.line);
if ($$ == 0) {
context->recover();
$$ = $1;
}
else
$$->setType(TType($1->getBasicType(), $1->getPrecision(), EvqConst, (int) (*$3.string).size()));
} else {
if (fields.num == 1) {
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setIConst(fields.offsets[0]);
TIntermTyped* index = context->intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), $3.line);
$$ = context->intermediate.addIndex(EOpIndexDirect, $1, index, $2.line);
$$->setType(TType($1->getBasicType(), $1->getPrecision()));
} else {
TString vectorString = *$3.string;
TIntermTyped* index = context->intermediate.addSwizzle(fields, $3.line);
$$ = context->intermediate.addIndex(EOpVectorSwizzle, $1, index, $2.line);
$$->setType(TType($1->getBasicType(), $1->getPrecision(), EvqTemporary, (int) vectorString.size()));
}
}
} else if ($1->isMatrix()) {
TMatrixFields fields;
if (! context->parseMatrixFields(*$3.string, $1->getNominalSize(), fields, $3.line)) {
fields.wholeRow = false;
fields.wholeCol = false;
fields.row = 0;
fields.col = 0;
context->recover();
}
if (fields.wholeRow || fields.wholeCol) {
context->error($2.line, " non-scalar fields not implemented yet", ".", "");
context->recover();
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setIConst(0);
TIntermTyped* index = context->intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), $3.line);
$$ = context->intermediate.addIndex(EOpIndexDirect, $1, index, $2.line);
$$->setType(TType($1->getBasicType(), $1->getPrecision(),EvqTemporary, $1->getNominalSize()));
} else {
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setIConst(fields.col * $1->getNominalSize() + fields.row);
TIntermTyped* index = context->intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), $3.line);
$$ = context->intermediate.addIndex(EOpIndexDirect, $1, index, $2.line);
$$->setType(TType($1->getBasicType(), $1->getPrecision()));
}
} else if ($1->getBasicType() == EbtStruct) {
bool fieldFound = false;
const TTypeList* fields = $1->getType().getStruct();
if (fields == 0) {
context->error($2.line, "structure has no fields", "Internal Error", "");
context->recover();
$$ = $1;
} else {
unsigned int i;
for (i = 0; i < fields->size(); ++i) {
if ((*fields)[i].type->getFieldName() == *$3.string) {
fieldFound = true;
break;
}
}
if (fieldFound) {
if ($1->getType().getQualifier() == EvqConst) {
$$ = context->addConstStruct(*$3.string, $1, $2.line);
if ($$ == 0) {
context->recover();
$$ = $1;
}
else {
$$->setType(*(*fields)[i].type);
// change the qualifier of the return type, not of the structure field
// as the structure definition is shared between various structures.
$$->getTypePointer()->setQualifier(EvqConst);
}
} else {
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setIConst(i);
TIntermTyped* index = context->intermediate.addConstantUnion(unionArray, *(*fields)[i].type, $3.line);
$$ = context->intermediate.addIndex(EOpIndexDirectStruct, $1, index, $2.line);
$$->setType(*(*fields)[i].type);
}
} else {
context->error($2.line, " no such field in structure", $3.string->c_str(), "");
context->recover();
$$ = $1;
}
}
} else {
context->error($2.line, " field selection requires structure, vector, or matrix on left hand side", $3.string->c_str(), "");
context->recover();
$$ = $1;
}
// don't delete $3.string, it's from the pool
}
| postfix_expression INC_OP {
if (context->lValueErrorCheck($2.line, "++", $1))
context->recover();
$$ = context->intermediate.addUnaryMath(EOpPostIncrement, $1, $2.line, context->symbolTable);
if ($$ == 0) {
context->unaryOpError($2.line, "++", $1->getCompleteString());
context->recover();
$$ = $1;
}
}
| postfix_expression DEC_OP {
if (context->lValueErrorCheck($2.line, "--", $1))
context->recover();
$$ = context->intermediate.addUnaryMath(EOpPostDecrement, $1, $2.line, context->symbolTable);
if ($$ == 0) {
context->unaryOpError($2.line, "--", $1->getCompleteString());
context->recover();
$$ = $1;
}
}
;
integer_expression
: expression {
if (context->integerErrorCheck($1, "[]"))
context->recover();
$$ = $1;
}
;
function_call
: function_call_or_method {
TFunction* fnCall = $1.function;
TOperator op = fnCall->getBuiltInOp();
if (op != EOpNull)
{
//
// Then this should be a constructor.
// Don't go through the symbol table for constructors.
// Their parameters will be verified algorithmically.
//
TType type(EbtVoid, EbpUndefined); // use this to get the type back
if (context->constructorErrorCheck($1.line, $1.intermNode, *fnCall, op, &type)) {
$$ = 0;
} else {
//
// It's a constructor, of type 'type'.
//
$$ = context->addConstructor($1.intermNode, &type, op, fnCall, $1.line);
}
if ($$ == 0) {
context->recover();
$$ = context->intermediate.setAggregateOperator(0, op, $1.line);
}
$$->setType(type);
} else {
//
// Not a constructor. Find it in the symbol table.
//
const TFunction* fnCandidate;
bool builtIn;
fnCandidate = context->findFunction($1.line, fnCall, &builtIn);
if (fnCandidate) {
//
// A declared function.
//
if (builtIn && !fnCandidate->getExtension().empty() &&
context->extensionErrorCheck($1.line, fnCandidate->getExtension())) {
context->recover();
}
op = fnCandidate->getBuiltInOp();
if (builtIn && op != EOpNull) {
//
// A function call mapped to a built-in operation.
//
if (fnCandidate->getParamCount() == 1) {
//
// Treat it like a built-in unary operator.
//
$$ = context->intermediate.addUnaryMath(op, $1.intermNode, 0, context->symbolTable);
if ($$ == 0) {
context->error($1.intermNode->getLine(), " wrong operand type", "Internal Error",
"built in unary operator function. Type: %s",
static_cast<TIntermTyped*>($1.intermNode)->getCompleteString().c_str());
YYERROR;
}
} else {
$$ = context->intermediate.setAggregateOperator($1.intermAggregate, op, $1.line);
}
} else {
// This is a real function call
$$ = context->intermediate.setAggregateOperator($1.intermAggregate, EOpFunctionCall, $1.line);
$$->setType(fnCandidate->getReturnType());
// this is how we know whether the given function is a builtIn function or a user defined function
// if builtIn == false, it's a userDefined -> could be an overloaded builtIn function also
// if builtIn == true, it's definitely a builtIn function with EOpNull
if (!builtIn)
$$->getAsAggregate()->setUserDefined();
$$->getAsAggregate()->setName(fnCandidate->getMangledName());
TQualifier qual;
for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
qual = fnCandidate->getParam(i).type->getQualifier();
if (qual == EvqOut || qual == EvqInOut) {
if (context->lValueErrorCheck($$->getLine(), "assign", $$->getAsAggregate()->getSequence()[i]->getAsTyped())) {
context->error($1.intermNode->getLine(), "Constant value cannot be passed for 'out' or 'inout' parameters.", "Error", "");
context->recover();
}
}
}
}
$$->setType(fnCandidate->getReturnType());
} else {
// error message was put out by PaFindFunction()
// Put on a dummy node for error recovery
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setFConst(0.0f);
$$ = context->intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpUndefined, EvqConst), $1.line);
context->recover();
}
}
delete fnCall;
}
;
function_call_or_method
: function_call_generic {
$$ = $1;
}
| postfix_expression DOT function_call_generic {
context->error($3.line, "methods are not supported", "", "");
context->recover();
$$ = $3;
}
;
function_call_generic
: function_call_header_with_parameters RIGHT_PAREN {
$$ = $1;
$$.line = $2.line;
}
| function_call_header_no_parameters RIGHT_PAREN {
$$ = $1;
$$.line = $2.line;
}
;
function_call_header_no_parameters
: function_call_header VOID_TYPE {
$$.function = $1;
$$.intermNode = 0;
}
| function_call_header {
$$.function = $1;
$$.intermNode = 0;
}
;
function_call_header_with_parameters
: function_call_header assignment_expression {
TParameter param = { 0, new TType($2->getType()) };
$1->addParameter(param);
$$.function = $1;
$$.intermNode = $2;
}
| function_call_header_with_parameters COMMA assignment_expression {
TParameter param = { 0, new TType($3->getType()) };
$1.function->addParameter(param);
$$.function = $1.function;
$$.intermNode = context->intermediate.growAggregate($1.intermNode, $3, $2.line);
}
;
function_call_header
: function_identifier LEFT_PAREN {
$$ = $1;
}
;
// Grammar Note: Constructors look like functions, but are recognized as types.
function_identifier
: type_specifier {
//
// Constructor
//
if ($1.array) {
// Constructors for arrays are not allowed.
context->error($1.line, "cannot construct this type", "array", "");
context->recover();
$1.setArray(false);
}
TOperator op = EOpNull;
if ($1.userDef) {
op = EOpConstructStruct;
} else {
switch ($1.type) {
case EbtFloat:
if ($1.matrix) {
switch($1.size) {
case 2: op = EOpConstructMat2; break;
case 3: op = EOpConstructMat3; break;
case 4: op = EOpConstructMat4; break;
}
} else {
switch($1.size) {
case 1: op = EOpConstructFloat; break;
case 2: op = EOpConstructVec2; break;
case 3: op = EOpConstructVec3; break;
case 4: op = EOpConstructVec4; break;
}
}
break;
case EbtInt:
switch($1.size) {
case 1: op = EOpConstructInt; break;
case 2: FRAG_VERT_ONLY("ivec2", $1.line); op = EOpConstructIVec2; break;
case 3: FRAG_VERT_ONLY("ivec3", $1.line); op = EOpConstructIVec3; break;
case 4: FRAG_VERT_ONLY("ivec4", $1.line); op = EOpConstructIVec4; break;
}
break;
case EbtBool:
switch($1.size) {
case 1: op = EOpConstructBool; break;
case 2: FRAG_VERT_ONLY("bvec2", $1.line); op = EOpConstructBVec2; break;
case 3: FRAG_VERT_ONLY("bvec3", $1.line); op = EOpConstructBVec3; break;
case 4: FRAG_VERT_ONLY("bvec4", $1.line); op = EOpConstructBVec4; break;
}
break;
default: break;
}
if (op == EOpNull) {
context->error($1.line, "cannot construct this type", getBasicString($1.type), "");
context->recover();
$1.type = EbtFloat;
op = EOpConstructFloat;
}
}
TString tempString;
TType type($1);
TFunction *function = new TFunction(&tempString, type, op);
$$ = function;
}
| IDENTIFIER {
if (context->reservedErrorCheck($1.line, *$1.string))
context->recover();
TType type(EbtVoid, EbpUndefined);
TFunction *function = new TFunction($1.string, type);
$$ = function;
}
| FIELD_SELECTION {
if (context->reservedErrorCheck($1.line, *$1.string))
context->recover();
TType type(EbtVoid, EbpUndefined);
TFunction *function = new TFunction($1.string, type);
$$ = function;
}
;
unary_expression
: postfix_expression {
$$ = $1;
}
| INC_OP unary_expression {
if (context->lValueErrorCheck($1.line, "++", $2))
context->recover();
$$ = context->intermediate.addUnaryMath(EOpPreIncrement, $2, $1.line, context->symbolTable);
if ($$ == 0) {
context->unaryOpError($1.line, "++", $2->getCompleteString());
context->recover();
$$ = $2;
}
}
| DEC_OP unary_expression {
if (context->lValueErrorCheck($1.line, "--", $2))
context->recover();
$$ = context->intermediate.addUnaryMath(EOpPreDecrement, $2, $1.line, context->symbolTable);
if ($$ == 0) {
context->unaryOpError($1.line, "--", $2->getCompleteString());
context->recover();
$$ = $2;
}
}
| unary_operator unary_expression {
if ($1.op != EOpNull) {
$$ = context->intermediate.addUnaryMath($1.op, $2, $1.line, context->symbolTable);
if ($$ == 0) {
const char* errorOp = "";
switch($1.op) {
case EOpNegative: errorOp = "-"; break;
case EOpLogicalNot: errorOp = "!"; break;
default: break;
}
context->unaryOpError($1.line, errorOp, $2->getCompleteString());
context->recover();
$$ = $2;
}
} else
$$ = $2;
}
;
// Grammar Note: No traditional style type casts.
unary_operator
: PLUS { $$.line = $1.line; $$.op = EOpNull; }
| DASH { $$.line = $1.line; $$.op = EOpNegative; }
| BANG { $$.line = $1.line; $$.op = EOpLogicalNot; }
;
// Grammar Note: No '*' or '&' unary ops. Pointers are not supported.
multiplicative_expression
: unary_expression { $$ = $1; }
| multiplicative_expression STAR unary_expression {
FRAG_VERT_ONLY("*", $2.line);
$$ = context->intermediate.addBinaryMath(EOpMul, $1, $3, $2.line, context->symbolTable);
if ($$ == 0) {
context->binaryOpError($2.line, "*", $1->getCompleteString(), $3->getCompleteString());
context->recover();
$$ = $1;
}
}
| multiplicative_expression SLASH unary_expression {
FRAG_VERT_ONLY("/", $2.line);
$$ = context->intermediate.addBinaryMath(EOpDiv, $1, $3, $2.line, context->symbolTable);
if ($$ == 0) {
context->binaryOpError($2.line, "/", $1->getCompleteString(), $3->getCompleteString());
context->recover();
$$ = $1;
}
}
;
additive_expression
: multiplicative_expression { $$ = $1; }
| additive_expression PLUS multiplicative_expression {
$$ = context->intermediate.addBinaryMath(EOpAdd, $1, $3, $2.line, context->symbolTable);
if ($$ == 0) {
context->binaryOpError($2.line, "+", $1->getCompleteString(), $3->getCompleteString());
context->recover();
$$ = $1;
}
}
| additive_expression DASH multiplicative_expression {
$$ = context->intermediate.addBinaryMath(EOpSub, $1, $3, $2.line, context->symbolTable);
if ($$ == 0) {
context->binaryOpError($2.line, "-", $1->getCompleteString(), $3->getCompleteString());
context->recover();
$$ = $1;
}
}
;
shift_expression
: additive_expression { $$ = $1; }
;
relational_expression
: shift_expression { $$ = $1; }
| relational_expression LEFT_ANGLE shift_expression {
$$ = context->intermediate.addBinaryMath(EOpLessThan, $1, $3, $2.line, context->symbolTable);
if ($$ == 0) {
context->binaryOpError($2.line, "<", $1->getCompleteString(), $3->getCompleteString());
context->recover();
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setBConst(false);
$$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line);
}
}
| relational_expression RIGHT_ANGLE shift_expression {
$$ = context->intermediate.addBinaryMath(EOpGreaterThan, $1, $3, $2.line, context->symbolTable);
if ($$ == 0) {
context->binaryOpError($2.line, ">", $1->getCompleteString(), $3->getCompleteString());
context->recover();
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setBConst(false);
$$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line);
}
}
| relational_expression LE_OP shift_expression {
$$ = context->intermediate.addBinaryMath(EOpLessThanEqual, $1, $3, $2.line, context->symbolTable);
if ($$ == 0) {
context->binaryOpError($2.line, "<=", $1->getCompleteString(), $3->getCompleteString());
context->recover();
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setBConst(false);
$$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line);
}
}
| relational_expression GE_OP shift_expression {
$$ = context->intermediate.addBinaryMath(EOpGreaterThanEqual, $1, $3, $2.line, context->symbolTable);
if ($$ == 0) {
context->binaryOpError($2.line, ">=", $1->getCompleteString(), $3->getCompleteString());
context->recover();
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setBConst(false);
$$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line);
}
}
;
equality_expression
: relational_expression { $$ = $1; }
| equality_expression EQ_OP relational_expression {
$$ = context->intermediate.addBinaryMath(EOpEqual, $1, $3, $2.line, context->symbolTable);
if ($$ == 0) {
context->binaryOpError($2.line, "==", $1->getCompleteString(), $3->getCompleteString());
context->recover();
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setBConst(false);
$$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line);
}
}
| equality_expression NE_OP relational_expression {
$$ = context->intermediate.addBinaryMath(EOpNotEqual, $1, $3, $2.line, context->symbolTable);
if ($$ == 0) {
context->binaryOpError($2.line, "!=", $1->getCompleteString(), $3->getCompleteString());
context->recover();
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setBConst(false);
$$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line);
}
}
;
and_expression
: equality_expression { $$ = $1; }
;
exclusive_or_expression
: and_expression { $$ = $1; }
;
inclusive_or_expression
: exclusive_or_expression { $$ = $1; }
;
logical_and_expression
: inclusive_or_expression { $$ = $1; }
| logical_and_expression AND_OP inclusive_or_expression {
$$ = context->intermediate.addBinaryMath(EOpLogicalAnd, $1, $3, $2.line, context->symbolTable);
if ($$ == 0) {
context->binaryOpError($2.line, "&&", $1->getCompleteString(), $3->getCompleteString());
context->recover();
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setBConst(false);
$$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line);
}
}
;
logical_xor_expression
: logical_and_expression { $$ = $1; }
| logical_xor_expression XOR_OP logical_and_expression {
$$ = context->intermediate.addBinaryMath(EOpLogicalXor, $1, $3, $2.line, context->symbolTable);
if ($$ == 0) {
context->binaryOpError($2.line, "^^", $1->getCompleteString(), $3->getCompleteString());
context->recover();
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setBConst(false);
$$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line);
}
}
;
logical_or_expression
: logical_xor_expression { $$ = $1; }
| logical_or_expression OR_OP logical_xor_expression {
$$ = context->intermediate.addBinaryMath(EOpLogicalOr, $1, $3, $2.line, context->symbolTable);
if ($$ == 0) {
context->binaryOpError($2.line, "||", $1->getCompleteString(), $3->getCompleteString());
context->recover();
ConstantUnion *unionArray = new ConstantUnion[1];
unionArray->setBConst(false);
$$ = context->intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst), $2.line);
}
}
;
conditional_expression
: logical_or_expression { $$ = $1; }
| logical_or_expression QUESTION expression COLON assignment_expression {
if (context->boolErrorCheck($2.line, $1))
context->recover();
$$ = context->intermediate.addSelection($1, $3, $5, $2.line);
if ($3->getType() != $5->getType())
$$ = 0;
if ($$ == 0) {
context->binaryOpError($2.line, ":", $3->getCompleteString(), $5->getCompleteString());
context->recover();
$$ = $5;
}
}
;
assignment_expression
: conditional_expression { $$ = $1; }
| unary_expression assignment_operator assignment_expression {
if (context->lValueErrorCheck($2.line, "assign", $1))
context->recover();
$$ = context->intermediate.addAssign($2.op, $1, $3, $2.line);
if ($$ == 0) {
context->assignError($2.line, "assign", $1->getCompleteString(), $3->getCompleteString());
context->recover();
$$ = $1;
}
}
;
assignment_operator
: EQUAL { $$.line = $1.line; $$.op = EOpAssign; }
| MUL_ASSIGN { FRAG_VERT_ONLY("*=", $1.line); $$.line = $1.line; $$.op = EOpMulAssign; }
| DIV_ASSIGN { FRAG_VERT_ONLY("/=", $1.line); $$.line = $1.line; $$.op = EOpDivAssign; }
| ADD_ASSIGN { $$.line = $1.line; $$.op = EOpAddAssign; }
| SUB_ASSIGN { $$.line = $1.line; $$.op = EOpSubAssign; }
;
expression
: assignment_expression {
$$ = $1;
}
| expression COMMA assignment_expression {
$$ = context->intermediate.addComma($1, $3, $2.line);
if ($$ == 0) {
context->binaryOpError($2.line, ",", $1->getCompleteString(), $3->getCompleteString());
context->recover();
$$ = $3;
}
}
;
constant_expression
: conditional_expression {
if (context->constErrorCheck($1))
context->recover();
$$ = $1;
}
;
declaration
: function_prototype SEMICOLON {
TFunction &function = *($1.function);
TIntermAggregate *prototype = new TIntermAggregate;
prototype->setType(function.getReturnType());
prototype->setName(function.getName());
for (int i = 0; i < function.getParamCount(); i++)
{
const TParameter &param = function.getParam(i);
if (param.name != 0)
{
TVariable *variable = new TVariable(param.name, *param.type);
prototype = context->intermediate.growAggregate(prototype, context->intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), $1.line), $1.line);
}
else
{
prototype = context->intermediate.growAggregate(prototype, context->intermediate.addSymbol(0, "", *param.type, $1.line), $1.line);
}
}
prototype->setOp(EOpPrototype);
$$ = prototype;
}
| init_declarator_list SEMICOLON {
if ($1.intermAggregate)
$1.intermAggregate->setOp(EOpDeclaration);
$$ = $1.intermAggregate;
}
| PRECISION precision_qualifier type_specifier_no_prec SEMICOLON {
context->symbolTable.setDefaultPrecision( $3.type, $2 );
$$ = 0;
}
;
function_prototype
: function_declarator RIGHT_PAREN {
//
// Multiple declarations of the same function are allowed.
//
// If this is a definition, the definition production code will check for redefinitions
// (we don't know at this point if it's a definition or not).
//
// Redeclarations are allowed. But, return types and parameter qualifiers must match.
//
TFunction* prevDec = static_cast<TFunction*>(context->symbolTable.find($1->getMangledName()));
if (prevDec) {
if (prevDec->getReturnType() != $1->getReturnType()) {
context->error($2.line, "overloaded functions must have the same return type", $1->getReturnType().getBasicString(), "");
context->recover();
}
for (int i = 0; i < prevDec->getParamCount(); ++i) {
if (prevDec->getParam(i).type->getQualifier() != $1->getParam(i).type->getQualifier()) {
context->error($2.line, "overloaded functions must have the same parameter qualifiers", $1->getParam(i).type->getQualifierString(), "");
context->recover();
}
}
}
//
// If this is a redeclaration, it could also be a definition,
// in which case, we want to use the variable names from this one, and not the one that's
// being redeclared. So, pass back up this declaration, not the one in the symbol table.
//
$$.function = $1;
$$.line = $2.line;
context->symbolTable.insert(*$$.function);
}
;
function_declarator
: function_header {
$$ = $1;
}
| function_header_with_parameters {
$$ = $1;
}
;
function_header_with_parameters
: function_header parameter_declaration {
// Add the parameter
$$ = $1;
if ($2.param.type->getBasicType() != EbtVoid)
$1->addParameter($2.param);
else
delete $2.param.type;
}
| function_header_with_parameters COMMA parameter_declaration {
//
// Only first parameter of one-parameter functions can be void
// The check for named parameters not being void is done in parameter_declarator
//
if ($3.param.type->getBasicType() == EbtVoid) {
//
// This parameter > first is void
//
context->error($2.line, "cannot be an argument type except for '(void)'", "void", "");
context->recover();
delete $3.param.type;
} else {
// Add the parameter
$$ = $1;
$1->addParameter($3.param);
}
}
;
function_header
: fully_specified_type IDENTIFIER LEFT_PAREN {
if ($1.qualifier != EvqGlobal && $1.qualifier != EvqTemporary) {
context->error($2.line, "no qualifiers allowed for function return", getQualifierString($1.qualifier), "");
context->recover();
}
// make sure a sampler is not involved as well...
if (context->structQualifierErrorCheck($2.line, $1))
context->recover();
// Add the function as a prototype after parsing it (we do not support recursion)
TFunction *function;
TType type($1);
function = new TFunction($2.string, type);
$$ = function;
}
;
parameter_declarator
// Type + name
: type_specifier IDENTIFIER {
if ($1.type == EbtVoid) {
context->error($2.line, "illegal use of type 'void'", $2.string->c_str(), "");
context->recover();
}
if (context->reservedErrorCheck($2.line, *$2.string))
context->recover();
TParameter param = {$2.string, new TType($1)};
$$.line = $2.line;
$$.param = param;
}
| type_specifier IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET {
// Check that we can make an array out of this type
if (context->arrayTypeErrorCheck($3.line, $1))
context->recover();
if (context->reservedErrorCheck($2.line, *$2.string))
context->recover();
int size;
if (context->arraySizeErrorCheck($3.line, $4, size))
context->recover();
$1.setArray(true, size);
TType* type = new TType($1);
TParameter param = { $2.string, type };
$$.line = $2.line;
$$.param = param;
}
;
parameter_declaration
//
// The only parameter qualifier a parameter can have are
// IN_QUAL, OUT_QUAL, INOUT_QUAL, or CONST.
//
//
// Type + name
//
: type_qualifier parameter_qualifier parameter_declarator {
$$ = $3;
if (context->paramErrorCheck($3.line, $1.qualifier, $2, $$.param.type))
context->recover();
}
| parameter_qualifier parameter_declarator {
$$ = $2;
if (context->parameterSamplerErrorCheck($2.line, $1, *$2.param.type))
context->recover();
if (context->paramErrorCheck($2.line, EvqTemporary, $1, $$.param.type))
context->recover();
}
//
// Only type
//
| type_qualifier parameter_qualifier parameter_type_specifier {
$$ = $3;
if (context->paramErrorCheck($3.line, $1.qualifier, $2, $$.param.type))
context->recover();
}
| parameter_qualifier parameter_type_specifier {
$$ = $2;
if (context->parameterSamplerErrorCheck($2.line, $1, *$2.param.type))
context->recover();
if (context->paramErrorCheck($2.line, EvqTemporary, $1, $$.param.type))
context->recover();
}
;
parameter_qualifier
: /* empty */ {
$$ = EvqIn;
}
| IN_QUAL {
$$ = EvqIn;
}
| OUT_QUAL {
$$ = EvqOut;
}
| INOUT_QUAL {
$$ = EvqInOut;
}
;
parameter_type_specifier
: type_specifier {
TParameter param = { 0, new TType($1) };
$$.param = param;
}
;
init_declarator_list
: single_declaration {
$$ = $1;
if ($$.type.precision == EbpUndefined) {
$$.type.precision = context->symbolTable.getDefaultPrecision($1.type.type);
if (context->precisionErrorCheck($1.line, $$.type.precision, $1.type.type)) {
context->recover();
}
}
}
| init_declarator_list COMMA IDENTIFIER {
$$.intermAggregate = context->intermediate.growAggregate($1.intermNode, context->intermediate.addSymbol(0, *$3.string, TType($1.type), $3.line), $3.line);
if (context->structQualifierErrorCheck($3.line, $$.type))
context->recover();
if (context->nonInitConstErrorCheck($3.line, *$3.string, $$.type))
context->recover();
if (context->nonInitErrorCheck($3.line, *$3.string, $$.type))
context->recover();
}
| init_declarator_list COMMA IDENTIFIER LEFT_BRACKET RIGHT_BRACKET {
if (context->structQualifierErrorCheck($3.line, $1.type))
context->recover();
if (context->nonInitConstErrorCheck($3.line, *$3.string, $1.type))
context->recover();
$$ = $1;
if (context->arrayTypeErrorCheck($4.line, $1.type) || context->arrayQualifierErrorCheck($4.line, $1.type))
context->recover();
else {
$1.type.setArray(true);
TVariable* variable;
if (context->arrayErrorCheck($4.line, *$3.string, $1.type, variable))
context->recover();
}
}
| init_declarator_list COMMA IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET {
if (context->structQualifierErrorCheck($3.line, $1.type))
context->recover();
if (context->nonInitConstErrorCheck($3.line, *$3.string, $1.type))
context->recover();
$$ = $1;
if (context->arrayTypeErrorCheck($4.line, $1.type) || context->arrayQualifierErrorCheck($4.line, $1.type))
context->recover();
else {
int size;
if (context->arraySizeErrorCheck($4.line, $5, size))
context->recover();
$1.type.setArray(true, size);
TVariable* variable;
if (context->arrayErrorCheck($4.line, *$3.string, $1.type, variable))
context->recover();
TType type = TType($1.type);
type.setArraySize(size);
$$.intermAggregate = context->intermediate.growAggregate($1.intermNode, context->intermediate.addSymbol(0, *$3.string, type, $3.line), $3.line);
}
}
| init_declarator_list COMMA IDENTIFIER EQUAL initializer {
if (context->structQualifierErrorCheck($3.line, $1.type))
context->recover();
$$ = $1;
TIntermNode* intermNode;
if (!context->executeInitializer($3.line, *$3.string, $1.type, $5, intermNode)) {
//
// build the intermediate representation
//
if (intermNode)
$$.intermAggregate = context->intermediate.growAggregate($1.intermNode, intermNode, $4.line);
else
$$.intermAggregate = $1.intermAggregate;
} else {
context->recover();
$$.intermAggregate = 0;
}
}
;
single_declaration
: fully_specified_type {
$$.type = $1;
$$.intermAggregate = context->intermediate.makeAggregate(context->intermediate.addSymbol(0, "", TType($1), $1.line), $1.line);
}
| fully_specified_type IDENTIFIER {
$$.intermAggregate = context->intermediate.makeAggregate(context->intermediate.addSymbol(0, *$2.string, TType($1), $2.line), $2.line);
if (context->structQualifierErrorCheck($2.line, $$.type))
context->recover();
if (context->nonInitConstErrorCheck($2.line, *$2.string, $$.type))
context->recover();
$$.type = $1;
if (context->nonInitErrorCheck($2.line, *$2.string, $$.type))
context->recover();
}
| fully_specified_type IDENTIFIER LEFT_BRACKET RIGHT_BRACKET {
$$.intermAggregate = context->intermediate.makeAggregate(context->intermediate.addSymbol(0, *$2.string, TType($1), $2.line), $2.line);
if (context->structQualifierErrorCheck($2.line, $1))
context->recover();
if (context->nonInitConstErrorCheck($2.line, *$2.string, $1))
context->recover();
$$.type = $1;
if (context->arrayTypeErrorCheck($3.line, $1) || context->arrayQualifierErrorCheck($3.line, $1))
context->recover();
else {
$1.setArray(true);
TVariable* variable;
if (context->arrayErrorCheck($3.line, *$2.string, $1, variable))
context->recover();
}
}
| fully_specified_type IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET {
TType type = TType($1);
int size;
if (context->arraySizeErrorCheck($2.line, $4, size))
context->recover();
type.setArraySize(size);
$$.intermAggregate = context->intermediate.makeAggregate(context->intermediate.addSymbol(0, *$2.string, type, $2.line), $2.line);
if (context->structQualifierErrorCheck($2.line, $1))
context->recover();
if (context->nonInitConstErrorCheck($2.line, *$2.string, $1))
context->recover();
$$.type = $1;
if (context->arrayTypeErrorCheck($3.line, $1) || context->arrayQualifierErrorCheck($3.line, $1))
context->recover();
else {
int size;
if (context->arraySizeErrorCheck($3.line, $4, size))
context->recover();
$1.setArray(true, size);
TVariable* variable;
if (context->arrayErrorCheck($3.line, *$2.string, $1, variable))
context->recover();
}
}
| fully_specified_type IDENTIFIER EQUAL initializer {
if (context->structQualifierErrorCheck($2.line, $1))
context->recover();
$$.type = $1;
TIntermNode* intermNode;
if (!context->executeInitializer($2.line, *$2.string, $1, $4, intermNode)) {
//
// Build intermediate representation
//
if(intermNode)
$$.intermAggregate = context->intermediate.makeAggregate(intermNode, $3.line);
else
$$.intermAggregate = 0;
} else {
context->recover();
$$.intermAggregate = 0;
}
}
| INVARIANT IDENTIFIER {
VERTEX_ONLY("invariant declaration", $1.line);
$$.qualifier = EvqInvariantVaryingOut;
$$.intermAggregate = 0;
}
//
// Place holder for the pack/unpack languages.
//
// | buffer_specifier {
// $$.intermAggregate = 0;
// }
;
// Grammar Note: No 'enum', or 'typedef'.
//
// Place holder for the pack/unpack languages.
//
//%type <interm> buffer_declaration
//%type <interm.type> buffer_specifier input_or_output buffer_declaration_list
//buffer_specifier
// : input_or_output LEFT_BRACE buffer_declaration_list RIGHT_BRACE {
// }
// ;
//
//input_or_output
// : INPUT {
// if (context->globalErrorCheck($1.line, context->symbolTable.atGlobalLevel(), "input"))
// context->recover();
// UNPACK_ONLY("input", $1.line);
// $$.qualifier = EvqInput;
// }
// | OUTPUT {
// if (context->globalErrorCheck($1.line, context->symbolTable.atGlobalLevel(), "output"))
// context->recover();
// PACK_ONLY("output", $1.line);
// $$.qualifier = EvqOutput;
// }
// ;
//
// Place holder for the pack/unpack languages.
//
//buffer_declaration_list
// : buffer_declaration {
// }
// | buffer_declaration_list buffer_declaration {
// }
// ;
//
// Input/output semantics:
// float must be 16 or 32 bits
// float alignment restrictions?
// check for only one input and only one output
// sum of bitfields has to be multiple of 32
//
//
// Place holder for the pack/unpack languages.
//
//buffer_declaration
// : type_specifier IDENTIFIER COLON constant_expression SEMICOLON {
// if (context->reservedErrorCheck($2.line, *$2.string, context))
// context->recover();
// $$.variable = new TVariable($2.string, $1);
// if (! context->symbolTable.insert(*$$.variable)) {
// context->error($2.line, "redefinition", $$.variable->getName().c_str(), "");
// context->recover();
// // don't have to delete $$.variable, the pool pop will take care of it
// }
// }
// ;
fully_specified_type
: type_specifier {
$$ = $1;
if ($1.array) {
context->error($1.line, "not supported", "first-class array", "");
context->recover();
$1.setArray(false);
}
}
| type_qualifier type_specifier {
if ($2.array) {
context->error($2.line, "not supported", "first-class array", "");
context->recover();
$2.setArray(false);
}
if ($1.qualifier == EvqAttribute &&
($2.type == EbtBool || $2.type == EbtInt)) {
context->error($2.line, "cannot be bool or int", getQualifierString($1.qualifier), "");
context->recover();
}
if (($1.qualifier == EvqVaryingIn || $1.qualifier == EvqVaryingOut) &&
($2.type == EbtBool || $2.type == EbtInt)) {
context->error($2.line, "cannot be bool or int", getQualifierString($1.qualifier), "");
context->recover();
}
$$ = $2;
$$.qualifier = $1.qualifier;
}
;
type_qualifier
: CONST_QUAL {
$$.setBasic(EbtVoid, EvqConst, $1.line);
}
| ATTRIBUTE {
VERTEX_ONLY("attribute", $1.line);
if (context->globalErrorCheck($1.line, context->symbolTable.atGlobalLevel(), "attribute"))
context->recover();
$$.setBasic(EbtVoid, EvqAttribute, $1.line);
}
| VARYING {
if (context->globalErrorCheck($1.line, context->symbolTable.atGlobalLevel(), "varying"))
context->recover();
if (context->shaderType == SH_VERTEX_SHADER)
$$.setBasic(EbtVoid, EvqVaryingOut, $1.line);
else
$$.setBasic(EbtVoid, EvqVaryingIn, $1.line);
}
| INVARIANT VARYING {
if (context->globalErrorCheck($1.line, context->symbolTable.atGlobalLevel(), "invariant varying"))
context->recover();
if (context->shaderType == SH_VERTEX_SHADER)
$$.setBasic(EbtVoid, EvqInvariantVaryingOut, $1.line);
else
$$.setBasic(EbtVoid, EvqInvariantVaryingIn, $1.line);
}
| UNIFORM {
if (context->globalErrorCheck($1.line, context->symbolTable.atGlobalLevel(), "uniform"))
context->recover();
$$.setBasic(EbtVoid, EvqUniform, $1.line);
}
;
type_specifier
: type_specifier_no_prec {
$$ = $1;
}
| precision_qualifier type_specifier_no_prec {
$$ = $2;
$$.precision = $1;
}
;
precision_qualifier
: HIGH_PRECISION {
$$ = EbpHigh;
}
| MEDIUM_PRECISION {
$$ = EbpMedium;
}
| LOW_PRECISION {
$$ = EbpLow;
}
;
type_specifier_no_prec
: type_specifier_nonarray {
$$ = $1;
}
| type_specifier_nonarray LEFT_BRACKET constant_expression RIGHT_BRACKET {
$$ = $1;
if (context->arrayTypeErrorCheck($2.line, $1))
context->recover();
else {
int size;
if (context->arraySizeErrorCheck($2.line, $3, size))
context->recover();
$$.setArray(true, size);
}
}
;
type_specifier_nonarray
: VOID_TYPE {
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtVoid, qual, $1.line);
}
| FLOAT_TYPE {
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtFloat, qual, $1.line);
}
| INT_TYPE {
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtInt, qual, $1.line);
}
| BOOL_TYPE {
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtBool, qual, $1.line);
}
// | UNSIGNED INT_TYPE {
// PACK_UNPACK_ONLY("unsigned", $1.line);
// TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
// $$.setBasic(EbtInt, qual, $1.line);
// }
| VEC2 {
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtFloat, qual, $1.line);
$$.setAggregate(2);
}
| VEC3 {
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtFloat, qual, $1.line);
$$.setAggregate(3);
}
| VEC4 {
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtFloat, qual, $1.line);
$$.setAggregate(4);
}
| BVEC2 {
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtBool, qual, $1.line);
$$.setAggregate(2);
}
| BVEC3 {
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtBool, qual, $1.line);
$$.setAggregate(3);
}
| BVEC4 {
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtBool, qual, $1.line);
$$.setAggregate(4);
}
| IVEC2 {
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtInt, qual, $1.line);
$$.setAggregate(2);
}
| IVEC3 {
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtInt, qual, $1.line);
$$.setAggregate(3);
}
| IVEC4 {
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtInt, qual, $1.line);
$$.setAggregate(4);
}
| MATRIX2 {
FRAG_VERT_ONLY("mat2", $1.line);
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtFloat, qual, $1.line);
$$.setAggregate(2, true);
}
| MATRIX3 {
FRAG_VERT_ONLY("mat3", $1.line);
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtFloat, qual, $1.line);
$$.setAggregate(3, true);
}
| MATRIX4 {
FRAG_VERT_ONLY("mat4", $1.line);
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtFloat, qual, $1.line);
$$.setAggregate(4, true);
}
| SAMPLER2D {
FRAG_VERT_ONLY("sampler2D", $1.line);
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtSampler2D, qual, $1.line);
}
| SAMPLERCUBE {
FRAG_VERT_ONLY("samplerCube", $1.line);
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtSamplerCube, qual, $1.line);
}
| struct_specifier {
FRAG_VERT_ONLY("struct", $1.line);
$$ = $1;
$$.qualifier = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
}
| TYPE_NAME {
//
// This is for user defined type names. The lexical phase looked up the
// type.
//
TType& structure = static_cast<TVariable*>($1.symbol)->getType();
TQualifier qual = context->symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary;
$$.setBasic(EbtStruct, qual, $1.line);
$$.userDef = &structure;
}
;
struct_specifier
: STRUCT IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE {
if (context->reservedErrorCheck($2.line, *$2.string))
context->recover();
TType* structure = new TType($4, *$2.string);
TVariable* userTypeDef = new TVariable($2.string, *structure, true);
if (! context->symbolTable.insert(*userTypeDef)) {
context->error($2.line, "redefinition", $2.string->c_str(), "struct");
context->recover();
}
$$.setBasic(EbtStruct, EvqTemporary, $1.line);
$$.userDef = structure;
}
| STRUCT LEFT_BRACE struct_declaration_list RIGHT_BRACE {
TType* structure = new TType($3, TString(""));
$$.setBasic(EbtStruct, EvqTemporary, $1.line);
$$.userDef = structure;
}
;
struct_declaration_list
: struct_declaration {
$$ = $1;
}
| struct_declaration_list struct_declaration {
$$ = $1;
for (unsigned int i = 0; i < $2->size(); ++i) {
for (unsigned int j = 0; j < $$->size(); ++j) {
if ((*$$)[j].type->getFieldName() == (*$2)[i].type->getFieldName()) {
context->error((*$2)[i].line, "duplicate field name in structure:", "struct", (*$2)[i].type->getFieldName().c_str());
context->recover();
}
}
$$->push_back((*$2)[i]);
}
}
;
struct_declaration
: type_specifier struct_declarator_list SEMICOLON {
$$ = $2;
if (context->voidErrorCheck($1.line, (*$2)[0].type->getFieldName(), $1)) {
context->recover();
}
for (unsigned int i = 0; i < $$->size(); ++i) {
//
// Careful not to replace already known aspects of type, like array-ness
//
TType* type = (*$$)[i].type;
type->setBasicType($1.type);
type->setNominalSize($1.size);
type->setMatrix($1.matrix);
// don't allow arrays of arrays
if (type->isArray()) {
if (context->arrayTypeErrorCheck($1.line, $1))
context->recover();
}
if ($1.array)
type->setArraySize($1.arraySize);
if ($1.userDef) {
type->setStruct($1.userDef->getStruct());
type->setTypeName($1.userDef->getTypeName());
}
}
}
;
struct_declarator_list
: struct_declarator {
$$ = NewPoolTTypeList();
$$->push_back($1);
}
| struct_declarator_list COMMA struct_declarator {
$$->push_back($3);
}
;
struct_declarator
: IDENTIFIER {
if (context->reservedErrorCheck($1.line, *$1.string))
context->recover();
$$.type = new TType(EbtVoid, EbpUndefined);
$$.line = $1.line;
$$.type->setFieldName(*$1.string);
}
| IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET {
if (context->reservedErrorCheck($1.line, *$1.string))
context->recover();
$$.type = new TType(EbtVoid, EbpUndefined);
$$.line = $1.line;
$$.type->setFieldName(*$1.string);
int size;
if (context->arraySizeErrorCheck($2.line, $3, size))
context->recover();
$$.type->setArraySize(size);
}
;
initializer
: assignment_expression { $$ = $1; }
;
declaration_statement
: declaration { $$ = $1; }
;
statement
: compound_statement { $$ = $1; }
| simple_statement { $$ = $1; }
;
// Grammar Note: No labeled statements; 'goto' is not supported.
simple_statement
: declaration_statement { $$ = $1; }
| expression_statement { $$ = $1; }
| selection_statement { $$ = $1; }
| iteration_statement { $$ = $1; }
| jump_statement { $$ = $1; }
;
compound_statement
: LEFT_BRACE RIGHT_BRACE { $$ = 0; }
| LEFT_BRACE { context->symbolTable.push(); } statement_list { context->symbolTable.pop(); } RIGHT_BRACE {
if ($3 != 0)
$3->setOp(EOpSequence);
$$ = $3;
}
;
statement_no_new_scope
: compound_statement_no_new_scope { $$ = $1; }
| simple_statement { $$ = $1; }
;
compound_statement_no_new_scope
// Statement that doesn't create a new scope, for selection_statement, iteration_statement
: LEFT_BRACE RIGHT_BRACE {
$$ = 0;
}
| LEFT_BRACE statement_list RIGHT_BRACE {
if ($2)
$2->setOp(EOpSequence);
$$ = $2;
}
;
statement_list
: statement {
$$ = context->intermediate.makeAggregate($1, 0);
}
| statement_list statement {
$$ = context->intermediate.growAggregate($1, $2, 0);
}
;
expression_statement
: SEMICOLON { $$ = 0; }
| expression SEMICOLON { $$ = static_cast<TIntermNode*>($1); }
;
selection_statement
: IF LEFT_PAREN expression RIGHT_PAREN selection_rest_statement {
if (context->boolErrorCheck($1.line, $3))
context->recover();
$$ = context->intermediate.addSelection($3, $5, $1.line);
}
;
selection_rest_statement
: statement ELSE statement {
$$.node1 = $1;
$$.node2 = $3;
}
| statement {
$$.node1 = $1;
$$.node2 = 0;
}
;
// Grammar Note: No 'switch'. Switch statements not supported.
condition
// In 1996 c++ draft, conditions can include single declarations
: expression {
$$ = $1;
if (context->boolErrorCheck($1->getLine(), $1))
context->recover();
}
| fully_specified_type IDENTIFIER EQUAL initializer {
TIntermNode* intermNode;
if (context->structQualifierErrorCheck($2.line, $1))
context->recover();
if (context->boolErrorCheck($2.line, $1))
context->recover();
if (!context->executeInitializer($2.line, *$2.string, $1, $4, intermNode))
$$ = $4;
else {
context->recover();
$$ = 0;
}
}
;
iteration_statement
: WHILE LEFT_PAREN { context->symbolTable.push(); ++context->loopNestingLevel; } condition RIGHT_PAREN statement_no_new_scope {
context->symbolTable.pop();
$$ = context->intermediate.addLoop(ELoopWhile, 0, $4, 0, $6, $1.line);
--context->loopNestingLevel;
}
| DO { ++context->loopNestingLevel; } statement WHILE LEFT_PAREN expression RIGHT_PAREN SEMICOLON {
if (context->boolErrorCheck($8.line, $6))
context->recover();
$$ = context->intermediate.addLoop(ELoopDoWhile, 0, $6, 0, $3, $4.line);
--context->loopNestingLevel;
}
| FOR LEFT_PAREN { context->symbolTable.push(); ++context->loopNestingLevel; } for_init_statement for_rest_statement RIGHT_PAREN statement_no_new_scope {
context->symbolTable.pop();
$$ = context->intermediate.addLoop(ELoopFor, $4, reinterpret_cast<TIntermTyped*>($5.node1), reinterpret_cast<TIntermTyped*>($5.node2), $7, $1.line);
--context->loopNestingLevel;
}
;
for_init_statement
: expression_statement {
$$ = $1;
}
| declaration_statement {
$$ = $1;
}
;
conditionopt
: condition {
$$ = $1;
}
| /* May be null */ {
$$ = 0;
}
;
for_rest_statement
: conditionopt SEMICOLON {
$$.node1 = $1;
$$.node2 = 0;
}
| conditionopt SEMICOLON expression {
$$.node1 = $1;
$$.node2 = $3;
}
;
jump_statement
: CONTINUE SEMICOLON {
if (context->loopNestingLevel <= 0) {
context->error($1.line, "continue statement only allowed in loops", "", "");
context->recover();
}
$$ = context->intermediate.addBranch(EOpContinue, $1.line);
}
| BREAK SEMICOLON {
if (context->loopNestingLevel <= 0) {
context->error($1.line, "break statement only allowed in loops", "", "");
context->recover();
}
$$ = context->intermediate.addBranch(EOpBreak, $1.line);
}
| RETURN SEMICOLON {
$$ = context->intermediate.addBranch(EOpReturn, $1.line);
if (context->currentFunctionType->getBasicType() != EbtVoid) {
context->error($1.line, "non-void function must return a value", "return", "");
context->recover();
}
}
| RETURN expression SEMICOLON {
$$ = context->intermediate.addBranch(EOpReturn, $2, $1.line);
context->functionReturnsValue = true;
if (context->currentFunctionType->getBasicType() == EbtVoid) {
context->error($1.line, "void function cannot return a value", "return", "");
context->recover();
} else if (*(context->currentFunctionType) != $2->getType()) {
context->error($1.line, "function return is not matching type:", "return", "");
context->recover();
}
}
| DISCARD SEMICOLON {
FRAG_ONLY("discard", $1.line);
$$ = context->intermediate.addBranch(EOpKill, $1.line);
}
;
// Grammar Note: No 'goto'. Gotos are not supported.
translation_unit
: external_declaration {
$$ = $1;
context->treeRoot = $$;
}
| translation_unit external_declaration {
$$ = context->intermediate.growAggregate($1, $2, 0);
context->treeRoot = $$;
}
;
external_declaration
: function_definition {
$$ = $1;
}
| declaration {
$$ = $1;
}
;
function_definition
: function_prototype {
TFunction* function = $1.function;
TFunction* prevDec = static_cast<TFunction*>(context->symbolTable.find(function->getMangledName()));
//
// Note: 'prevDec' could be 'function' if this is the first time we've seen function
// as it would have just been put in the symbol table. Otherwise, we're looking up
// an earlier occurance.
//
if (prevDec->isDefined()) {
//
// Then this function already has a body.
//
context->error($1.line, "function already has a body", function->getName().c_str(), "");
context->recover();
}
prevDec->setDefined();
//
// Raise error message if main function takes any parameters or return anything other than void
//
if (function->getName() == "main") {
if (function->getParamCount() > 0) {
context->error($1.line, "function cannot take any parameter(s)", function->getName().c_str(), "");
context->recover();
}
if (function->getReturnType().getBasicType() != EbtVoid) {
context->error($1.line, "", function->getReturnType().getBasicString(), "main function cannot return a value");
context->recover();
}
}
//
// New symbol table scope for body of function plus its arguments
//
context->symbolTable.push();
//
// Remember the return type for later checking for RETURN statements.
//
context->currentFunctionType = &(prevDec->getReturnType());
context->functionReturnsValue = false;
//
// Insert parameters into the symbol table.
// If the parameter has no name, it's not an error, just don't insert it
// (could be used for unused args).
//
// Also, accumulate the list of parameters into the HIL, so lower level code
// knows where to find parameters.
//
TIntermAggregate* paramNodes = new TIntermAggregate;
for (int i = 0; i < function->getParamCount(); i++) {
const TParameter& param = function->getParam(i);
if (param.name != 0) {
TVariable *variable = new TVariable(param.name, *param.type);
//
// Insert the parameters with name in the symbol table.
//
if (! context->symbolTable.insert(*variable)) {
context->error($1.line, "redefinition", variable->getName().c_str(), "");
context->recover();
delete variable;
}
//
// Add the parameter to the HIL
//
paramNodes = context->intermediate.growAggregate(
paramNodes,
context->intermediate.addSymbol(variable->getUniqueId(),
variable->getName(),
variable->getType(), $1.line),
$1.line);
} else {
paramNodes = context->intermediate.growAggregate(paramNodes, context->intermediate.addSymbol(0, "", *param.type, $1.line), $1.line);
}
}
context->intermediate.setAggregateOperator(paramNodes, EOpParameters, $1.line);
$1.intermAggregate = paramNodes;
context->loopNestingLevel = 0;
}
compound_statement_no_new_scope {
//?? Check that all paths return a value if return type != void ?
// May be best done as post process phase on intermediate code
if (context->currentFunctionType->getBasicType() != EbtVoid && ! context->functionReturnsValue) {
context->error($1.line, "function does not return a value:", "", $1.function->getName().c_str());
context->recover();
}
context->symbolTable.pop();
$$ = context->intermediate.growAggregate($1.intermAggregate, $3, 0);
context->intermediate.setAggregateOperator($$, EOpFunction, $1.line);
$$->getAsAggregate()->setName($1.function->getMangledName().c_str());
$$->getAsAggregate()->setType($1.function->getReturnType());
// store the pragma information for debug and optimize and other vendor specific
// information. This information can be queried from the parse tree
$$->getAsAggregate()->setOptimize(context->contextPragma.optimize);
$$->getAsAggregate()->setDebug(context->contextPragma.debug);
$$->getAsAggregate()->addToPragmaTable(context->contextPragma.pragmaTable);
}
;
%%
int glslang_parse(TParseContext* context) {
return yyparse(context);
}